1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 /* Ensure that descriptor size is aligned */ 84 if (!is_aligned(desc_size, 16)) { 85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n", 86 __func__, desc_size); 87 return NULL; 88 } 89 90 obj_size = spmc_shmem_obj_size(desc_size); 91 92 /* Ensure the obj size has not overflowed. */ 93 if (obj_size < desc_size) { 94 WARN("%s(0x%zx) desc_size overflow\n", 95 __func__, desc_size); 96 return NULL; 97 } 98 99 if (obj_size > free) { 100 WARN("%s(0x%zx) failed, free 0x%zx\n", 101 __func__, desc_size, free); 102 return NULL; 103 } 104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 105 obj->desc = (struct ffa_mtd) {0}; 106 obj->desc_size = desc_size; 107 obj->desc_filled = 0; 108 obj->in_use = 0; 109 state->allocated += obj_size; 110 return obj; 111 } 112 113 /** 114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 115 * @state: Global state. 116 * @obj: Object to free. 117 * 118 * Release memory used by @obj. Other objects may move, so on return all 119 * pointers to struct spmc_shmem_obj object should be considered invalid, not 120 * just @obj. 121 * 122 * The current implementation always compacts the remaining objects to simplify 123 * the allocator and to avoid fragmentation. 124 */ 125 126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 127 struct spmc_shmem_obj *obj) 128 { 129 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 130 uint8_t *shift_dest = (uint8_t *)obj; 131 uint8_t *shift_src = shift_dest + free_size; 132 size_t shift_size = state->allocated - (shift_src - state->data); 133 134 if (shift_size != 0U) { 135 memmove(shift_dest, shift_src, shift_size); 136 } 137 state->allocated -= free_size; 138 } 139 140 /** 141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 142 * @state: Global state. 143 * @handle: Unique handle of object to return. 144 * 145 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 146 * %NULL, if not object in @state->data has a matching handle. 147 */ 148 static struct spmc_shmem_obj * 149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 150 { 151 uint8_t *curr = state->data; 152 153 while (curr - state->data < state->allocated) { 154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 155 156 if (obj->desc.handle == handle) { 157 return obj; 158 } 159 curr += spmc_shmem_obj_size(obj->desc_size); 160 } 161 return NULL; 162 } 163 164 /** 165 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 166 * @offset: Offset used to track which objects have previously been 167 * returned. 168 * 169 * Return: the next struct spmc_shmem_obj_state object from the provided 170 * offset. 171 * %NULL, if there are no more objects. 172 */ 173 static struct spmc_shmem_obj * 174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 175 { 176 uint8_t *curr = state->data + *offset; 177 178 if (curr - state->data < state->allocated) { 179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 180 181 *offset += spmc_shmem_obj_size(obj->desc_size); 182 183 return obj; 184 } 185 return NULL; 186 } 187 188 /******************************************************************************* 189 * FF-A memory descriptor helper functions. 190 ******************************************************************************/ 191 /** 192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 193 * clients FF-A version. 194 * @desc: The memory transaction descriptor. 195 * @index: The index of the emad element to be accessed. 196 * @ffa_version: FF-A version of the provided structure. 197 * @emad_size: Will be populated with the size of the returned emad 198 * descriptor. 199 * Return: A pointer to the requested emad structure. 200 */ 201 static void * 202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 203 uint32_t ffa_version, size_t *emad_size) 204 { 205 uint8_t *emad; 206 207 assert(index < desc->emad_count); 208 209 /* 210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 211 * format, otherwise assume it is a v1.1 format. 212 */ 213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 215 *emad_size = sizeof(struct ffa_emad_v1_0); 216 } else { 217 assert(is_aligned(desc->emad_offset, 16)); 218 emad = ((uint8_t *) desc + desc->emad_offset); 219 *emad_size = desc->emad_size; 220 } 221 222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 223 return (emad + (*emad_size * index)); 224 } 225 226 /** 227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 228 * FF-A version of the descriptor. 229 * @obj: Object containing ffa_memory_region_descriptor. 230 * 231 * Return: struct ffa_comp_mrd object corresponding to the composite memory 232 * region descriptor. 233 */ 234 static struct ffa_comp_mrd * 235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 236 { 237 size_t emad_size; 238 /* 239 * The comp_mrd_offset field of the emad descriptor remains consistent 240 * between FF-A versions therefore we can use the v1.0 descriptor here 241 * in all cases. 242 */ 243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 244 ffa_version, 245 &emad_size); 246 247 /* Ensure the composite descriptor offset is aligned. */ 248 if (!is_aligned(emad->comp_mrd_offset, 8)) { 249 WARN("Unaligned composite memory region descriptor offset.\n"); 250 return NULL; 251 } 252 253 return (struct ffa_comp_mrd *) 254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 255 } 256 257 /** 258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 259 * a given memory transaction. 260 * @sp_id: Partition ID to validate. 261 * @obj: The shared memory object containing the descriptor 262 * of the memory transaction. 263 * Return: true if ID is valid, else false. 264 */ 265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 266 { 267 bool found = false; 268 struct ffa_mtd *desc = &obj->desc; 269 size_t desc_size = obj->desc_size; 270 271 /* Validate the partition is a valid participant. */ 272 for (unsigned int i = 0U; i < desc->emad_count; i++) { 273 size_t emad_size; 274 struct ffa_emad_v1_0 *emad; 275 276 emad = spmc_shmem_obj_get_emad(desc, i, 277 MAKE_FFA_VERSION(1, 1), 278 &emad_size); 279 /* 280 * Validate the calculated emad address resides within the 281 * descriptor. 282 */ 283 if ((emad == NULL) || (uintptr_t) emad >= 284 (uintptr_t)((uint8_t *) desc + desc_size)) { 285 VERBOSE("Invalid emad.\n"); 286 break; 287 } 288 if (sp_id == emad->mapd.endpoint_id) { 289 found = true; 290 break; 291 } 292 } 293 return found; 294 } 295 296 /* 297 * Compare two memory regions to determine if any range overlaps with another 298 * ongoing memory transaction. 299 */ 300 static bool 301 overlapping_memory_regions(struct ffa_comp_mrd *region1, 302 struct ffa_comp_mrd *region2) 303 { 304 uint64_t region1_start; 305 uint64_t region1_size; 306 uint64_t region1_end; 307 uint64_t region2_start; 308 uint64_t region2_size; 309 uint64_t region2_end; 310 311 assert(region1 != NULL); 312 assert(region2 != NULL); 313 314 if (region1 == region2) { 315 return true; 316 } 317 318 /* 319 * Check each memory region in the request against existing 320 * transactions. 321 */ 322 for (size_t i = 0; i < region1->address_range_count; i++) { 323 324 region1_start = region1->address_range_array[i].address; 325 region1_size = 326 region1->address_range_array[i].page_count * 327 PAGE_SIZE_4KB; 328 region1_end = region1_start + region1_size; 329 330 for (size_t j = 0; j < region2->address_range_count; j++) { 331 332 region2_start = region2->address_range_array[j].address; 333 region2_size = 334 region2->address_range_array[j].page_count * 335 PAGE_SIZE_4KB; 336 region2_end = region2_start + region2_size; 337 338 /* Check if regions are not overlapping. */ 339 if (!((region2_end <= region1_start) || 340 (region1_end <= region2_start))) { 341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 342 region1_start, region1_end, 343 region2_start, region2_end); 344 return true; 345 } 346 } 347 } 348 return false; 349 } 350 351 /******************************************************************************* 352 * FF-A v1.0 Memory Descriptor Conversion Helpers. 353 ******************************************************************************/ 354 /** 355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 356 * converted descriptor. 357 * @orig: The original v1.0 memory transaction descriptor. 358 * @desc_size: The size of the original v1.0 memory transaction descriptor. 359 * 360 * Return: the size required to store the descriptor store in the v1.1 format. 361 */ 362 static uint64_t 363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 364 { 365 uint64_t size = 0; 366 struct ffa_comp_mrd *mrd; 367 struct ffa_emad_v1_0 *emad_array = orig->emad; 368 369 /* Get the size of the v1.1 descriptor. */ 370 size += sizeof(struct ffa_mtd); 371 372 /* Add the size of the emad descriptors. */ 373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 374 375 /* Add the size of the composite mrds. */ 376 size += sizeof(struct ffa_comp_mrd); 377 378 /* Add the size of the constituent mrds. */ 379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 380 emad_array[0].comp_mrd_offset); 381 382 /* Add the size of the memory region descriptors. */ 383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 384 385 return size; 386 } 387 388 /** 389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 390 * converted descriptor. 391 * @orig: The original v1.1 memory transaction descriptor. 392 * @desc_size: The size of the original v1.1 memory transaction descriptor. 393 * 394 * Return: the size required to store the descriptor store in the v1.0 format. 395 */ 396 static size_t 397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 398 { 399 size_t size = 0; 400 struct ffa_comp_mrd *mrd; 401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 402 ((uint8_t *) orig + 403 orig->emad_offset); 404 405 /* Get the size of the v1.0 descriptor. */ 406 size += sizeof(struct ffa_mtd_v1_0); 407 408 /* Add the size of the v1.0 emad descriptors. */ 409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 410 411 /* Add the size of the composite mrds. */ 412 size += sizeof(struct ffa_comp_mrd); 413 414 /* Add the size of the constituent mrds. */ 415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 416 emad_array[0].comp_mrd_offset); 417 418 /* Check the calculated address is within the memory descriptor. */ 419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 420 (uintptr_t)((uint8_t *) orig + desc_size)) { 421 return 0; 422 } 423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 424 425 return size; 426 } 427 428 /** 429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 430 * @out_obj: The shared memory object to populate the converted descriptor. 431 * @orig: The shared memory object containing the v1.0 descriptor. 432 * 433 * Return: true if the conversion is successful else false. 434 */ 435 static bool 436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 437 struct spmc_shmem_obj *orig) 438 { 439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 440 struct ffa_mtd *out = &out_obj->desc; 441 struct ffa_emad_v1_0 *emad_array_in; 442 struct ffa_emad_v1_0 *emad_array_out; 443 struct ffa_comp_mrd *mrd_in; 444 struct ffa_comp_mrd *mrd_out; 445 446 size_t mrd_in_offset; 447 size_t mrd_out_offset; 448 size_t mrd_size = 0; 449 450 /* Populate the new descriptor format from the v1.0 struct. */ 451 out->sender_id = mtd_orig->sender_id; 452 out->memory_region_attributes = mtd_orig->memory_region_attributes; 453 out->flags = mtd_orig->flags; 454 out->handle = mtd_orig->handle; 455 out->tag = mtd_orig->tag; 456 out->emad_count = mtd_orig->emad_count; 457 out->emad_size = sizeof(struct ffa_emad_v1_0); 458 459 /* 460 * We will locate the emad descriptors directly after the ffa_mtd 461 * struct. This will be 8-byte aligned. 462 */ 463 out->emad_offset = sizeof(struct ffa_mtd); 464 465 emad_array_in = mtd_orig->emad; 466 emad_array_out = (struct ffa_emad_v1_0 *) 467 ((uint8_t *) out + out->emad_offset); 468 469 /* Copy across the emad structs. */ 470 for (unsigned int i = 0U; i < out->emad_count; i++) { 471 /* Bound check for emad array. */ 472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 473 ((uint8_t *) mtd_orig + orig->desc_size)) { 474 VERBOSE("%s: Invalid mtd structure.\n", __func__); 475 return false; 476 } 477 memcpy(&emad_array_out[i], &emad_array_in[i], 478 sizeof(struct ffa_emad_v1_0)); 479 } 480 481 /* Place the mrd descriptors after the end of the emad descriptors.*/ 482 mrd_in_offset = emad_array_in->comp_mrd_offset; 483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 485 486 /* Add the size of the composite memory region descriptor. */ 487 mrd_size += sizeof(struct ffa_comp_mrd); 488 489 /* Find the mrd descriptor. */ 490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 491 492 /* Add the size of the constituent memory region descriptors. */ 493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 494 495 /* 496 * Update the offset in the emads by the delta between the input and 497 * output addresses. 498 */ 499 for (unsigned int i = 0U; i < out->emad_count; i++) { 500 emad_array_out[i].comp_mrd_offset = 501 emad_array_in[i].comp_mrd_offset + 502 (mrd_out_offset - mrd_in_offset); 503 } 504 505 /* Verify that we stay within bound of the memory descriptors. */ 506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 510 ERROR("%s: Invalid mrd structure.\n", __func__); 511 return false; 512 } 513 514 /* Copy the mrd descriptors directly. */ 515 memcpy(mrd_out, mrd_in, mrd_size); 516 517 return true; 518 } 519 520 /** 521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 522 * v1.0 memory object. 523 * @out_obj: The shared memory object to populate the v1.0 descriptor. 524 * @orig: The shared memory object containing the v1.1 descriptor. 525 * 526 * Return: true if the conversion is successful else false. 527 */ 528 static bool 529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 530 struct spmc_shmem_obj *orig) 531 { 532 struct ffa_mtd *mtd_orig = &orig->desc; 533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 534 struct ffa_emad_v1_0 *emad_in; 535 struct ffa_emad_v1_0 *emad_array_in; 536 struct ffa_emad_v1_0 *emad_array_out; 537 struct ffa_comp_mrd *mrd_in; 538 struct ffa_comp_mrd *mrd_out; 539 540 size_t mrd_in_offset; 541 size_t mrd_out_offset; 542 size_t emad_out_array_size; 543 size_t mrd_size = 0; 544 size_t orig_desc_size = orig->desc_size; 545 546 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 547 out->sender_id = mtd_orig->sender_id; 548 out->memory_region_attributes = mtd_orig->memory_region_attributes; 549 out->flags = mtd_orig->flags; 550 out->handle = mtd_orig->handle; 551 out->tag = mtd_orig->tag; 552 out->emad_count = mtd_orig->emad_count; 553 554 /* Determine the location of the emad array in both descriptors. */ 555 emad_array_in = (struct ffa_emad_v1_0 *) 556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 557 emad_array_out = out->emad; 558 559 /* Copy across the emad structs. */ 560 emad_in = emad_array_in; 561 for (unsigned int i = 0U; i < out->emad_count; i++) { 562 /* Bound check for emad array. */ 563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 564 ((uint8_t *) mtd_orig + orig_desc_size)) { 565 VERBOSE("%s: Invalid mtd structure.\n", __func__); 566 return false; 567 } 568 memcpy(&emad_array_out[i], emad_in, 569 sizeof(struct ffa_emad_v1_0)); 570 571 emad_in += mtd_orig->emad_size; 572 } 573 574 /* Place the mrd descriptors after the end of the emad descriptors. */ 575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 576 577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 578 emad_out_array_size; 579 580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 581 582 mrd_in_offset = mtd_orig->emad_offset + 583 (mtd_orig->emad_size * mtd_orig->emad_count); 584 585 /* Add the size of the composite memory region descriptor. */ 586 mrd_size += sizeof(struct ffa_comp_mrd); 587 588 /* Find the mrd descriptor. */ 589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 590 591 /* Add the size of the constituent memory region descriptors. */ 592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 593 594 /* 595 * Update the offset in the emads by the delta between the input and 596 * output addresses. 597 */ 598 emad_in = emad_array_in; 599 600 for (unsigned int i = 0U; i < out->emad_count; i++) { 601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 602 (mrd_out_offset - 603 mrd_in_offset); 604 emad_in += mtd_orig->emad_size; 605 } 606 607 /* Verify that we stay within bound of the memory descriptors. */ 608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 612 ERROR("%s: Invalid mrd structure.\n", __func__); 613 return false; 614 } 615 616 /* Copy the mrd descriptors directly. */ 617 memcpy(mrd_out, mrd_in, mrd_size); 618 619 return true; 620 } 621 622 /** 623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 624 * the v1.0 format and populates the 625 * provided buffer. 626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 628 * @buf_size: Size of the buffer to populate. 629 * @offset: The offset of the converted descriptor to copy. 630 * @copy_size: Will be populated with the number of bytes copied. 631 * @out_desc_size: Will be populated with the total size of the v1.0 632 * descriptor. 633 * 634 * Return: 0 if conversion and population succeeded. 635 * Note: This function invalidates the reference to @orig therefore 636 * `spmc_shmem_obj_lookup` must be called if further usage is required. 637 */ 638 static uint32_t 639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 640 size_t buf_size, size_t offset, 641 size_t *copy_size, size_t *v1_0_desc_size) 642 { 643 struct spmc_shmem_obj *v1_0_obj; 644 645 /* Calculate the size that the v1.0 descriptor will require. */ 646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 647 &orig_obj->desc, orig_obj->desc_size); 648 649 if (*v1_0_desc_size == 0) { 650 ERROR("%s: cannot determine size of descriptor.\n", 651 __func__); 652 return FFA_ERROR_INVALID_PARAMETER; 653 } 654 655 /* Get a new obj to store the v1.0 descriptor. */ 656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 657 *v1_0_desc_size); 658 659 if (!v1_0_obj) { 660 return FFA_ERROR_NO_MEMORY; 661 } 662 663 /* Perform the conversion from v1.1 to v1.0. */ 664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 666 return FFA_ERROR_INVALID_PARAMETER; 667 } 668 669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 671 672 /* 673 * We're finished with the v1.0 descriptor for now so free it. 674 * Note that this will invalidate any references to the v1.1 675 * descriptor. 676 */ 677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 678 679 return 0; 680 } 681 682 static int 683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 684 size_t fragment_length, size_t total_length) 685 { 686 unsigned long long emad_end; 687 unsigned long long emad_size; 688 unsigned long long emad_offset; 689 unsigned int min_desc_size; 690 691 /* Determine the appropriate minimum descriptor size. */ 692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 693 min_desc_size = sizeof(struct ffa_mtd_v1_0); 694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 695 min_desc_size = sizeof(struct ffa_mtd); 696 } else { 697 return FFA_ERROR_INVALID_PARAMETER; 698 } 699 if (fragment_length < min_desc_size) { 700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 701 min_desc_size); 702 return FFA_ERROR_INVALID_PARAMETER; 703 } 704 705 if (desc->emad_count == 0U) { 706 WARN("%s: unsupported attribute desc count %u.\n", 707 __func__, desc->emad_count); 708 return FFA_ERROR_INVALID_PARAMETER; 709 } 710 711 /* 712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 713 * format, otherwise assume it is a v1.1 format. 714 */ 715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 717 } else { 718 if (!is_aligned(desc->emad_offset, 16)) { 719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 720 __func__, desc->emad_offset); 721 return FFA_ERROR_INVALID_PARAMETER; 722 } 723 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 725 __func__, desc->emad_offset, 726 sizeof(struct ffa_mtd)); 727 return FFA_ERROR_INVALID_PARAMETER; 728 } 729 emad_offset = desc->emad_offset; 730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 732 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 733 return FFA_ERROR_INVALID_PARAMETER; 734 } 735 if (!is_aligned(desc->emad_size, 16)) { 736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 737 __func__, desc->emad_size); 738 return FFA_ERROR_INVALID_PARAMETER; 739 } 740 emad_size = desc->emad_size; 741 } 742 743 /* 744 * Overflow is impossible: the arithmetic happens in at least 64-bit 745 * precision, but all of the operands are bounded by UINT32_MAX, and 746 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 747 * = (2^64 - 1). 748 */ 749 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 750 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 751 (unsigned long long)sizeof(struct ffa_comp_mrd) + 752 (unsigned long long)emad_offset; 753 754 if (emad_end > total_length) { 755 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 756 __func__, emad_end, total_length); 757 return FFA_ERROR_INVALID_PARAMETER; 758 } 759 760 return 0; 761 } 762 763 static inline const struct ffa_emad_v1_0 * 764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset) 765 { 766 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset); 767 } 768 769 /** 770 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 771 * @obj: Object containing ffa_memory_region_descriptor. 772 * @ffa_version: FF-A version of the provided descriptor. 773 * 774 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if 775 * constituent_memory_region_descriptor offset or count is invalid. 776 */ 777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 778 uint32_t ffa_version) 779 { 780 uint64_t total_page_count; 781 const struct ffa_emad_v1_0 *first_emad; 782 const struct ffa_emad_v1_0 *end_emad; 783 size_t emad_size; 784 uint32_t comp_mrd_offset = 0; 785 size_t header_emad_size; 786 size_t size; 787 size_t count; 788 size_t expected_size; 789 struct ffa_comp_mrd *comp; 790 791 if (obj->desc_filled != obj->desc_size) { 792 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 793 __func__, obj->desc_filled, obj->desc_size); 794 panic(); 795 } 796 797 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 798 obj->desc_filled, obj->desc_size)) { 799 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 800 __func__); 801 panic(); 802 } 803 804 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 805 ffa_version, &emad_size); 806 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size); 807 comp_mrd_offset = first_emad->comp_mrd_offset; 808 809 /* Loop through the endpoint descriptors, validating each of them. */ 810 for (const struct ffa_emad_v1_0 *emad = first_emad; 811 emad < end_emad; 812 emad = emad_advance(emad, emad_size)) { 813 ffa_endpoint_id16_t ep_id; 814 815 /* 816 * If a partition ID resides in the secure world validate that 817 * the partition ID is for a known partition. Ignore any 818 * partition ID belonging to the normal world as it is assumed 819 * the Hypervisor will have validated these. 820 */ 821 ep_id = emad->mapd.endpoint_id; 822 if (ffa_is_secure_world_id(ep_id)) { 823 if (spmc_get_sp_ctx(ep_id) == NULL) { 824 WARN("%s: Invalid receiver id 0x%x\n", 825 __func__, ep_id); 826 return FFA_ERROR_INVALID_PARAMETER; 827 } 828 } 829 830 /* 831 * The offset provided to the composite memory region descriptor 832 * should be consistent across endpoint descriptors. 833 */ 834 if (comp_mrd_offset != emad->comp_mrd_offset) { 835 ERROR("%s: mismatching offsets provided, %u != %u\n", 836 __func__, emad->comp_mrd_offset, comp_mrd_offset); 837 return FFA_ERROR_INVALID_PARAMETER; 838 } 839 } 840 841 header_emad_size = (size_t)((const uint8_t *)end_emad - 842 (const uint8_t *)&obj->desc); 843 844 /* 845 * Check that the composite descriptor 846 * is after the endpoint descriptors. 847 */ 848 if (comp_mrd_offset < header_emad_size) { 849 WARN("%s: invalid object, offset %u < header + emad %zu\n", 850 __func__, comp_mrd_offset, header_emad_size); 851 return FFA_ERROR_INVALID_PARAMETER; 852 } 853 854 /* Ensure the composite descriptor offset is aligned. */ 855 if (!is_aligned(comp_mrd_offset, 16)) { 856 WARN("%s: invalid object, unaligned composite memory " 857 "region descriptor offset %u.\n", 858 __func__, comp_mrd_offset); 859 return FFA_ERROR_INVALID_PARAMETER; 860 } 861 862 size = obj->desc_size; 863 864 /* Check that the composite descriptor is in bounds. */ 865 if (comp_mrd_offset > size) { 866 WARN("%s: invalid object, offset %u > total size %zu\n", 867 __func__, comp_mrd_offset, obj->desc_size); 868 return FFA_ERROR_INVALID_PARAMETER; 869 } 870 size -= comp_mrd_offset; 871 872 if (size < sizeof(struct ffa_comp_mrd)) { 873 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 874 __func__, comp_mrd_offset, obj->desc_size); 875 return FFA_ERROR_INVALID_PARAMETER; 876 } 877 size -= sizeof(struct ffa_comp_mrd); 878 879 count = size / sizeof(struct ffa_cons_mrd); 880 881 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 882 883 if (comp->address_range_count != count) { 884 WARN("%s: invalid object, desc count %u != %zu\n", 885 __func__, comp->address_range_count, count); 886 return FFA_ERROR_INVALID_PARAMETER; 887 } 888 889 expected_size = comp_mrd_offset + sizeof(*comp) + 890 count * sizeof(struct ffa_cons_mrd); 891 892 if (expected_size != obj->desc_size) { 893 WARN("%s: invalid object, computed size %zu != size %zu\n", 894 __func__, expected_size, obj->desc_size); 895 return FFA_ERROR_INVALID_PARAMETER; 896 } 897 898 total_page_count = 0; 899 900 for (size_t i = 0; i < count; i++) { 901 total_page_count += 902 comp->address_range_array[i].page_count; 903 } 904 if (comp->total_page_count != total_page_count) { 905 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 906 __func__, comp->total_page_count, 907 total_page_count); 908 return FFA_ERROR_INVALID_PARAMETER; 909 } 910 911 return 0; 912 } 913 914 /** 915 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 916 * regions that are currently involved with an 917 * existing memory transactions. This implies that 918 * the memory is not in a valid state for lending. 919 * @obj: Object containing ffa_memory_region_descriptor. 920 * 921 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory 922 * state. 923 */ 924 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 925 uint32_t ffa_version) 926 { 927 size_t obj_offset = 0; 928 struct spmc_shmem_obj *inflight_obj; 929 930 struct ffa_comp_mrd *other_mrd; 931 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 932 ffa_version); 933 934 if (requested_mrd == NULL) { 935 return FFA_ERROR_INVALID_PARAMETER; 936 } 937 938 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 939 &obj_offset); 940 941 while (inflight_obj != NULL) { 942 /* 943 * Don't compare the transaction to itself or to partially 944 * transmitted descriptors. 945 */ 946 if ((obj->desc.handle != inflight_obj->desc.handle) && 947 (obj->desc_size == obj->desc_filled)) { 948 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 949 FFA_VERSION_COMPILED); 950 if (other_mrd == NULL) { 951 return FFA_ERROR_INVALID_PARAMETER; 952 } 953 if (overlapping_memory_regions(requested_mrd, 954 other_mrd)) { 955 return FFA_ERROR_INVALID_PARAMETER; 956 } 957 } 958 959 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 960 &obj_offset); 961 } 962 return 0; 963 } 964 965 static long spmc_ffa_fill_desc(struct mailbox *mbox, 966 struct spmc_shmem_obj *obj, 967 uint32_t fragment_length, 968 ffa_mtd_flag32_t mtd_flag, 969 uint32_t ffa_version, 970 void *smc_handle) 971 { 972 int ret; 973 size_t emad_size; 974 uint32_t handle_low; 975 uint32_t handle_high; 976 struct ffa_emad_v1_0 *emad; 977 struct ffa_emad_v1_0 *other_emad; 978 979 if (mbox->rxtx_page_count == 0U) { 980 WARN("%s: buffer pair not registered.\n", __func__); 981 ret = FFA_ERROR_INVALID_PARAMETER; 982 goto err_arg; 983 } 984 985 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 986 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 987 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 988 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 989 ret = FFA_ERROR_INVALID_PARAMETER; 990 goto err_arg; 991 } 992 993 if (fragment_length > obj->desc_size - obj->desc_filled) { 994 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 995 fragment_length, obj->desc_size - obj->desc_filled); 996 ret = FFA_ERROR_INVALID_PARAMETER; 997 goto err_arg; 998 } 999 1000 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 1001 (uint8_t *) mbox->tx_buffer, fragment_length); 1002 1003 /* Ensure that the sender ID resides in the normal world. */ 1004 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1005 WARN("%s: Invalid sender ID 0x%x.\n", 1006 __func__, obj->desc.sender_id); 1007 ret = FFA_ERROR_DENIED; 1008 goto err_arg; 1009 } 1010 1011 /* Ensure the NS bit is set to 0. */ 1012 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1013 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1014 ret = FFA_ERROR_INVALID_PARAMETER; 1015 goto err_arg; 1016 } 1017 1018 /* 1019 * We don't currently support any optional flags so ensure none are 1020 * requested. 1021 */ 1022 if (obj->desc.flags != 0U && mtd_flag != 0U && 1023 (obj->desc.flags != mtd_flag)) { 1024 WARN("%s: invalid memory transaction flags %u != %u\n", 1025 __func__, obj->desc.flags, mtd_flag); 1026 ret = FFA_ERROR_INVALID_PARAMETER; 1027 goto err_arg; 1028 } 1029 1030 if (obj->desc_filled == 0U) { 1031 /* First fragment, descriptor header has been copied */ 1032 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1033 fragment_length, obj->desc_size); 1034 if (ret != 0) { 1035 goto err_bad_desc; 1036 } 1037 1038 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1039 obj->desc.flags |= mtd_flag; 1040 } 1041 1042 obj->desc_filled += fragment_length; 1043 1044 handle_low = (uint32_t)obj->desc.handle; 1045 handle_high = obj->desc.handle >> 32; 1046 1047 if (obj->desc_filled != obj->desc_size) { 1048 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1049 handle_high, obj->desc_filled, 1050 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1051 } 1052 1053 /* The full descriptor has been received, perform any final checks. */ 1054 1055 ret = spmc_shmem_check_obj(obj, ffa_version); 1056 if (ret != 0) { 1057 goto err_bad_desc; 1058 } 1059 1060 /* Ensure partition IDs are not duplicated. */ 1061 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1062 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1063 &emad_size); 1064 1065 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1066 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1067 ffa_version, 1068 &emad_size); 1069 1070 if (emad->mapd.endpoint_id == 1071 other_emad->mapd.endpoint_id) { 1072 WARN("%s: Duplicated endpoint id 0x%x\n", 1073 __func__, emad->mapd.endpoint_id); 1074 ret = FFA_ERROR_INVALID_PARAMETER; 1075 goto err_bad_desc; 1076 } 1077 } 1078 } 1079 1080 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1081 if (ret) { 1082 ERROR("%s: invalid memory region descriptor.\n", __func__); 1083 goto err_bad_desc; 1084 } 1085 1086 /* 1087 * Everything checks out, if the sender was using FF-A v1.0, convert 1088 * the descriptor format to use the v1.1 structures. 1089 */ 1090 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1091 struct spmc_shmem_obj *v1_1_obj; 1092 uint64_t mem_handle; 1093 1094 /* Calculate the size that the v1.1 descriptor will required. */ 1095 uint64_t v1_1_desc_size = 1096 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1097 obj->desc_size); 1098 1099 if (v1_1_desc_size > UINT32_MAX) { 1100 ret = FFA_ERROR_NO_MEMORY; 1101 goto err_arg; 1102 } 1103 1104 /* Get a new obj to store the v1.1 descriptor. */ 1105 v1_1_obj = 1106 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1107 1108 if (!v1_1_obj) { 1109 ret = FFA_ERROR_NO_MEMORY; 1110 goto err_arg; 1111 } 1112 1113 /* Perform the conversion from v1.0 to v1.1. */ 1114 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1115 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1116 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1117 ERROR("%s: Could not convert mtd!\n", __func__); 1118 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1119 goto err_arg; 1120 } 1121 1122 /* 1123 * We're finished with the v1.0 descriptor so free it 1124 * and continue our checks with the new v1.1 descriptor. 1125 */ 1126 mem_handle = obj->desc.handle; 1127 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1128 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1129 if (obj == NULL) { 1130 ERROR("%s: Failed to find converted descriptor.\n", 1131 __func__); 1132 ret = FFA_ERROR_INVALID_PARAMETER; 1133 return spmc_ffa_error_return(smc_handle, ret); 1134 } 1135 } 1136 1137 /* Allow for platform specific operations to be performed. */ 1138 ret = plat_spmc_shmem_begin(&obj->desc); 1139 if (ret != 0) { 1140 goto err_arg; 1141 } 1142 1143 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1144 0, 0, 0); 1145 1146 err_bad_desc: 1147 err_arg: 1148 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1149 return spmc_ffa_error_return(smc_handle, ret); 1150 } 1151 1152 /** 1153 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1154 * @client: Client state. 1155 * @total_length: Total length of shared memory descriptor. 1156 * @fragment_length: Length of fragment of shared memory descriptor passed in 1157 * this call. 1158 * @address: Not supported, must be 0. 1159 * @page_count: Not supported, must be 0. 1160 * @smc_handle: Handle passed to smc call. Used to return 1161 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1162 * 1163 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1164 * to share or lend memory from non-secure os to secure os (with no stream 1165 * endpoints). 1166 * 1167 * Return: 0 on success, error code on failure. 1168 */ 1169 long spmc_ffa_mem_send(uint32_t smc_fid, 1170 bool secure_origin, 1171 uint64_t total_length, 1172 uint32_t fragment_length, 1173 uint64_t address, 1174 uint32_t page_count, 1175 void *cookie, 1176 void *handle, 1177 uint64_t flags) 1178 1179 { 1180 long ret; 1181 struct spmc_shmem_obj *obj; 1182 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1183 ffa_mtd_flag32_t mtd_flag; 1184 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1185 size_t min_desc_size; 1186 1187 if (address != 0U || page_count != 0U) { 1188 WARN("%s: custom memory region for message not supported.\n", 1189 __func__); 1190 return spmc_ffa_error_return(handle, 1191 FFA_ERROR_INVALID_PARAMETER); 1192 } 1193 1194 if (secure_origin) { 1195 WARN("%s: unsupported share direction.\n", __func__); 1196 return spmc_ffa_error_return(handle, 1197 FFA_ERROR_INVALID_PARAMETER); 1198 } 1199 1200 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1201 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1202 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1203 min_desc_size = sizeof(struct ffa_mtd); 1204 } else { 1205 WARN("%s: bad FF-A version.\n", __func__); 1206 return spmc_ffa_error_return(handle, 1207 FFA_ERROR_INVALID_PARAMETER); 1208 } 1209 1210 /* Check if the descriptor is too small for the FF-A version. */ 1211 if (fragment_length < min_desc_size) { 1212 WARN("%s: bad first fragment size %u < %zu\n", 1213 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1214 return spmc_ffa_error_return(handle, 1215 FFA_ERROR_INVALID_PARAMETER); 1216 } 1217 1218 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1219 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1220 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1221 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1222 } else { 1223 WARN("%s: invalid memory management operation.\n", __func__); 1224 return spmc_ffa_error_return(handle, 1225 FFA_ERROR_INVALID_PARAMETER); 1226 } 1227 1228 spin_lock(&spmc_shmem_obj_state.lock); 1229 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1230 if (obj == NULL) { 1231 ret = FFA_ERROR_NO_MEMORY; 1232 goto err_unlock; 1233 } 1234 1235 spin_lock(&mbox->lock); 1236 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1237 ffa_version, handle); 1238 spin_unlock(&mbox->lock); 1239 1240 spin_unlock(&spmc_shmem_obj_state.lock); 1241 return ret; 1242 1243 err_unlock: 1244 spin_unlock(&spmc_shmem_obj_state.lock); 1245 return spmc_ffa_error_return(handle, ret); 1246 } 1247 1248 /** 1249 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1250 * @client: Client state. 1251 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1252 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1253 * @fragment_length: Length of fragments transmitted. 1254 * @sender_id: Vmid of sender in bits [31:16] 1255 * @smc_handle: Handle passed to smc call. Used to return 1256 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1257 * 1258 * Return: @smc_handle on success, error code on failure. 1259 */ 1260 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1261 bool secure_origin, 1262 uint64_t handle_low, 1263 uint64_t handle_high, 1264 uint32_t fragment_length, 1265 uint32_t sender_id, 1266 void *cookie, 1267 void *handle, 1268 uint64_t flags) 1269 { 1270 long ret; 1271 uint32_t desc_sender_id; 1272 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1273 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1274 1275 struct spmc_shmem_obj *obj; 1276 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1277 1278 spin_lock(&spmc_shmem_obj_state.lock); 1279 1280 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1281 if (obj == NULL) { 1282 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1283 __func__, mem_handle); 1284 ret = FFA_ERROR_INVALID_PARAMETER; 1285 goto err_unlock; 1286 } 1287 1288 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1289 if (sender_id != desc_sender_id) { 1290 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1291 sender_id, desc_sender_id); 1292 ret = FFA_ERROR_INVALID_PARAMETER; 1293 goto err_unlock; 1294 } 1295 1296 if (obj->desc_filled == obj->desc_size) { 1297 WARN("%s: object desc already filled, %zu\n", __func__, 1298 obj->desc_filled); 1299 ret = FFA_ERROR_INVALID_PARAMETER; 1300 goto err_unlock; 1301 } 1302 1303 spin_lock(&mbox->lock); 1304 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1305 handle); 1306 spin_unlock(&mbox->lock); 1307 1308 spin_unlock(&spmc_shmem_obj_state.lock); 1309 return ret; 1310 1311 err_unlock: 1312 spin_unlock(&spmc_shmem_obj_state.lock); 1313 return spmc_ffa_error_return(handle, ret); 1314 } 1315 1316 /** 1317 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1318 * if the caller implements a version greater 1319 * than FF-A 1.0 or if they have requested 1320 * the functionality. 1321 * TODO: We are assuming that the caller is 1322 * an SP. To support retrieval from the 1323 * normal world this function will need to be 1324 * expanded accordingly. 1325 * @resp: Descriptor populated in callers RX buffer. 1326 * @sp_ctx: Context of the calling SP. 1327 */ 1328 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1329 struct secure_partition_desc *sp_ctx) 1330 { 1331 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1332 sp_ctx->ns_bit_requested) { 1333 /* 1334 * Currently memory senders must reside in the normal 1335 * world, and we do not have the functionlaity to change 1336 * the state of memory dynamically. Therefore we can always set 1337 * the NS bit to 1. 1338 */ 1339 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1340 } 1341 } 1342 1343 /** 1344 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1345 * @smc_fid: FID of SMC 1346 * @total_length: Total length of retrieve request descriptor if this is 1347 * the first call. Otherwise (unsupported) must be 0. 1348 * @fragment_length: Length of fragment of retrieve request descriptor passed 1349 * in this call. Only @fragment_length == @length is 1350 * supported by this implementation. 1351 * @address: Not supported, must be 0. 1352 * @page_count: Not supported, must be 0. 1353 * @smc_handle: Handle passed to smc call. Used to return 1354 * FFA_MEM_RETRIEVE_RESP. 1355 * 1356 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1357 * Used by secure os to retrieve memory already shared by non-secure os. 1358 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1359 * the client must call FFA_MEM_FRAG_RX until the full response has been 1360 * received. 1361 * 1362 * Return: @handle on success, error code on failure. 1363 */ 1364 long 1365 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1366 bool secure_origin, 1367 uint32_t total_length, 1368 uint32_t fragment_length, 1369 uint64_t address, 1370 uint32_t page_count, 1371 void *cookie, 1372 void *handle, 1373 uint64_t flags) 1374 { 1375 int ret; 1376 size_t buf_size; 1377 size_t copy_size = 0; 1378 size_t min_desc_size; 1379 size_t out_desc_size = 0; 1380 1381 /* 1382 * Currently we are only accessing fields that are the same in both the 1383 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1384 * here. We only need validate against the appropriate struct size. 1385 */ 1386 struct ffa_mtd *resp; 1387 const struct ffa_mtd *req; 1388 struct spmc_shmem_obj *obj = NULL; 1389 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1390 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1391 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1392 1393 if (!secure_origin) { 1394 WARN("%s: unsupported retrieve req direction.\n", __func__); 1395 return spmc_ffa_error_return(handle, 1396 FFA_ERROR_INVALID_PARAMETER); 1397 } 1398 1399 if (address != 0U || page_count != 0U) { 1400 WARN("%s: custom memory region not supported.\n", __func__); 1401 return spmc_ffa_error_return(handle, 1402 FFA_ERROR_INVALID_PARAMETER); 1403 } 1404 1405 spin_lock(&mbox->lock); 1406 1407 req = mbox->tx_buffer; 1408 resp = mbox->rx_buffer; 1409 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1410 1411 if (mbox->rxtx_page_count == 0U) { 1412 WARN("%s: buffer pair not registered.\n", __func__); 1413 ret = FFA_ERROR_INVALID_PARAMETER; 1414 goto err_unlock_mailbox; 1415 } 1416 1417 if (mbox->state != MAILBOX_STATE_EMPTY) { 1418 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1419 ret = FFA_ERROR_DENIED; 1420 goto err_unlock_mailbox; 1421 } 1422 1423 if (fragment_length != total_length) { 1424 WARN("%s: fragmented retrieve request not supported.\n", 1425 __func__); 1426 ret = FFA_ERROR_INVALID_PARAMETER; 1427 goto err_unlock_mailbox; 1428 } 1429 1430 if (req->emad_count == 0U) { 1431 WARN("%s: unsupported attribute desc count %u.\n", 1432 __func__, obj->desc.emad_count); 1433 ret = FFA_ERROR_INVALID_PARAMETER; 1434 goto err_unlock_mailbox; 1435 } 1436 1437 /* Determine the appropriate minimum descriptor size. */ 1438 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1439 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1440 } else { 1441 min_desc_size = sizeof(struct ffa_mtd); 1442 } 1443 if (total_length < min_desc_size) { 1444 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1445 min_desc_size); 1446 ret = FFA_ERROR_INVALID_PARAMETER; 1447 goto err_unlock_mailbox; 1448 } 1449 1450 spin_lock(&spmc_shmem_obj_state.lock); 1451 1452 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1453 if (obj == NULL) { 1454 ret = FFA_ERROR_INVALID_PARAMETER; 1455 goto err_unlock_all; 1456 } 1457 1458 if (obj->desc_filled != obj->desc_size) { 1459 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1460 __func__, obj->desc_filled, obj->desc_size); 1461 ret = FFA_ERROR_INVALID_PARAMETER; 1462 goto err_unlock_all; 1463 } 1464 1465 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1466 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1467 __func__, req->sender_id, obj->desc.sender_id); 1468 ret = FFA_ERROR_INVALID_PARAMETER; 1469 goto err_unlock_all; 1470 } 1471 1472 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1473 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1474 __func__, req->tag, obj->desc.tag); 1475 ret = FFA_ERROR_INVALID_PARAMETER; 1476 goto err_unlock_all; 1477 } 1478 1479 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1480 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1481 __func__, req->emad_count, obj->desc.emad_count); 1482 ret = FFA_ERROR_INVALID_PARAMETER; 1483 goto err_unlock_all; 1484 } 1485 1486 /* Ensure the NS bit is set to 0 in the request. */ 1487 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1488 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1489 ret = FFA_ERROR_INVALID_PARAMETER; 1490 goto err_unlock_all; 1491 } 1492 1493 if (req->flags != 0U) { 1494 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1495 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1496 /* 1497 * If the retrieve request specifies the memory 1498 * transaction ensure it matches what we expect. 1499 */ 1500 WARN("%s: wrong mem transaction flags %x != %x\n", 1501 __func__, req->flags, obj->desc.flags); 1502 ret = FFA_ERROR_INVALID_PARAMETER; 1503 goto err_unlock_all; 1504 } 1505 1506 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1507 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1508 /* 1509 * Current implementation does not support donate and 1510 * it supports no other flags. 1511 */ 1512 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1513 ret = FFA_ERROR_INVALID_PARAMETER; 1514 goto err_unlock_all; 1515 } 1516 } 1517 1518 /* Validate the caller is a valid participant. */ 1519 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1520 WARN("%s: Invalid endpoint ID (0x%x).\n", 1521 __func__, sp_ctx->sp_id); 1522 ret = FFA_ERROR_INVALID_PARAMETER; 1523 goto err_unlock_all; 1524 } 1525 1526 /* Validate that the provided emad offset and structure is valid.*/ 1527 for (size_t i = 0; i < req->emad_count; i++) { 1528 size_t emad_size; 1529 struct ffa_emad_v1_0 *emad; 1530 1531 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1532 &emad_size); 1533 1534 if ((uintptr_t) emad >= (uintptr_t) 1535 ((uint8_t *) req + total_length)) { 1536 WARN("Invalid emad access.\n"); 1537 ret = FFA_ERROR_INVALID_PARAMETER; 1538 goto err_unlock_all; 1539 } 1540 } 1541 1542 /* 1543 * Validate all the endpoints match in the case of multiple 1544 * borrowers. We don't mandate that the order of the borrowers 1545 * must match in the descriptors therefore check to see if the 1546 * endpoints match in any order. 1547 */ 1548 for (size_t i = 0; i < req->emad_count; i++) { 1549 bool found = false; 1550 size_t emad_size; 1551 struct ffa_emad_v1_0 *emad; 1552 struct ffa_emad_v1_0 *other_emad; 1553 1554 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1555 &emad_size); 1556 1557 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1558 other_emad = spmc_shmem_obj_get_emad( 1559 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1560 &emad_size); 1561 1562 if (req->emad_count && 1563 emad->mapd.endpoint_id == 1564 other_emad->mapd.endpoint_id) { 1565 found = true; 1566 break; 1567 } 1568 } 1569 1570 if (!found) { 1571 WARN("%s: invalid receiver id (0x%x).\n", 1572 __func__, emad->mapd.endpoint_id); 1573 ret = FFA_ERROR_INVALID_PARAMETER; 1574 goto err_unlock_all; 1575 } 1576 } 1577 1578 mbox->state = MAILBOX_STATE_FULL; 1579 1580 if (req->emad_count != 0U) { 1581 obj->in_use++; 1582 } 1583 1584 /* 1585 * If the caller is v1.0 convert the descriptor, otherwise copy 1586 * directly. 1587 */ 1588 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1589 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1590 ©_size, 1591 &out_desc_size); 1592 if (ret != 0U) { 1593 ERROR("%s: Failed to process descriptor.\n", __func__); 1594 goto err_unlock_all; 1595 } 1596 } else { 1597 copy_size = MIN(obj->desc_size, buf_size); 1598 out_desc_size = obj->desc_size; 1599 1600 memcpy(resp, &obj->desc, copy_size); 1601 } 1602 1603 /* Set the NS bit in the response if applicable. */ 1604 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1605 1606 spin_unlock(&spmc_shmem_obj_state.lock); 1607 spin_unlock(&mbox->lock); 1608 1609 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1610 copy_size, 0, 0, 0, 0, 0); 1611 1612 err_unlock_all: 1613 spin_unlock(&spmc_shmem_obj_state.lock); 1614 err_unlock_mailbox: 1615 spin_unlock(&mbox->lock); 1616 return spmc_ffa_error_return(handle, ret); 1617 } 1618 1619 /** 1620 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1621 * @client: Client state. 1622 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1623 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1624 * @fragment_offset: Byte offset in descriptor to resume at. 1625 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1626 * hypervisor. 0 otherwise. 1627 * @smc_handle: Handle passed to smc call. Used to return 1628 * FFA_MEM_FRAG_TX. 1629 * 1630 * Return: @smc_handle on success, error code on failure. 1631 */ 1632 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1633 bool secure_origin, 1634 uint32_t handle_low, 1635 uint32_t handle_high, 1636 uint32_t fragment_offset, 1637 uint32_t sender_id, 1638 void *cookie, 1639 void *handle, 1640 uint64_t flags) 1641 { 1642 int ret; 1643 void *src; 1644 size_t buf_size; 1645 size_t copy_size; 1646 size_t full_copy_size; 1647 uint32_t desc_sender_id; 1648 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1649 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1650 struct spmc_shmem_obj *obj; 1651 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1652 1653 if (!secure_origin) { 1654 WARN("%s: can only be called from swld.\n", 1655 __func__); 1656 return spmc_ffa_error_return(handle, 1657 FFA_ERROR_INVALID_PARAMETER); 1658 } 1659 1660 spin_lock(&spmc_shmem_obj_state.lock); 1661 1662 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1663 if (obj == NULL) { 1664 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1665 __func__, mem_handle); 1666 ret = FFA_ERROR_INVALID_PARAMETER; 1667 goto err_unlock_shmem; 1668 } 1669 1670 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1671 if (sender_id != 0U && sender_id != desc_sender_id) { 1672 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1673 sender_id, desc_sender_id); 1674 ret = FFA_ERROR_INVALID_PARAMETER; 1675 goto err_unlock_shmem; 1676 } 1677 1678 if (fragment_offset >= obj->desc_size) { 1679 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1680 __func__, fragment_offset, obj->desc_size); 1681 ret = FFA_ERROR_INVALID_PARAMETER; 1682 goto err_unlock_shmem; 1683 } 1684 1685 spin_lock(&mbox->lock); 1686 1687 if (mbox->rxtx_page_count == 0U) { 1688 WARN("%s: buffer pair not registered.\n", __func__); 1689 ret = FFA_ERROR_INVALID_PARAMETER; 1690 goto err_unlock_all; 1691 } 1692 1693 if (mbox->state != MAILBOX_STATE_EMPTY) { 1694 WARN("%s: RX Buffer is full!\n", __func__); 1695 ret = FFA_ERROR_DENIED; 1696 goto err_unlock_all; 1697 } 1698 1699 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1700 1701 mbox->state = MAILBOX_STATE_FULL; 1702 1703 /* 1704 * If the caller is v1.0 convert the descriptor, otherwise copy 1705 * directly. 1706 */ 1707 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1708 size_t out_desc_size; 1709 1710 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1711 buf_size, 1712 fragment_offset, 1713 ©_size, 1714 &out_desc_size); 1715 if (ret != 0U) { 1716 ERROR("%s: Failed to process descriptor.\n", __func__); 1717 goto err_unlock_all; 1718 } 1719 } else { 1720 full_copy_size = obj->desc_size - fragment_offset; 1721 copy_size = MIN(full_copy_size, buf_size); 1722 1723 src = &obj->desc; 1724 1725 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1726 } 1727 1728 spin_unlock(&mbox->lock); 1729 spin_unlock(&spmc_shmem_obj_state.lock); 1730 1731 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1732 copy_size, sender_id, 0, 0, 0); 1733 1734 err_unlock_all: 1735 spin_unlock(&mbox->lock); 1736 err_unlock_shmem: 1737 spin_unlock(&spmc_shmem_obj_state.lock); 1738 return spmc_ffa_error_return(handle, ret); 1739 } 1740 1741 /** 1742 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1743 * @client: Client state. 1744 * 1745 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1746 * Used by secure os release previously shared memory to non-secure os. 1747 * 1748 * The handle to release must be in the client's (secure os's) transmit buffer. 1749 * 1750 * Return: 0 on success, error code on failure. 1751 */ 1752 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1753 bool secure_origin, 1754 uint32_t handle_low, 1755 uint32_t handle_high, 1756 uint32_t fragment_offset, 1757 uint32_t sender_id, 1758 void *cookie, 1759 void *handle, 1760 uint64_t flags) 1761 { 1762 int ret; 1763 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1764 struct spmc_shmem_obj *obj; 1765 const struct ffa_mem_relinquish_descriptor *req; 1766 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1767 1768 if (!secure_origin) { 1769 WARN("%s: unsupported relinquish direction.\n", __func__); 1770 return spmc_ffa_error_return(handle, 1771 FFA_ERROR_INVALID_PARAMETER); 1772 } 1773 1774 spin_lock(&mbox->lock); 1775 1776 if (mbox->rxtx_page_count == 0U) { 1777 WARN("%s: buffer pair not registered.\n", __func__); 1778 ret = FFA_ERROR_INVALID_PARAMETER; 1779 goto err_unlock_mailbox; 1780 } 1781 1782 req = mbox->tx_buffer; 1783 1784 if (req->flags != 0U) { 1785 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1786 ret = FFA_ERROR_INVALID_PARAMETER; 1787 goto err_unlock_mailbox; 1788 } 1789 1790 if (req->endpoint_count == 0) { 1791 WARN("%s: endpoint count cannot be 0.\n", __func__); 1792 ret = FFA_ERROR_INVALID_PARAMETER; 1793 goto err_unlock_mailbox; 1794 } 1795 1796 spin_lock(&spmc_shmem_obj_state.lock); 1797 1798 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1799 if (obj == NULL) { 1800 ret = FFA_ERROR_INVALID_PARAMETER; 1801 goto err_unlock_all; 1802 } 1803 1804 /* 1805 * Validate the endpoint ID was populated correctly. We don't currently 1806 * support proxy endpoints so the endpoint count should always be 1. 1807 */ 1808 if (req->endpoint_count != 1U) { 1809 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1810 req->endpoint_count); 1811 ret = FFA_ERROR_INVALID_PARAMETER; 1812 goto err_unlock_all; 1813 } 1814 1815 /* Validate provided endpoint ID matches the partition ID. */ 1816 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1817 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1818 req->endpoint_array[0], sp_ctx->sp_id); 1819 ret = FFA_ERROR_INVALID_PARAMETER; 1820 goto err_unlock_all; 1821 } 1822 1823 /* Validate the caller is a valid participant. */ 1824 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1825 WARN("%s: Invalid endpoint ID (0x%x).\n", 1826 __func__, req->endpoint_array[0]); 1827 ret = FFA_ERROR_INVALID_PARAMETER; 1828 goto err_unlock_all; 1829 } 1830 1831 if (obj->in_use == 0U) { 1832 ret = FFA_ERROR_INVALID_PARAMETER; 1833 goto err_unlock_all; 1834 } 1835 obj->in_use--; 1836 1837 spin_unlock(&spmc_shmem_obj_state.lock); 1838 spin_unlock(&mbox->lock); 1839 1840 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1841 1842 err_unlock_all: 1843 spin_unlock(&spmc_shmem_obj_state.lock); 1844 err_unlock_mailbox: 1845 spin_unlock(&mbox->lock); 1846 return spmc_ffa_error_return(handle, ret); 1847 } 1848 1849 /** 1850 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1851 * @client: Client state. 1852 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1853 * @handle_high: Unique handle of shared memory object to reclaim. 1854 * Bit[63:32]. 1855 * @flags: Unsupported, ignored. 1856 * 1857 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1858 * Used by non-secure os reclaim memory previously shared with secure os. 1859 * 1860 * Return: 0 on success, error code on failure. 1861 */ 1862 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1863 bool secure_origin, 1864 uint32_t handle_low, 1865 uint32_t handle_high, 1866 uint32_t mem_flags, 1867 uint64_t x4, 1868 void *cookie, 1869 void *handle, 1870 uint64_t flags) 1871 { 1872 int ret; 1873 struct spmc_shmem_obj *obj; 1874 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1875 1876 if (secure_origin) { 1877 WARN("%s: unsupported reclaim direction.\n", __func__); 1878 return spmc_ffa_error_return(handle, 1879 FFA_ERROR_INVALID_PARAMETER); 1880 } 1881 1882 if (mem_flags != 0U) { 1883 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1884 return spmc_ffa_error_return(handle, 1885 FFA_ERROR_INVALID_PARAMETER); 1886 } 1887 1888 spin_lock(&spmc_shmem_obj_state.lock); 1889 1890 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1891 if (obj == NULL) { 1892 ret = FFA_ERROR_INVALID_PARAMETER; 1893 goto err_unlock; 1894 } 1895 if (obj->in_use != 0U) { 1896 ret = FFA_ERROR_DENIED; 1897 goto err_unlock; 1898 } 1899 1900 if (obj->desc_filled != obj->desc_size) { 1901 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1902 __func__, obj->desc_filled, obj->desc_size); 1903 ret = FFA_ERROR_INVALID_PARAMETER; 1904 goto err_unlock; 1905 } 1906 1907 /* Allow for platform specific operations to be performed. */ 1908 ret = plat_spmc_shmem_reclaim(&obj->desc); 1909 if (ret != 0) { 1910 goto err_unlock; 1911 } 1912 1913 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1914 spin_unlock(&spmc_shmem_obj_state.lock); 1915 1916 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1917 1918 err_unlock: 1919 spin_unlock(&spmc_shmem_obj_state.lock); 1920 return spmc_ffa_error_return(handle, ret); 1921 } 1922