xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 327b5b8b74faedefc45e861c797197cf6fbd6def)
1 /*
2  * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9 
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18 
19 #include <platform_def.h>
20 
21 /**
22  * struct spmc_shmem_obj - Shared memory object.
23  * @desc_size:      Size of @desc.
24  * @desc_filled:    Size of @desc already received.
25  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
26  *                  without a matching ffa_mem_relinquish call.
27  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
28  */
29 struct spmc_shmem_obj {
30 	size_t desc_size;
31 	size_t desc_filled;
32 	size_t in_use;
33 	struct ffa_mtd desc;
34 };
35 
36 /*
37  * Declare our data structure to store the metadata of memory share requests.
38  * The main datastore is allocated on a per platform basis to ensure enough
39  * storage can be made available.
40  * The address of the data store will be populated by the SPMC during its
41  * initialization.
42  */
43 
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 	/* Set start value for handle so top 32 bits are needed quickly. */
46 	.next_handle = 0xffffffc0U,
47 };
48 
49 /**
50  * spmc_shmem_obj_size - Convert from descriptor size to object size.
51  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
52  *
53  * Return: Size of struct spmc_shmem_obj object.
54  */
55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59 
60 /**
61  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62  * @state:      Global state.
63  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
64  *              allocated object will hold.
65  *
66  * Return: Pointer to newly allocated object, or %NULL if there not enough space
67  *         left. The returned pointer is only valid while @state is locked, to
68  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
69  *         called.
70  */
71 static struct spmc_shmem_obj *
72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 	struct spmc_shmem_obj *obj;
75 	size_t free = state->data_size - state->allocated;
76 	size_t obj_size;
77 
78 	if (state->data == NULL) {
79 		ERROR("Missing shmem datastore!\n");
80 		return NULL;
81 	}
82 
83 	/* Ensure that descriptor size is aligned */
84 	if (!is_aligned(desc_size, 16)) {
85 		WARN("%s(0x%zx) desc_size not 16-byte aligned\n",
86 		     __func__, desc_size);
87 		return NULL;
88 	}
89 
90 	obj_size = spmc_shmem_obj_size(desc_size);
91 
92 	/* Ensure the obj size has not overflowed. */
93 	if (obj_size < desc_size) {
94 		WARN("%s(0x%zx) desc_size overflow\n",
95 		     __func__, desc_size);
96 		return NULL;
97 	}
98 
99 	if (obj_size > free) {
100 		WARN("%s(0x%zx) failed, free 0x%zx\n",
101 		     __func__, desc_size, free);
102 		return NULL;
103 	}
104 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
105 	obj->desc = (struct ffa_mtd) {0};
106 	obj->desc_size = desc_size;
107 	obj->desc_filled = 0;
108 	obj->in_use = 0;
109 	state->allocated += obj_size;
110 	return obj;
111 }
112 
113 /**
114  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
115  * @state:      Global state.
116  * @obj:        Object to free.
117  *
118  * Release memory used by @obj. Other objects may move, so on return all
119  * pointers to struct spmc_shmem_obj object should be considered invalid, not
120  * just @obj.
121  *
122  * The current implementation always compacts the remaining objects to simplify
123  * the allocator and to avoid fragmentation.
124  */
125 
126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
127 				  struct spmc_shmem_obj *obj)
128 {
129 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
130 	uint8_t *shift_dest = (uint8_t *)obj;
131 	uint8_t *shift_src = shift_dest + free_size;
132 	size_t shift_size = state->allocated - (shift_src - state->data);
133 
134 	if (shift_size != 0U) {
135 		memmove(shift_dest, shift_src, shift_size);
136 	}
137 	state->allocated -= free_size;
138 }
139 
140 /**
141  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
142  * @state:      Global state.
143  * @handle:     Unique handle of object to return.
144  *
145  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
146  *         %NULL, if not object in @state->data has a matching handle.
147  */
148 static struct spmc_shmem_obj *
149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
150 {
151 	uint8_t *curr = state->data;
152 
153 	while (curr - state->data < state->allocated) {
154 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
155 
156 		if (obj->desc.handle == handle) {
157 			return obj;
158 		}
159 		curr += spmc_shmem_obj_size(obj->desc_size);
160 	}
161 	return NULL;
162 }
163 
164 /**
165  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
166  * @offset:     Offset used to track which objects have previously been
167  *              returned.
168  *
169  * Return: the next struct spmc_shmem_obj_state object from the provided
170  *	   offset.
171  *	   %NULL, if there are no more objects.
172  */
173 static struct spmc_shmem_obj *
174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
175 {
176 	uint8_t *curr = state->data + *offset;
177 
178 	if (curr - state->data < state->allocated) {
179 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
180 
181 		*offset += spmc_shmem_obj_size(obj->desc_size);
182 
183 		return obj;
184 	}
185 	return NULL;
186 }
187 
188 /*******************************************************************************
189  * FF-A memory descriptor helper functions.
190  ******************************************************************************/
191 /**
192  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
193  *                           clients FF-A version.
194  * @desc:         The memory transaction descriptor.
195  * @index:        The index of the emad element to be accessed.
196  * @ffa_version:  FF-A version of the provided structure.
197  * @emad_size:    Will be populated with the size of the returned emad
198  *                descriptor.
199  * Return: A pointer to the requested emad structure.
200  */
201 static void *
202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
203 			uint32_t ffa_version, size_t *emad_size)
204 {
205 	uint8_t *emad;
206 
207 	assert(index < desc->emad_count);
208 
209 	/*
210 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
211 	 * format, otherwise assume it is a v1.1 format.
212 	 */
213 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
214 		emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
215 		*emad_size = sizeof(struct ffa_emad_v1_0);
216 	} else {
217 		assert(is_aligned(desc->emad_offset, 16));
218 		emad = ((uint8_t *) desc + desc->emad_offset);
219 		*emad_size = desc->emad_size;
220 	}
221 
222 	assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
223 	return (emad + (*emad_size * index));
224 }
225 
226 /**
227  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
228  *				 FF-A version of the descriptor.
229  * @obj:    Object containing ffa_memory_region_descriptor.
230  *
231  * Return: struct ffa_comp_mrd object corresponding to the composite memory
232  *	   region descriptor.
233  */
234 static struct ffa_comp_mrd *
235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
236 {
237 	size_t emad_size;
238 	/*
239 	 * The comp_mrd_offset field of the emad descriptor remains consistent
240 	 * between FF-A versions therefore we can use the v1.0 descriptor here
241 	 * in all cases.
242 	 */
243 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
244 							     ffa_version,
245 							     &emad_size);
246 
247 	/* Ensure the composite descriptor offset is aligned. */
248 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
249 		WARN("Unaligned composite memory region descriptor offset.\n");
250 		return NULL;
251 	}
252 
253 	return (struct ffa_comp_mrd *)
254 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
255 }
256 
257 /**
258  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
259  *				a given memory transaction.
260  * @sp_id:      Partition ID to validate.
261  * @obj:        The shared memory object containing the descriptor
262  *              of the memory transaction.
263  * Return: true if ID is valid, else false.
264  */
265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
266 {
267 	bool found = false;
268 	struct ffa_mtd *desc = &obj->desc;
269 	size_t desc_size = obj->desc_size;
270 
271 	/* Validate the partition is a valid participant. */
272 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
273 		size_t emad_size;
274 		struct ffa_emad_v1_0 *emad;
275 
276 		emad = spmc_shmem_obj_get_emad(desc, i,
277 					       MAKE_FFA_VERSION(1, 1),
278 					       &emad_size);
279 		/*
280 		 * Validate the calculated emad address resides within the
281 		 * descriptor.
282 		 */
283 		if ((emad == NULL) || (uintptr_t) emad >=
284 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
285 			VERBOSE("Invalid emad.\n");
286 			break;
287 		}
288 		if (sp_id == emad->mapd.endpoint_id) {
289 			found = true;
290 			break;
291 		}
292 	}
293 	return found;
294 }
295 
296 /*
297  * Compare two memory regions to determine if any range overlaps with another
298  * ongoing memory transaction.
299  */
300 static bool
301 overlapping_memory_regions(struct ffa_comp_mrd *region1,
302 			   struct ffa_comp_mrd *region2)
303 {
304 	uint64_t region1_start;
305 	uint64_t region1_size;
306 	uint64_t region1_end;
307 	uint64_t region2_start;
308 	uint64_t region2_size;
309 	uint64_t region2_end;
310 
311 	assert(region1 != NULL);
312 	assert(region2 != NULL);
313 
314 	if (region1 == region2) {
315 		return true;
316 	}
317 
318 	/*
319 	 * Check each memory region in the request against existing
320 	 * transactions.
321 	 */
322 	for (size_t i = 0; i < region1->address_range_count; i++) {
323 
324 		region1_start = region1->address_range_array[i].address;
325 		region1_size =
326 			region1->address_range_array[i].page_count *
327 			PAGE_SIZE_4KB;
328 		region1_end = region1_start + region1_size;
329 
330 		for (size_t j = 0; j < region2->address_range_count; j++) {
331 
332 			region2_start = region2->address_range_array[j].address;
333 			region2_size =
334 				region2->address_range_array[j].page_count *
335 				PAGE_SIZE_4KB;
336 			region2_end = region2_start + region2_size;
337 
338 			/* Check if regions are not overlapping. */
339 			if (!((region2_end <= region1_start) ||
340 			      (region1_end <= region2_start))) {
341 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
342 				     region1_start, region1_end,
343 				     region2_start, region2_end);
344 				return true;
345 			}
346 		}
347 	}
348 	return false;
349 }
350 
351 /*******************************************************************************
352  * FF-A v1.0 Memory Descriptor Conversion Helpers.
353  ******************************************************************************/
354 /**
355  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
356  *                                     converted descriptor.
357  * @orig:       The original v1.0 memory transaction descriptor.
358  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
359  *
360  * Return: the size required to store the descriptor store in the v1.1 format.
361  */
362 static uint64_t
363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
364 {
365 	uint64_t size = 0;
366 	struct ffa_comp_mrd *mrd;
367 	struct ffa_emad_v1_0 *emad_array = orig->emad;
368 
369 	/* Get the size of the v1.1 descriptor. */
370 	size += sizeof(struct ffa_mtd);
371 
372 	/* Add the size of the emad descriptors. */
373 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
374 
375 	/* Add the size of the composite mrds. */
376 	size += sizeof(struct ffa_comp_mrd);
377 
378 	/* Add the size of the constituent mrds. */
379 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
380 	      emad_array[0].comp_mrd_offset);
381 
382 	/* Add the size of the memory region descriptors. */
383 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
384 
385 	return size;
386 }
387 
388 /**
389  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
390  *                                     converted descriptor.
391  * @orig:       The original v1.1 memory transaction descriptor.
392  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
393  *
394  * Return: the size required to store the descriptor store in the v1.0 format.
395  */
396 static size_t
397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
398 {
399 	size_t size = 0;
400 	struct ffa_comp_mrd *mrd;
401 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
402 					   ((uint8_t *) orig +
403 					    orig->emad_offset);
404 
405 	/* Get the size of the v1.0 descriptor. */
406 	size += sizeof(struct ffa_mtd_v1_0);
407 
408 	/* Add the size of the v1.0 emad descriptors. */
409 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
410 
411 	/* Add the size of the composite mrds. */
412 	size += sizeof(struct ffa_comp_mrd);
413 
414 	/* Add the size of the constituent mrds. */
415 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
416 	      emad_array[0].comp_mrd_offset);
417 
418 	/* Check the calculated address is within the memory descriptor. */
419 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
420 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
421 		return 0;
422 	}
423 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
424 
425 	return size;
426 }
427 
428 /**
429  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
430  * @out_obj:	The shared memory object to populate the converted descriptor.
431  * @orig:	The shared memory object containing the v1.0 descriptor.
432  *
433  * Return: true if the conversion is successful else false.
434  */
435 static bool
436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
437 				     struct spmc_shmem_obj *orig)
438 {
439 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
440 	struct ffa_mtd *out = &out_obj->desc;
441 	struct ffa_emad_v1_0 *emad_array_in;
442 	struct ffa_emad_v1_0 *emad_array_out;
443 	struct ffa_comp_mrd *mrd_in;
444 	struct ffa_comp_mrd *mrd_out;
445 
446 	size_t mrd_in_offset;
447 	size_t mrd_out_offset;
448 	size_t mrd_size = 0;
449 
450 	/* Populate the new descriptor format from the v1.0 struct. */
451 	out->sender_id = mtd_orig->sender_id;
452 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
453 	out->flags = mtd_orig->flags;
454 	out->handle = mtd_orig->handle;
455 	out->tag = mtd_orig->tag;
456 	out->emad_count = mtd_orig->emad_count;
457 	out->emad_size = sizeof(struct ffa_emad_v1_0);
458 
459 	/*
460 	 * We will locate the emad descriptors directly after the ffa_mtd
461 	 * struct. This will be 8-byte aligned.
462 	 */
463 	out->emad_offset = sizeof(struct ffa_mtd);
464 
465 	emad_array_in = mtd_orig->emad;
466 	emad_array_out = (struct ffa_emad_v1_0 *)
467 			 ((uint8_t *) out + out->emad_offset);
468 
469 	/* Copy across the emad structs. */
470 	for (unsigned int i = 0U; i < out->emad_count; i++) {
471 		/* Bound check for emad array. */
472 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
473 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
474 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
475 			return false;
476 		}
477 		memcpy(&emad_array_out[i], &emad_array_in[i],
478 		       sizeof(struct ffa_emad_v1_0));
479 	}
480 
481 	/* Place the mrd descriptors after the end of the emad descriptors.*/
482 	mrd_in_offset = emad_array_in->comp_mrd_offset;
483 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
484 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
485 
486 	/* Add the size of the composite memory region descriptor. */
487 	mrd_size += sizeof(struct ffa_comp_mrd);
488 
489 	/* Find the mrd descriptor. */
490 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
491 
492 	/* Add the size of the constituent memory region descriptors. */
493 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
494 
495 	/*
496 	 * Update the offset in the emads by the delta between the input and
497 	 * output addresses.
498 	 */
499 	for (unsigned int i = 0U; i < out->emad_count; i++) {
500 		emad_array_out[i].comp_mrd_offset =
501 			emad_array_in[i].comp_mrd_offset +
502 			(mrd_out_offset - mrd_in_offset);
503 	}
504 
505 	/* Verify that we stay within bound of the memory descriptors. */
506 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
507 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
508 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
509 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
510 		ERROR("%s: Invalid mrd structure.\n", __func__);
511 		return false;
512 	}
513 
514 	/* Copy the mrd descriptors directly. */
515 	memcpy(mrd_out, mrd_in, mrd_size);
516 
517 	return true;
518 }
519 
520 /**
521  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
522  *                                v1.0 memory object.
523  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
524  * @orig:       The shared memory object containing the v1.1 descriptor.
525  *
526  * Return: true if the conversion is successful else false.
527  */
528 static bool
529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
530 			     struct spmc_shmem_obj *orig)
531 {
532 	struct ffa_mtd *mtd_orig = &orig->desc;
533 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
534 	struct ffa_emad_v1_0 *emad_in;
535 	struct ffa_emad_v1_0 *emad_array_in;
536 	struct ffa_emad_v1_0 *emad_array_out;
537 	struct ffa_comp_mrd *mrd_in;
538 	struct ffa_comp_mrd *mrd_out;
539 
540 	size_t mrd_in_offset;
541 	size_t mrd_out_offset;
542 	size_t emad_out_array_size;
543 	size_t mrd_size = 0;
544 	size_t orig_desc_size = orig->desc_size;
545 
546 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
547 	out->sender_id = mtd_orig->sender_id;
548 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
549 	out->flags = mtd_orig->flags;
550 	out->handle = mtd_orig->handle;
551 	out->tag = mtd_orig->tag;
552 	out->emad_count = mtd_orig->emad_count;
553 
554 	/* Determine the location of the emad array in both descriptors. */
555 	emad_array_in = (struct ffa_emad_v1_0 *)
556 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
557 	emad_array_out = out->emad;
558 
559 	/* Copy across the emad structs. */
560 	emad_in = emad_array_in;
561 	for (unsigned int i = 0U; i < out->emad_count; i++) {
562 		/* Bound check for emad array. */
563 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
564 				((uint8_t *) mtd_orig + orig_desc_size)) {
565 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
566 			return false;
567 		}
568 		memcpy(&emad_array_out[i], emad_in,
569 		       sizeof(struct ffa_emad_v1_0));
570 
571 		emad_in +=  mtd_orig->emad_size;
572 	}
573 
574 	/* Place the mrd descriptors after the end of the emad descriptors. */
575 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
576 
577 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
578 			  emad_out_array_size;
579 
580 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
581 
582 	mrd_in_offset = mtd_orig->emad_offset +
583 			(mtd_orig->emad_size * mtd_orig->emad_count);
584 
585 	/* Add the size of the composite memory region descriptor. */
586 	mrd_size += sizeof(struct ffa_comp_mrd);
587 
588 	/* Find the mrd descriptor. */
589 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
590 
591 	/* Add the size of the constituent memory region descriptors. */
592 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
593 
594 	/*
595 	 * Update the offset in the emads by the delta between the input and
596 	 * output addresses.
597 	 */
598 	emad_in = emad_array_in;
599 
600 	for (unsigned int i = 0U; i < out->emad_count; i++) {
601 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
602 						    (mrd_out_offset -
603 						     mrd_in_offset);
604 		emad_in +=  mtd_orig->emad_size;
605 	}
606 
607 	/* Verify that we stay within bound of the memory descriptors. */
608 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
609 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
610 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
611 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
612 		ERROR("%s: Invalid mrd structure.\n", __func__);
613 		return false;
614 	}
615 
616 	/* Copy the mrd descriptors directly. */
617 	memcpy(mrd_out, mrd_in, mrd_size);
618 
619 	return true;
620 }
621 
622 /**
623  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
624  *                                     the v1.0 format and populates the
625  *                                     provided buffer.
626  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
627  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
628  * @buf_size:	    Size of the buffer to populate.
629  * @offset:	    The offset of the converted descriptor to copy.
630  * @copy_size:	    Will be populated with the number of bytes copied.
631  * @out_desc_size:  Will be populated with the total size of the v1.0
632  *                  descriptor.
633  *
634  * Return: 0 if conversion and population succeeded.
635  * Note: This function invalidates the reference to @orig therefore
636  * `spmc_shmem_obj_lookup` must be called if further usage is required.
637  */
638 static uint32_t
639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
640 				 size_t buf_size, size_t offset,
641 				 size_t *copy_size, size_t *v1_0_desc_size)
642 {
643 		struct spmc_shmem_obj *v1_0_obj;
644 
645 		/* Calculate the size that the v1.0 descriptor will require. */
646 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
647 					&orig_obj->desc, orig_obj->desc_size);
648 
649 		if (*v1_0_desc_size == 0) {
650 			ERROR("%s: cannot determine size of descriptor.\n",
651 			      __func__);
652 			return FFA_ERROR_INVALID_PARAMETER;
653 		}
654 
655 		/* Get a new obj to store the v1.0 descriptor. */
656 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
657 						*v1_0_desc_size);
658 
659 		if (!v1_0_obj) {
660 			return FFA_ERROR_NO_MEMORY;
661 		}
662 
663 		/* Perform the conversion from v1.1 to v1.0. */
664 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
665 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
666 			return FFA_ERROR_INVALID_PARAMETER;
667 		}
668 
669 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
670 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
671 
672 		/*
673 		 * We're finished with the v1.0 descriptor for now so free it.
674 		 * Note that this will invalidate any references to the v1.1
675 		 * descriptor.
676 		 */
677 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
678 
679 		return 0;
680 }
681 
682 static int
683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
684 			size_t fragment_length, size_t total_length)
685 {
686 	unsigned long long emad_end;
687 	unsigned long long emad_size;
688 	unsigned long long emad_offset;
689 	unsigned int min_desc_size;
690 
691 	/* Determine the appropriate minimum descriptor size. */
692 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
693 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
694 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
695 		min_desc_size = sizeof(struct ffa_mtd);
696 	} else {
697 		return FFA_ERROR_INVALID_PARAMETER;
698 	}
699 	if (fragment_length < min_desc_size) {
700 		WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
701 		     min_desc_size);
702 		return FFA_ERROR_INVALID_PARAMETER;
703 	}
704 
705 	if (desc->emad_count == 0U) {
706 		WARN("%s: unsupported attribute desc count %u.\n",
707 		     __func__, desc->emad_count);
708 		return FFA_ERROR_INVALID_PARAMETER;
709 	}
710 
711 	/*
712 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
713 	 * format, otherwise assume it is a v1.1 format.
714 	 */
715 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
716 		emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
717 	} else {
718 		if (!is_aligned(desc->emad_offset, 16)) {
719 			WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
720 			     __func__, desc->emad_offset);
721 			return FFA_ERROR_INVALID_PARAMETER;
722 		}
723 		if (desc->emad_offset < sizeof(struct ffa_mtd)) {
724 			WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
725 			     __func__, desc->emad_offset,
726 			     sizeof(struct ffa_mtd));
727 			return FFA_ERROR_INVALID_PARAMETER;
728 		}
729 		emad_offset = desc->emad_offset;
730 		if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
731 			WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
732 			     desc->emad_size, sizeof(struct ffa_emad_v1_0));
733 			return FFA_ERROR_INVALID_PARAMETER;
734 		}
735 		if (!is_aligned(desc->emad_size, 16)) {
736 			WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
737 			     __func__, desc->emad_size);
738 			return FFA_ERROR_INVALID_PARAMETER;
739 		}
740 		emad_size = desc->emad_size;
741 	}
742 
743 	/*
744 	 * Overflow is impossible: the arithmetic happens in at least 64-bit
745 	 * precision, but all of the operands are bounded by UINT32_MAX, and
746 	 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1))
747 	 * = (2^64 - 1).
748 	 */
749 	CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large);
750 	emad_end = (desc->emad_count * (unsigned long long)emad_size) +
751 		   (unsigned long long)sizeof(struct ffa_comp_mrd) +
752 		   (unsigned long long)emad_offset;
753 
754 	if (emad_end > total_length) {
755 		WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
756 		     __func__, emad_end, total_length);
757 		return FFA_ERROR_INVALID_PARAMETER;
758 	}
759 
760 	return 0;
761 }
762 
763 static inline const struct ffa_emad_v1_0 *
764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset)
765 {
766 	return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset);
767 }
768 
769 /**
770  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
771  * @obj:	  Object containing ffa_memory_region_descriptor.
772  * @ffa_version:  FF-A version of the provided descriptor.
773  *
774  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if
775  * constituent_memory_region_descriptor offset or count is invalid.
776  */
777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
778 				uint32_t ffa_version)
779 {
780 	uint64_t total_page_count;
781 	const struct ffa_emad_v1_0 *first_emad;
782 	const struct ffa_emad_v1_0 *end_emad;
783 	size_t emad_size;
784 	uint32_t comp_mrd_offset = 0;
785 	size_t header_emad_size;
786 	size_t size;
787 	size_t count;
788 	size_t expected_size;
789 	struct ffa_comp_mrd *comp;
790 
791 	if (obj->desc_filled != obj->desc_size) {
792 		ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
793 		      __func__, obj->desc_filled, obj->desc_size);
794 		panic();
795 	}
796 
797 	if (spmc_validate_mtd_start(&obj->desc, ffa_version,
798 				    obj->desc_filled, obj->desc_size)) {
799 		ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
800 		      __func__);
801 		panic();
802 	}
803 
804 	first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
805 					     ffa_version, &emad_size);
806 	end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size);
807 	comp_mrd_offset = first_emad->comp_mrd_offset;
808 
809 	/* Loop through the endpoint descriptors, validating each of them. */
810 	for (const struct ffa_emad_v1_0 *emad = first_emad;
811 	     emad < end_emad;
812 	     emad = emad_advance(emad, emad_size)) {
813 		ffa_endpoint_id16_t ep_id;
814 
815 		/*
816 		 * If a partition ID resides in the secure world validate that
817 		 * the partition ID is for a known partition. Ignore any
818 		 * partition ID belonging to the normal world as it is assumed
819 		 * the Hypervisor will have validated these.
820 		 */
821 		ep_id = emad->mapd.endpoint_id;
822 		if (ffa_is_secure_world_id(ep_id)) {
823 			if (spmc_get_sp_ctx(ep_id) == NULL) {
824 				WARN("%s: Invalid receiver id 0x%x\n",
825 				     __func__, ep_id);
826 				return FFA_ERROR_INVALID_PARAMETER;
827 			}
828 		}
829 
830 		/*
831 		 * The offset provided to the composite memory region descriptor
832 		 * should be consistent across endpoint descriptors.
833 		 */
834 		if (comp_mrd_offset != emad->comp_mrd_offset) {
835 			ERROR("%s: mismatching offsets provided, %u != %u\n",
836 			       __func__, emad->comp_mrd_offset, comp_mrd_offset);
837 			return FFA_ERROR_INVALID_PARAMETER;
838 		}
839 	}
840 
841 	header_emad_size = (size_t)((const uint8_t *)end_emad -
842 				    (const uint8_t *)&obj->desc);
843 
844 	/*
845 	 * Check that the composite descriptor
846 	 * is after the endpoint descriptors.
847 	 */
848 	if (comp_mrd_offset < header_emad_size) {
849 		WARN("%s: invalid object, offset %u < header + emad %zu\n",
850 		     __func__, comp_mrd_offset, header_emad_size);
851 		return FFA_ERROR_INVALID_PARAMETER;
852 	}
853 
854 	/* Ensure the composite descriptor offset is aligned. */
855 	if (!is_aligned(comp_mrd_offset, 16)) {
856 		WARN("%s: invalid object, unaligned composite memory "
857 		     "region descriptor offset %u.\n",
858 		     __func__, comp_mrd_offset);
859 		return FFA_ERROR_INVALID_PARAMETER;
860 	}
861 
862 	size = obj->desc_size;
863 
864 	/* Check that the composite descriptor is in bounds. */
865 	if (comp_mrd_offset > size) {
866 		WARN("%s: invalid object, offset %u > total size %zu\n",
867 		     __func__, comp_mrd_offset, obj->desc_size);
868 		return FFA_ERROR_INVALID_PARAMETER;
869 	}
870 	size -= comp_mrd_offset;
871 
872 	if (size < sizeof(struct ffa_comp_mrd)) {
873 		WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
874 		     __func__, comp_mrd_offset, obj->desc_size);
875 		return FFA_ERROR_INVALID_PARAMETER;
876 	}
877 	size -= sizeof(struct ffa_comp_mrd);
878 
879 	count = size / sizeof(struct ffa_cons_mrd);
880 
881 	comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
882 
883 	if (comp->address_range_count != count) {
884 		WARN("%s: invalid object, desc count %u != %zu\n",
885 		     __func__, comp->address_range_count, count);
886 		return FFA_ERROR_INVALID_PARAMETER;
887 	}
888 
889 	expected_size = comp_mrd_offset + sizeof(*comp) +
890 		count * sizeof(struct ffa_cons_mrd);
891 
892 	if (expected_size != obj->desc_size) {
893 		WARN("%s: invalid object, computed size %zu != size %zu\n",
894 		       __func__, expected_size, obj->desc_size);
895 		return FFA_ERROR_INVALID_PARAMETER;
896 	}
897 
898 	total_page_count = 0;
899 
900 	for (size_t i = 0; i < count; i++) {
901 		const struct ffa_cons_mrd *mrd = comp->address_range_array + i;
902 
903 		if (!is_aligned(mrd->address, PAGE_SIZE)) {
904 			WARN("%s: invalid object, address in region descriptor "
905 			     "%zu not 4K aligned (got 0x%016llx)",
906 			     __func__, i, (unsigned long long)mrd->address);
907 		}
908 
909 		total_page_count += mrd->page_count;
910 	}
911 	if (comp->total_page_count != total_page_count) {
912 		WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n",
913 		     __func__, comp->total_page_count,
914 		total_page_count);
915 		return FFA_ERROR_INVALID_PARAMETER;
916 	}
917 
918 	return 0;
919 }
920 
921 /**
922  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
923  *				regions that are currently involved with an
924  *				existing memory transactions. This implies that
925  *				the memory is not in a valid state for lending.
926  * @obj:    Object containing ffa_memory_region_descriptor.
927  *
928  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory
929  * state.
930  */
931 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
932 				      uint32_t ffa_version)
933 {
934 	size_t obj_offset = 0;
935 	struct spmc_shmem_obj *inflight_obj;
936 
937 	struct ffa_comp_mrd *other_mrd;
938 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
939 								  ffa_version);
940 
941 	if (requested_mrd == NULL) {
942 		return FFA_ERROR_INVALID_PARAMETER;
943 	}
944 
945 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
946 					       &obj_offset);
947 
948 	while (inflight_obj != NULL) {
949 		/*
950 		 * Don't compare the transaction to itself or to partially
951 		 * transmitted descriptors.
952 		 */
953 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
954 		    (obj->desc_size == obj->desc_filled)) {
955 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
956 							  FFA_VERSION_COMPILED);
957 			if (other_mrd == NULL) {
958 				return FFA_ERROR_INVALID_PARAMETER;
959 			}
960 			if (overlapping_memory_regions(requested_mrd,
961 						       other_mrd)) {
962 				return FFA_ERROR_INVALID_PARAMETER;
963 			}
964 		}
965 
966 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
967 						       &obj_offset);
968 	}
969 	return 0;
970 }
971 
972 static long spmc_ffa_fill_desc(struct mailbox *mbox,
973 			       struct spmc_shmem_obj *obj,
974 			       uint32_t fragment_length,
975 			       ffa_mtd_flag32_t mtd_flag,
976 			       uint32_t ffa_version,
977 			       void *smc_handle)
978 {
979 	int ret;
980 	size_t emad_size;
981 	uint32_t handle_low;
982 	uint32_t handle_high;
983 	struct ffa_emad_v1_0 *emad;
984 	struct ffa_emad_v1_0 *other_emad;
985 
986 	if (mbox->rxtx_page_count == 0U) {
987 		WARN("%s: buffer pair not registered.\n", __func__);
988 		ret = FFA_ERROR_INVALID_PARAMETER;
989 		goto err_arg;
990 	}
991 
992 	CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count);
993 	if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) {
994 		WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__,
995 		     fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB);
996 		ret = FFA_ERROR_INVALID_PARAMETER;
997 		goto err_arg;
998 	}
999 
1000 	if (fragment_length > obj->desc_size - obj->desc_filled) {
1001 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
1002 		     fragment_length, obj->desc_size - obj->desc_filled);
1003 		ret = FFA_ERROR_INVALID_PARAMETER;
1004 		goto err_arg;
1005 	}
1006 
1007 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1008 	       (uint8_t *) mbox->tx_buffer, fragment_length);
1009 
1010 	/* Ensure that the sender ID resides in the normal world. */
1011 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1012 		WARN("%s: Invalid sender ID 0x%x.\n",
1013 		     __func__, obj->desc.sender_id);
1014 		ret = FFA_ERROR_DENIED;
1015 		goto err_arg;
1016 	}
1017 
1018 	/* Ensure the NS bit is set to 0. */
1019 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1020 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1021 		ret = FFA_ERROR_INVALID_PARAMETER;
1022 		goto err_arg;
1023 	}
1024 
1025 	/*
1026 	 * We don't currently support any optional flags so ensure none are
1027 	 * requested.
1028 	 */
1029 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
1030 	    (obj->desc.flags != mtd_flag)) {
1031 		WARN("%s: invalid memory transaction flags %u != %u\n",
1032 		     __func__, obj->desc.flags, mtd_flag);
1033 		ret = FFA_ERROR_INVALID_PARAMETER;
1034 		goto err_arg;
1035 	}
1036 
1037 	if (obj->desc_filled == 0U) {
1038 		/* First fragment, descriptor header has been copied */
1039 		ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1040 					      fragment_length, obj->desc_size);
1041 		if (ret != 0) {
1042 			goto err_bad_desc;
1043 		}
1044 
1045 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1046 		obj->desc.flags |= mtd_flag;
1047 	}
1048 
1049 	obj->desc_filled += fragment_length;
1050 
1051 	handle_low = (uint32_t)obj->desc.handle;
1052 	handle_high = obj->desc.handle >> 32;
1053 
1054 	if (obj->desc_filled != obj->desc_size) {
1055 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1056 			 handle_high, obj->desc_filled,
1057 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1058 	}
1059 
1060 	/* The full descriptor has been received, perform any final checks. */
1061 
1062 	ret = spmc_shmem_check_obj(obj, ffa_version);
1063 	if (ret != 0) {
1064 		goto err_bad_desc;
1065 	}
1066 
1067 	/* Ensure partition IDs are not duplicated. */
1068 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1069 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1070 					       &emad_size);
1071 
1072 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
1073 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1074 							     ffa_version,
1075 							     &emad_size);
1076 
1077 			if (emad->mapd.endpoint_id ==
1078 				other_emad->mapd.endpoint_id) {
1079 				WARN("%s: Duplicated endpoint id 0x%x\n",
1080 				     __func__, emad->mapd.endpoint_id);
1081 				ret = FFA_ERROR_INVALID_PARAMETER;
1082 				goto err_bad_desc;
1083 			}
1084 		}
1085 	}
1086 
1087 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1088 	if (ret) {
1089 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1090 		goto err_bad_desc;
1091 	}
1092 
1093 	/*
1094 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1095 	 * the descriptor format to use the v1.1 structures.
1096 	 */
1097 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1098 		struct spmc_shmem_obj *v1_1_obj;
1099 		uint64_t mem_handle;
1100 
1101 		/* Calculate the size that the v1.1 descriptor will required. */
1102 		uint64_t v1_1_desc_size =
1103 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1104 						      obj->desc_size);
1105 
1106 		if (v1_1_desc_size > UINT32_MAX) {
1107 			ret = FFA_ERROR_NO_MEMORY;
1108 			goto err_arg;
1109 		}
1110 
1111 		/* Get a new obj to store the v1.1 descriptor. */
1112 		v1_1_obj =
1113 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size);
1114 
1115 		if (!v1_1_obj) {
1116 			ret = FFA_ERROR_NO_MEMORY;
1117 			goto err_arg;
1118 		}
1119 
1120 		/* Perform the conversion from v1.0 to v1.1. */
1121 		v1_1_obj->desc_size = (uint32_t)v1_1_desc_size;
1122 		v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size;
1123 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1124 			ERROR("%s: Could not convert mtd!\n", __func__);
1125 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1126 			goto err_arg;
1127 		}
1128 
1129 		/*
1130 		 * We're finished with the v1.0 descriptor so free it
1131 		 * and continue our checks with the new v1.1 descriptor.
1132 		 */
1133 		mem_handle = obj->desc.handle;
1134 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1135 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1136 		if (obj == NULL) {
1137 			ERROR("%s: Failed to find converted descriptor.\n",
1138 			     __func__);
1139 			ret = FFA_ERROR_INVALID_PARAMETER;
1140 			return spmc_ffa_error_return(smc_handle, ret);
1141 		}
1142 	}
1143 
1144 	/* Allow for platform specific operations to be performed. */
1145 	ret = plat_spmc_shmem_begin(&obj->desc);
1146 	if (ret != 0) {
1147 		goto err_arg;
1148 	}
1149 
1150 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1151 		 0, 0, 0);
1152 
1153 err_bad_desc:
1154 err_arg:
1155 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1156 	return spmc_ffa_error_return(smc_handle, ret);
1157 }
1158 
1159 /**
1160  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1161  * @client:             Client state.
1162  * @total_length:       Total length of shared memory descriptor.
1163  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1164  *                      this call.
1165  * @address:            Not supported, must be 0.
1166  * @page_count:         Not supported, must be 0.
1167  * @smc_handle:         Handle passed to smc call. Used to return
1168  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1169  *
1170  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1171  * to share or lend memory from non-secure os to secure os (with no stream
1172  * endpoints).
1173  *
1174  * Return: 0 on success, error code on failure.
1175  */
1176 long spmc_ffa_mem_send(uint32_t smc_fid,
1177 			bool secure_origin,
1178 			uint64_t total_length,
1179 			uint32_t fragment_length,
1180 			uint64_t address,
1181 			uint32_t page_count,
1182 			void *cookie,
1183 			void *handle,
1184 			uint64_t flags)
1185 
1186 {
1187 	long ret;
1188 	struct spmc_shmem_obj *obj;
1189 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1190 	ffa_mtd_flag32_t mtd_flag;
1191 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1192 	size_t min_desc_size;
1193 
1194 	if (address != 0U || page_count != 0U) {
1195 		WARN("%s: custom memory region for message not supported.\n",
1196 		     __func__);
1197 		return spmc_ffa_error_return(handle,
1198 					     FFA_ERROR_INVALID_PARAMETER);
1199 	}
1200 
1201 	if (secure_origin) {
1202 		WARN("%s: unsupported share direction.\n", __func__);
1203 		return spmc_ffa_error_return(handle,
1204 					     FFA_ERROR_INVALID_PARAMETER);
1205 	}
1206 
1207 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1208 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1209 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1210 		min_desc_size = sizeof(struct ffa_mtd);
1211 	} else {
1212 		WARN("%s: bad FF-A version.\n", __func__);
1213 		return spmc_ffa_error_return(handle,
1214 					     FFA_ERROR_INVALID_PARAMETER);
1215 	}
1216 
1217 	/* Check if the descriptor is too small for the FF-A version. */
1218 	if (fragment_length < min_desc_size) {
1219 		WARN("%s: bad first fragment size %u < %zu\n",
1220 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1221 		return spmc_ffa_error_return(handle,
1222 					     FFA_ERROR_INVALID_PARAMETER);
1223 	}
1224 
1225 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1226 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1227 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1228 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1229 	} else {
1230 		WARN("%s: invalid memory management operation.\n", __func__);
1231 		return spmc_ffa_error_return(handle,
1232 					     FFA_ERROR_INVALID_PARAMETER);
1233 	}
1234 
1235 	spin_lock(&spmc_shmem_obj_state.lock);
1236 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1237 	if (obj == NULL) {
1238 		ret = FFA_ERROR_NO_MEMORY;
1239 		goto err_unlock;
1240 	}
1241 
1242 	spin_lock(&mbox->lock);
1243 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1244 				 ffa_version, handle);
1245 	spin_unlock(&mbox->lock);
1246 
1247 	spin_unlock(&spmc_shmem_obj_state.lock);
1248 	return ret;
1249 
1250 err_unlock:
1251 	spin_unlock(&spmc_shmem_obj_state.lock);
1252 	return spmc_ffa_error_return(handle, ret);
1253 }
1254 
1255 /**
1256  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1257  * @client:             Client state.
1258  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1259  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1260  * @fragment_length:    Length of fragments transmitted.
1261  * @sender_id:          Vmid of sender in bits [31:16]
1262  * @smc_handle:         Handle passed to smc call. Used to return
1263  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1264  *
1265  * Return: @smc_handle on success, error code on failure.
1266  */
1267 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1268 			  bool secure_origin,
1269 			  uint64_t handle_low,
1270 			  uint64_t handle_high,
1271 			  uint32_t fragment_length,
1272 			  uint32_t sender_id,
1273 			  void *cookie,
1274 			  void *handle,
1275 			  uint64_t flags)
1276 {
1277 	long ret;
1278 	uint32_t desc_sender_id;
1279 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1280 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1281 
1282 	struct spmc_shmem_obj *obj;
1283 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1284 
1285 	spin_lock(&spmc_shmem_obj_state.lock);
1286 
1287 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1288 	if (obj == NULL) {
1289 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1290 		     __func__, mem_handle);
1291 		ret = FFA_ERROR_INVALID_PARAMETER;
1292 		goto err_unlock;
1293 	}
1294 
1295 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1296 	if (sender_id != desc_sender_id) {
1297 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1298 		     sender_id, desc_sender_id);
1299 		ret = FFA_ERROR_INVALID_PARAMETER;
1300 		goto err_unlock;
1301 	}
1302 
1303 	if (obj->desc_filled == obj->desc_size) {
1304 		WARN("%s: object desc already filled, %zu\n", __func__,
1305 		     obj->desc_filled);
1306 		ret = FFA_ERROR_INVALID_PARAMETER;
1307 		goto err_unlock;
1308 	}
1309 
1310 	spin_lock(&mbox->lock);
1311 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1312 				 handle);
1313 	spin_unlock(&mbox->lock);
1314 
1315 	spin_unlock(&spmc_shmem_obj_state.lock);
1316 	return ret;
1317 
1318 err_unlock:
1319 	spin_unlock(&spmc_shmem_obj_state.lock);
1320 	return spmc_ffa_error_return(handle, ret);
1321 }
1322 
1323 /**
1324  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1325  *				      if the caller implements a version greater
1326  *				      than FF-A 1.0 or if they have requested
1327  *				      the functionality.
1328  *				      TODO: We are assuming that the caller is
1329  *				      an SP. To support retrieval from the
1330  *				      normal world this function will need to be
1331  *				      expanded accordingly.
1332  * @resp:       Descriptor populated in callers RX buffer.
1333  * @sp_ctx:     Context of the calling SP.
1334  */
1335 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1336 			 struct secure_partition_desc *sp_ctx)
1337 {
1338 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1339 	    sp_ctx->ns_bit_requested) {
1340 		/*
1341 		 * Currently memory senders must reside in the normal
1342 		 * world, and we do not have the functionlaity to change
1343 		 * the state of memory dynamically. Therefore we can always set
1344 		 * the NS bit to 1.
1345 		 */
1346 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1347 	}
1348 }
1349 
1350 /**
1351  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1352  * @smc_fid:            FID of SMC
1353  * @total_length:       Total length of retrieve request descriptor if this is
1354  *                      the first call. Otherwise (unsupported) must be 0.
1355  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1356  *                      in this call. Only @fragment_length == @length is
1357  *                      supported by this implementation.
1358  * @address:            Not supported, must be 0.
1359  * @page_count:         Not supported, must be 0.
1360  * @smc_handle:         Handle passed to smc call. Used to return
1361  *                      FFA_MEM_RETRIEVE_RESP.
1362  *
1363  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1364  * Used by secure os to retrieve memory already shared by non-secure os.
1365  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1366  * the client must call FFA_MEM_FRAG_RX until the full response has been
1367  * received.
1368  *
1369  * Return: @handle on success, error code on failure.
1370  */
1371 long
1372 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1373 			  bool secure_origin,
1374 			  uint32_t total_length,
1375 			  uint32_t fragment_length,
1376 			  uint64_t address,
1377 			  uint32_t page_count,
1378 			  void *cookie,
1379 			  void *handle,
1380 			  uint64_t flags)
1381 {
1382 	int ret;
1383 	size_t buf_size;
1384 	size_t copy_size = 0;
1385 	size_t min_desc_size;
1386 	size_t out_desc_size = 0;
1387 
1388 	/*
1389 	 * Currently we are only accessing fields that are the same in both the
1390 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1391 	 * here. We only need validate against the appropriate struct size.
1392 	 */
1393 	struct ffa_mtd *resp;
1394 	const struct ffa_mtd *req;
1395 	struct spmc_shmem_obj *obj = NULL;
1396 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1397 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1398 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1399 
1400 	if (!secure_origin) {
1401 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1402 		return spmc_ffa_error_return(handle,
1403 					     FFA_ERROR_INVALID_PARAMETER);
1404 	}
1405 
1406 	if (address != 0U || page_count != 0U) {
1407 		WARN("%s: custom memory region not supported.\n", __func__);
1408 		return spmc_ffa_error_return(handle,
1409 					     FFA_ERROR_INVALID_PARAMETER);
1410 	}
1411 
1412 	spin_lock(&mbox->lock);
1413 
1414 	req = mbox->tx_buffer;
1415 	resp = mbox->rx_buffer;
1416 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1417 
1418 	if (mbox->rxtx_page_count == 0U) {
1419 		WARN("%s: buffer pair not registered.\n", __func__);
1420 		ret = FFA_ERROR_INVALID_PARAMETER;
1421 		goto err_unlock_mailbox;
1422 	}
1423 
1424 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1425 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1426 		ret = FFA_ERROR_DENIED;
1427 		goto err_unlock_mailbox;
1428 	}
1429 
1430 	if (fragment_length != total_length) {
1431 		WARN("%s: fragmented retrieve request not supported.\n",
1432 		     __func__);
1433 		ret = FFA_ERROR_INVALID_PARAMETER;
1434 		goto err_unlock_mailbox;
1435 	}
1436 
1437 	if (req->emad_count == 0U) {
1438 		WARN("%s: unsupported attribute desc count %u.\n",
1439 		     __func__, obj->desc.emad_count);
1440 		ret = FFA_ERROR_INVALID_PARAMETER;
1441 		goto err_unlock_mailbox;
1442 	}
1443 
1444 	/* Determine the appropriate minimum descriptor size. */
1445 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1446 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1447 	} else {
1448 		min_desc_size = sizeof(struct ffa_mtd);
1449 	}
1450 	if (total_length < min_desc_size) {
1451 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1452 		     min_desc_size);
1453 		ret = FFA_ERROR_INVALID_PARAMETER;
1454 		goto err_unlock_mailbox;
1455 	}
1456 
1457 	spin_lock(&spmc_shmem_obj_state.lock);
1458 
1459 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1460 	if (obj == NULL) {
1461 		ret = FFA_ERROR_INVALID_PARAMETER;
1462 		goto err_unlock_all;
1463 	}
1464 
1465 	if (obj->desc_filled != obj->desc_size) {
1466 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1467 		     __func__, obj->desc_filled, obj->desc_size);
1468 		ret = FFA_ERROR_INVALID_PARAMETER;
1469 		goto err_unlock_all;
1470 	}
1471 
1472 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1473 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1474 		     __func__, req->sender_id, obj->desc.sender_id);
1475 		ret = FFA_ERROR_INVALID_PARAMETER;
1476 		goto err_unlock_all;
1477 	}
1478 
1479 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1480 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1481 		     __func__, req->tag, obj->desc.tag);
1482 		ret = FFA_ERROR_INVALID_PARAMETER;
1483 		goto err_unlock_all;
1484 	}
1485 
1486 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1487 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1488 		     __func__, req->emad_count, obj->desc.emad_count);
1489 		ret = FFA_ERROR_INVALID_PARAMETER;
1490 		goto err_unlock_all;
1491 	}
1492 
1493 	/* Ensure the NS bit is set to 0 in the request. */
1494 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1495 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1496 		ret = FFA_ERROR_INVALID_PARAMETER;
1497 		goto err_unlock_all;
1498 	}
1499 
1500 	if (req->flags != 0U) {
1501 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1502 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1503 			/*
1504 			 * If the retrieve request specifies the memory
1505 			 * transaction ensure it matches what we expect.
1506 			 */
1507 			WARN("%s: wrong mem transaction flags %x != %x\n",
1508 			__func__, req->flags, obj->desc.flags);
1509 			ret = FFA_ERROR_INVALID_PARAMETER;
1510 			goto err_unlock_all;
1511 		}
1512 
1513 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1514 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1515 			/*
1516 			 * Current implementation does not support donate and
1517 			 * it supports no other flags.
1518 			 */
1519 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1520 			ret = FFA_ERROR_INVALID_PARAMETER;
1521 			goto err_unlock_all;
1522 		}
1523 	}
1524 
1525 	/* Validate the caller is a valid participant. */
1526 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1527 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1528 			__func__, sp_ctx->sp_id);
1529 		ret = FFA_ERROR_INVALID_PARAMETER;
1530 		goto err_unlock_all;
1531 	}
1532 
1533 	/* Validate that the provided emad offset and structure is valid.*/
1534 	for (size_t i = 0; i < req->emad_count; i++) {
1535 		size_t emad_size;
1536 		struct ffa_emad_v1_0 *emad;
1537 
1538 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1539 					       &emad_size);
1540 
1541 		if ((uintptr_t) emad >= (uintptr_t)
1542 					((uint8_t *) req + total_length)) {
1543 			WARN("Invalid emad access.\n");
1544 			ret = FFA_ERROR_INVALID_PARAMETER;
1545 			goto err_unlock_all;
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * Validate all the endpoints match in the case of multiple
1551 	 * borrowers. We don't mandate that the order of the borrowers
1552 	 * must match in the descriptors therefore check to see if the
1553 	 * endpoints match in any order.
1554 	 */
1555 	for (size_t i = 0; i < req->emad_count; i++) {
1556 		bool found = false;
1557 		size_t emad_size;
1558 		struct ffa_emad_v1_0 *emad;
1559 		struct ffa_emad_v1_0 *other_emad;
1560 
1561 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1562 					       &emad_size);
1563 
1564 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1565 			other_emad = spmc_shmem_obj_get_emad(
1566 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1567 					&emad_size);
1568 
1569 			if (req->emad_count &&
1570 			    emad->mapd.endpoint_id ==
1571 			    other_emad->mapd.endpoint_id) {
1572 				found = true;
1573 				break;
1574 			}
1575 		}
1576 
1577 		if (!found) {
1578 			WARN("%s: invalid receiver id (0x%x).\n",
1579 			     __func__, emad->mapd.endpoint_id);
1580 			ret = FFA_ERROR_INVALID_PARAMETER;
1581 			goto err_unlock_all;
1582 		}
1583 	}
1584 
1585 	mbox->state = MAILBOX_STATE_FULL;
1586 
1587 	if (req->emad_count != 0U) {
1588 		obj->in_use++;
1589 	}
1590 
1591 	/*
1592 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1593 	 * directly.
1594 	 */
1595 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1596 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1597 							&copy_size,
1598 							&out_desc_size);
1599 		if (ret != 0U) {
1600 			ERROR("%s: Failed to process descriptor.\n", __func__);
1601 			goto err_unlock_all;
1602 		}
1603 	} else {
1604 		copy_size = MIN(obj->desc_size, buf_size);
1605 		out_desc_size = obj->desc_size;
1606 
1607 		memcpy(resp, &obj->desc, copy_size);
1608 	}
1609 
1610 	/* Set the NS bit in the response if applicable. */
1611 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1612 
1613 	spin_unlock(&spmc_shmem_obj_state.lock);
1614 	spin_unlock(&mbox->lock);
1615 
1616 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1617 		 copy_size, 0, 0, 0, 0, 0);
1618 
1619 err_unlock_all:
1620 	spin_unlock(&spmc_shmem_obj_state.lock);
1621 err_unlock_mailbox:
1622 	spin_unlock(&mbox->lock);
1623 	return spmc_ffa_error_return(handle, ret);
1624 }
1625 
1626 /**
1627  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1628  * @client:             Client state.
1629  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1630  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1631  * @fragment_offset:    Byte offset in descriptor to resume at.
1632  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1633  *                      hypervisor. 0 otherwise.
1634  * @smc_handle:         Handle passed to smc call. Used to return
1635  *                      FFA_MEM_FRAG_TX.
1636  *
1637  * Return: @smc_handle on success, error code on failure.
1638  */
1639 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1640 			  bool secure_origin,
1641 			  uint32_t handle_low,
1642 			  uint32_t handle_high,
1643 			  uint32_t fragment_offset,
1644 			  uint32_t sender_id,
1645 			  void *cookie,
1646 			  void *handle,
1647 			  uint64_t flags)
1648 {
1649 	int ret;
1650 	void *src;
1651 	size_t buf_size;
1652 	size_t copy_size;
1653 	size_t full_copy_size;
1654 	uint32_t desc_sender_id;
1655 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1656 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1657 	struct spmc_shmem_obj *obj;
1658 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1659 
1660 	if (!secure_origin) {
1661 		WARN("%s: can only be called from swld.\n",
1662 		     __func__);
1663 		return spmc_ffa_error_return(handle,
1664 					     FFA_ERROR_INVALID_PARAMETER);
1665 	}
1666 
1667 	spin_lock(&spmc_shmem_obj_state.lock);
1668 
1669 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1670 	if (obj == NULL) {
1671 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1672 		     __func__, mem_handle);
1673 		ret = FFA_ERROR_INVALID_PARAMETER;
1674 		goto err_unlock_shmem;
1675 	}
1676 
1677 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1678 	if (sender_id != 0U && sender_id != desc_sender_id) {
1679 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1680 		     sender_id, desc_sender_id);
1681 		ret = FFA_ERROR_INVALID_PARAMETER;
1682 		goto err_unlock_shmem;
1683 	}
1684 
1685 	if (fragment_offset >= obj->desc_size) {
1686 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1687 		     __func__, fragment_offset, obj->desc_size);
1688 		ret = FFA_ERROR_INVALID_PARAMETER;
1689 		goto err_unlock_shmem;
1690 	}
1691 
1692 	spin_lock(&mbox->lock);
1693 
1694 	if (mbox->rxtx_page_count == 0U) {
1695 		WARN("%s: buffer pair not registered.\n", __func__);
1696 		ret = FFA_ERROR_INVALID_PARAMETER;
1697 		goto err_unlock_all;
1698 	}
1699 
1700 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1701 		WARN("%s: RX Buffer is full!\n", __func__);
1702 		ret = FFA_ERROR_DENIED;
1703 		goto err_unlock_all;
1704 	}
1705 
1706 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1707 
1708 	mbox->state = MAILBOX_STATE_FULL;
1709 
1710 	/*
1711 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1712 	 * directly.
1713 	 */
1714 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1715 		size_t out_desc_size;
1716 
1717 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1718 							buf_size,
1719 							fragment_offset,
1720 							&copy_size,
1721 							&out_desc_size);
1722 		if (ret != 0U) {
1723 			ERROR("%s: Failed to process descriptor.\n", __func__);
1724 			goto err_unlock_all;
1725 		}
1726 	} else {
1727 		full_copy_size = obj->desc_size - fragment_offset;
1728 		copy_size = MIN(full_copy_size, buf_size);
1729 
1730 		src = &obj->desc;
1731 
1732 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1733 	}
1734 
1735 	spin_unlock(&mbox->lock);
1736 	spin_unlock(&spmc_shmem_obj_state.lock);
1737 
1738 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1739 		 copy_size, sender_id, 0, 0, 0);
1740 
1741 err_unlock_all:
1742 	spin_unlock(&mbox->lock);
1743 err_unlock_shmem:
1744 	spin_unlock(&spmc_shmem_obj_state.lock);
1745 	return spmc_ffa_error_return(handle, ret);
1746 }
1747 
1748 /**
1749  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1750  * @client:             Client state.
1751  *
1752  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1753  * Used by secure os release previously shared memory to non-secure os.
1754  *
1755  * The handle to release must be in the client's (secure os's) transmit buffer.
1756  *
1757  * Return: 0 on success, error code on failure.
1758  */
1759 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1760 			    bool secure_origin,
1761 			    uint32_t handle_low,
1762 			    uint32_t handle_high,
1763 			    uint32_t fragment_offset,
1764 			    uint32_t sender_id,
1765 			    void *cookie,
1766 			    void *handle,
1767 			    uint64_t flags)
1768 {
1769 	int ret;
1770 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1771 	struct spmc_shmem_obj *obj;
1772 	const struct ffa_mem_relinquish_descriptor *req;
1773 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1774 
1775 	if (!secure_origin) {
1776 		WARN("%s: unsupported relinquish direction.\n", __func__);
1777 		return spmc_ffa_error_return(handle,
1778 					     FFA_ERROR_INVALID_PARAMETER);
1779 	}
1780 
1781 	spin_lock(&mbox->lock);
1782 
1783 	if (mbox->rxtx_page_count == 0U) {
1784 		WARN("%s: buffer pair not registered.\n", __func__);
1785 		ret = FFA_ERROR_INVALID_PARAMETER;
1786 		goto err_unlock_mailbox;
1787 	}
1788 
1789 	req = mbox->tx_buffer;
1790 
1791 	if (req->flags != 0U) {
1792 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1793 		ret = FFA_ERROR_INVALID_PARAMETER;
1794 		goto err_unlock_mailbox;
1795 	}
1796 
1797 	if (req->endpoint_count == 0) {
1798 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1799 		ret = FFA_ERROR_INVALID_PARAMETER;
1800 		goto err_unlock_mailbox;
1801 	}
1802 
1803 	spin_lock(&spmc_shmem_obj_state.lock);
1804 
1805 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1806 	if (obj == NULL) {
1807 		ret = FFA_ERROR_INVALID_PARAMETER;
1808 		goto err_unlock_all;
1809 	}
1810 
1811 	/*
1812 	 * Validate the endpoint ID was populated correctly. We don't currently
1813 	 * support proxy endpoints so the endpoint count should always be 1.
1814 	 */
1815 	if (req->endpoint_count != 1U) {
1816 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1817 		     req->endpoint_count);
1818 		ret = FFA_ERROR_INVALID_PARAMETER;
1819 		goto err_unlock_all;
1820 	}
1821 
1822 	/* Validate provided endpoint ID matches the partition ID. */
1823 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1824 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1825 		     req->endpoint_array[0], sp_ctx->sp_id);
1826 		ret = FFA_ERROR_INVALID_PARAMETER;
1827 		goto err_unlock_all;
1828 	}
1829 
1830 	/* Validate the caller is a valid participant. */
1831 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1832 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1833 			__func__, req->endpoint_array[0]);
1834 		ret = FFA_ERROR_INVALID_PARAMETER;
1835 		goto err_unlock_all;
1836 	}
1837 
1838 	if (obj->in_use == 0U) {
1839 		ret = FFA_ERROR_INVALID_PARAMETER;
1840 		goto err_unlock_all;
1841 	}
1842 	obj->in_use--;
1843 
1844 	spin_unlock(&spmc_shmem_obj_state.lock);
1845 	spin_unlock(&mbox->lock);
1846 
1847 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1848 
1849 err_unlock_all:
1850 	spin_unlock(&spmc_shmem_obj_state.lock);
1851 err_unlock_mailbox:
1852 	spin_unlock(&mbox->lock);
1853 	return spmc_ffa_error_return(handle, ret);
1854 }
1855 
1856 /**
1857  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1858  * @client:         Client state.
1859  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1860  * @handle_high:    Unique handle of shared memory object to reclaim.
1861  *                  Bit[63:32].
1862  * @flags:          Unsupported, ignored.
1863  *
1864  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1865  * Used by non-secure os reclaim memory previously shared with secure os.
1866  *
1867  * Return: 0 on success, error code on failure.
1868  */
1869 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1870 			 bool secure_origin,
1871 			 uint32_t handle_low,
1872 			 uint32_t handle_high,
1873 			 uint32_t mem_flags,
1874 			 uint64_t x4,
1875 			 void *cookie,
1876 			 void *handle,
1877 			 uint64_t flags)
1878 {
1879 	int ret;
1880 	struct spmc_shmem_obj *obj;
1881 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1882 
1883 	if (secure_origin) {
1884 		WARN("%s: unsupported reclaim direction.\n", __func__);
1885 		return spmc_ffa_error_return(handle,
1886 					     FFA_ERROR_INVALID_PARAMETER);
1887 	}
1888 
1889 	if (mem_flags != 0U) {
1890 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1891 		return spmc_ffa_error_return(handle,
1892 					     FFA_ERROR_INVALID_PARAMETER);
1893 	}
1894 
1895 	spin_lock(&spmc_shmem_obj_state.lock);
1896 
1897 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1898 	if (obj == NULL) {
1899 		ret = FFA_ERROR_INVALID_PARAMETER;
1900 		goto err_unlock;
1901 	}
1902 	if (obj->in_use != 0U) {
1903 		ret = FFA_ERROR_DENIED;
1904 		goto err_unlock;
1905 	}
1906 
1907 	if (obj->desc_filled != obj->desc_size) {
1908 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1909 		     __func__, obj->desc_filled, obj->desc_size);
1910 		ret = FFA_ERROR_INVALID_PARAMETER;
1911 		goto err_unlock;
1912 	}
1913 
1914 	/* Allow for platform specific operations to be performed. */
1915 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1916 	if (ret != 0) {
1917 		goto err_unlock;
1918 	}
1919 
1920 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1921 	spin_unlock(&spmc_shmem_obj_state.lock);
1922 
1923 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1924 
1925 err_unlock:
1926 	spin_unlock(&spmc_shmem_obj_state.lock);
1927 	return spmc_ffa_error_return(handle, ret);
1928 }
1929