1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 obj_size = spmc_shmem_obj_size(desc_size); 84 85 /* Ensure the obj size has not overflowed. */ 86 if (obj_size < desc_size) { 87 WARN("%s(0x%zx) desc_size overflow\n", 88 __func__, desc_size); 89 return NULL; 90 } 91 92 if (obj_size > free) { 93 WARN("%s(0x%zx) failed, free 0x%zx\n", 94 __func__, desc_size, free); 95 return NULL; 96 } 97 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 98 obj->desc = (struct ffa_mtd) {0}; 99 obj->desc_size = desc_size; 100 obj->desc_filled = 0; 101 obj->in_use = 0; 102 state->allocated += obj_size; 103 return obj; 104 } 105 106 /** 107 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 108 * @state: Global state. 109 * @obj: Object to free. 110 * 111 * Release memory used by @obj. Other objects may move, so on return all 112 * pointers to struct spmc_shmem_obj object should be considered invalid, not 113 * just @obj. 114 * 115 * The current implementation always compacts the remaining objects to simplify 116 * the allocator and to avoid fragmentation. 117 */ 118 119 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 120 struct spmc_shmem_obj *obj) 121 { 122 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 123 uint8_t *shift_dest = (uint8_t *)obj; 124 uint8_t *shift_src = shift_dest + free_size; 125 size_t shift_size = state->allocated - (shift_src - state->data); 126 127 if (shift_size != 0U) { 128 memmove(shift_dest, shift_src, shift_size); 129 } 130 state->allocated -= free_size; 131 } 132 133 /** 134 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 135 * @state: Global state. 136 * @handle: Unique handle of object to return. 137 * 138 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 139 * %NULL, if not object in @state->data has a matching handle. 140 */ 141 static struct spmc_shmem_obj * 142 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 143 { 144 uint8_t *curr = state->data; 145 146 while (curr - state->data < state->allocated) { 147 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 148 149 if (obj->desc.handle == handle) { 150 return obj; 151 } 152 curr += spmc_shmem_obj_size(obj->desc_size); 153 } 154 return NULL; 155 } 156 157 /** 158 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 159 * @offset: Offset used to track which objects have previously been 160 * returned. 161 * 162 * Return: the next struct spmc_shmem_obj_state object from the provided 163 * offset. 164 * %NULL, if there are no more objects. 165 */ 166 static struct spmc_shmem_obj * 167 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 168 { 169 uint8_t *curr = state->data + *offset; 170 171 if (curr - state->data < state->allocated) { 172 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 173 174 *offset += spmc_shmem_obj_size(obj->desc_size); 175 176 return obj; 177 } 178 return NULL; 179 } 180 181 /******************************************************************************* 182 * FF-A memory descriptor helper functions. 183 ******************************************************************************/ 184 /** 185 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 186 * clients FF-A version. 187 * @desc: The memory transaction descriptor. 188 * @index: The index of the emad element to be accessed. 189 * @ffa_version: FF-A version of the provided structure. 190 * @emad_size: Will be populated with the size of the returned emad 191 * descriptor. 192 * Return: A pointer to the requested emad structure. 193 */ 194 static void * 195 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 196 uint32_t ffa_version, size_t *emad_size) 197 { 198 uint8_t *emad; 199 200 assert(index < desc->emad_count); 201 202 /* 203 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 204 * format, otherwise assume it is a v1.1 format. 205 */ 206 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 207 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 208 *emad_size = sizeof(struct ffa_emad_v1_0); 209 } else { 210 assert(is_aligned(desc->emad_offset, 16)); 211 emad = ((uint8_t *) desc + desc->emad_offset); 212 *emad_size = desc->emad_size; 213 } 214 215 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 216 return (emad + (*emad_size * index)); 217 } 218 219 /** 220 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 221 * FF-A version of the descriptor. 222 * @obj: Object containing ffa_memory_region_descriptor. 223 * 224 * Return: struct ffa_comp_mrd object corresponding to the composite memory 225 * region descriptor. 226 */ 227 static struct ffa_comp_mrd * 228 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 229 { 230 size_t emad_size; 231 /* 232 * The comp_mrd_offset field of the emad descriptor remains consistent 233 * between FF-A versions therefore we can use the v1.0 descriptor here 234 * in all cases. 235 */ 236 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 237 ffa_version, 238 &emad_size); 239 240 /* Ensure the composite descriptor offset is aligned. */ 241 if (!is_aligned(emad->comp_mrd_offset, 8)) { 242 WARN("Unaligned composite memory region descriptor offset.\n"); 243 return NULL; 244 } 245 246 return (struct ffa_comp_mrd *) 247 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 248 } 249 250 /** 251 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 252 * a given memory transaction. 253 * @sp_id: Partition ID to validate. 254 * @obj: The shared memory object containing the descriptor 255 * of the memory transaction. 256 * Return: true if ID is valid, else false. 257 */ 258 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 259 { 260 bool found = false; 261 struct ffa_mtd *desc = &obj->desc; 262 size_t desc_size = obj->desc_size; 263 264 /* Validate the partition is a valid participant. */ 265 for (unsigned int i = 0U; i < desc->emad_count; i++) { 266 size_t emad_size; 267 struct ffa_emad_v1_0 *emad; 268 269 emad = spmc_shmem_obj_get_emad(desc, i, 270 MAKE_FFA_VERSION(1, 1), 271 &emad_size); 272 /* 273 * Validate the calculated emad address resides within the 274 * descriptor. 275 */ 276 if ((emad == NULL) || (uintptr_t) emad >= 277 (uintptr_t)((uint8_t *) desc + desc_size)) { 278 VERBOSE("Invalid emad.\n"); 279 break; 280 } 281 if (sp_id == emad->mapd.endpoint_id) { 282 found = true; 283 break; 284 } 285 } 286 return found; 287 } 288 289 /* 290 * Compare two memory regions to determine if any range overlaps with another 291 * ongoing memory transaction. 292 */ 293 static bool 294 overlapping_memory_regions(struct ffa_comp_mrd *region1, 295 struct ffa_comp_mrd *region2) 296 { 297 uint64_t region1_start; 298 uint64_t region1_size; 299 uint64_t region1_end; 300 uint64_t region2_start; 301 uint64_t region2_size; 302 uint64_t region2_end; 303 304 assert(region1 != NULL); 305 assert(region2 != NULL); 306 307 if (region1 == region2) { 308 return true; 309 } 310 311 /* 312 * Check each memory region in the request against existing 313 * transactions. 314 */ 315 for (size_t i = 0; i < region1->address_range_count; i++) { 316 317 region1_start = region1->address_range_array[i].address; 318 region1_size = 319 region1->address_range_array[i].page_count * 320 PAGE_SIZE_4KB; 321 region1_end = region1_start + region1_size; 322 323 for (size_t j = 0; j < region2->address_range_count; j++) { 324 325 region2_start = region2->address_range_array[j].address; 326 region2_size = 327 region2->address_range_array[j].page_count * 328 PAGE_SIZE_4KB; 329 region2_end = region2_start + region2_size; 330 331 /* Check if regions are not overlapping. */ 332 if (!((region2_end <= region1_start) || 333 (region1_end <= region2_start))) { 334 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 335 region1_start, region1_end, 336 region2_start, region2_end); 337 return true; 338 } 339 } 340 } 341 return false; 342 } 343 344 /******************************************************************************* 345 * FF-A v1.0 Memory Descriptor Conversion Helpers. 346 ******************************************************************************/ 347 /** 348 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 349 * converted descriptor. 350 * @orig: The original v1.0 memory transaction descriptor. 351 * @desc_size: The size of the original v1.0 memory transaction descriptor. 352 * 353 * Return: the size required to store the descriptor store in the v1.1 format. 354 */ 355 static uint64_t 356 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 357 { 358 uint64_t size = 0; 359 struct ffa_comp_mrd *mrd; 360 struct ffa_emad_v1_0 *emad_array = orig->emad; 361 362 /* Get the size of the v1.1 descriptor. */ 363 size += sizeof(struct ffa_mtd); 364 365 /* Add the size of the emad descriptors. */ 366 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 367 368 /* Add the size of the composite mrds. */ 369 size += sizeof(struct ffa_comp_mrd); 370 371 /* Add the size of the constituent mrds. */ 372 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 373 emad_array[0].comp_mrd_offset); 374 375 /* Add the size of the memory region descriptors. */ 376 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 377 378 return size; 379 } 380 381 /** 382 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 383 * converted descriptor. 384 * @orig: The original v1.1 memory transaction descriptor. 385 * @desc_size: The size of the original v1.1 memory transaction descriptor. 386 * 387 * Return: the size required to store the descriptor store in the v1.0 format. 388 */ 389 static size_t 390 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 391 { 392 size_t size = 0; 393 struct ffa_comp_mrd *mrd; 394 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 395 ((uint8_t *) orig + 396 orig->emad_offset); 397 398 /* Get the size of the v1.0 descriptor. */ 399 size += sizeof(struct ffa_mtd_v1_0); 400 401 /* Add the size of the v1.0 emad descriptors. */ 402 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 403 404 /* Add the size of the composite mrds. */ 405 size += sizeof(struct ffa_comp_mrd); 406 407 /* Add the size of the constituent mrds. */ 408 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 409 emad_array[0].comp_mrd_offset); 410 411 /* Check the calculated address is within the memory descriptor. */ 412 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 413 (uintptr_t)((uint8_t *) orig + desc_size)) { 414 return 0; 415 } 416 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 417 418 return size; 419 } 420 421 /** 422 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 423 * @out_obj: The shared memory object to populate the converted descriptor. 424 * @orig: The shared memory object containing the v1.0 descriptor. 425 * 426 * Return: true if the conversion is successful else false. 427 */ 428 static bool 429 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 430 struct spmc_shmem_obj *orig) 431 { 432 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 433 struct ffa_mtd *out = &out_obj->desc; 434 struct ffa_emad_v1_0 *emad_array_in; 435 struct ffa_emad_v1_0 *emad_array_out; 436 struct ffa_comp_mrd *mrd_in; 437 struct ffa_comp_mrd *mrd_out; 438 439 size_t mrd_in_offset; 440 size_t mrd_out_offset; 441 size_t mrd_size = 0; 442 443 /* Populate the new descriptor format from the v1.0 struct. */ 444 out->sender_id = mtd_orig->sender_id; 445 out->memory_region_attributes = mtd_orig->memory_region_attributes; 446 out->flags = mtd_orig->flags; 447 out->handle = mtd_orig->handle; 448 out->tag = mtd_orig->tag; 449 out->emad_count = mtd_orig->emad_count; 450 out->emad_size = sizeof(struct ffa_emad_v1_0); 451 452 /* 453 * We will locate the emad descriptors directly after the ffa_mtd 454 * struct. This will be 8-byte aligned. 455 */ 456 out->emad_offset = sizeof(struct ffa_mtd); 457 458 emad_array_in = mtd_orig->emad; 459 emad_array_out = (struct ffa_emad_v1_0 *) 460 ((uint8_t *) out + out->emad_offset); 461 462 /* Copy across the emad structs. */ 463 for (unsigned int i = 0U; i < out->emad_count; i++) { 464 /* Bound check for emad array. */ 465 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 466 ((uint8_t *) mtd_orig + orig->desc_size)) { 467 VERBOSE("%s: Invalid mtd structure.\n", __func__); 468 return false; 469 } 470 memcpy(&emad_array_out[i], &emad_array_in[i], 471 sizeof(struct ffa_emad_v1_0)); 472 } 473 474 /* Place the mrd descriptors after the end of the emad descriptors.*/ 475 mrd_in_offset = emad_array_in->comp_mrd_offset; 476 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 477 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 478 479 /* Add the size of the composite memory region descriptor. */ 480 mrd_size += sizeof(struct ffa_comp_mrd); 481 482 /* Find the mrd descriptor. */ 483 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 484 485 /* Add the size of the constituent memory region descriptors. */ 486 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 487 488 /* 489 * Update the offset in the emads by the delta between the input and 490 * output addresses. 491 */ 492 for (unsigned int i = 0U; i < out->emad_count; i++) { 493 emad_array_out[i].comp_mrd_offset = 494 emad_array_in[i].comp_mrd_offset + 495 (mrd_out_offset - mrd_in_offset); 496 } 497 498 /* Verify that we stay within bound of the memory descriptors. */ 499 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 500 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 501 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 502 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 503 ERROR("%s: Invalid mrd structure.\n", __func__); 504 return false; 505 } 506 507 /* Copy the mrd descriptors directly. */ 508 memcpy(mrd_out, mrd_in, mrd_size); 509 510 return true; 511 } 512 513 /** 514 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 515 * v1.0 memory object. 516 * @out_obj: The shared memory object to populate the v1.0 descriptor. 517 * @orig: The shared memory object containing the v1.1 descriptor. 518 * 519 * Return: true if the conversion is successful else false. 520 */ 521 static bool 522 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 523 struct spmc_shmem_obj *orig) 524 { 525 struct ffa_mtd *mtd_orig = &orig->desc; 526 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 527 struct ffa_emad_v1_0 *emad_in; 528 struct ffa_emad_v1_0 *emad_array_in; 529 struct ffa_emad_v1_0 *emad_array_out; 530 struct ffa_comp_mrd *mrd_in; 531 struct ffa_comp_mrd *mrd_out; 532 533 size_t mrd_in_offset; 534 size_t mrd_out_offset; 535 size_t emad_out_array_size; 536 size_t mrd_size = 0; 537 size_t orig_desc_size = orig->desc_size; 538 539 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 540 out->sender_id = mtd_orig->sender_id; 541 out->memory_region_attributes = mtd_orig->memory_region_attributes; 542 out->flags = mtd_orig->flags; 543 out->handle = mtd_orig->handle; 544 out->tag = mtd_orig->tag; 545 out->emad_count = mtd_orig->emad_count; 546 547 /* Determine the location of the emad array in both descriptors. */ 548 emad_array_in = (struct ffa_emad_v1_0 *) 549 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 550 emad_array_out = out->emad; 551 552 /* Copy across the emad structs. */ 553 emad_in = emad_array_in; 554 for (unsigned int i = 0U; i < out->emad_count; i++) { 555 /* Bound check for emad array. */ 556 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 557 ((uint8_t *) mtd_orig + orig_desc_size)) { 558 VERBOSE("%s: Invalid mtd structure.\n", __func__); 559 return false; 560 } 561 memcpy(&emad_array_out[i], emad_in, 562 sizeof(struct ffa_emad_v1_0)); 563 564 emad_in += mtd_orig->emad_size; 565 } 566 567 /* Place the mrd descriptors after the end of the emad descriptors. */ 568 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 569 570 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 571 emad_out_array_size; 572 573 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 574 575 mrd_in_offset = mtd_orig->emad_offset + 576 (mtd_orig->emad_size * mtd_orig->emad_count); 577 578 /* Add the size of the composite memory region descriptor. */ 579 mrd_size += sizeof(struct ffa_comp_mrd); 580 581 /* Find the mrd descriptor. */ 582 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 583 584 /* Add the size of the constituent memory region descriptors. */ 585 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 586 587 /* 588 * Update the offset in the emads by the delta between the input and 589 * output addresses. 590 */ 591 emad_in = emad_array_in; 592 593 for (unsigned int i = 0U; i < out->emad_count; i++) { 594 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 595 (mrd_out_offset - 596 mrd_in_offset); 597 emad_in += mtd_orig->emad_size; 598 } 599 600 /* Verify that we stay within bound of the memory descriptors. */ 601 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 602 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 603 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 604 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 605 ERROR("%s: Invalid mrd structure.\n", __func__); 606 return false; 607 } 608 609 /* Copy the mrd descriptors directly. */ 610 memcpy(mrd_out, mrd_in, mrd_size); 611 612 return true; 613 } 614 615 /** 616 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 617 * the v1.0 format and populates the 618 * provided buffer. 619 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 620 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 621 * @buf_size: Size of the buffer to populate. 622 * @offset: The offset of the converted descriptor to copy. 623 * @copy_size: Will be populated with the number of bytes copied. 624 * @out_desc_size: Will be populated with the total size of the v1.0 625 * descriptor. 626 * 627 * Return: 0 if conversion and population succeeded. 628 * Note: This function invalidates the reference to @orig therefore 629 * `spmc_shmem_obj_lookup` must be called if further usage is required. 630 */ 631 static uint32_t 632 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 633 size_t buf_size, size_t offset, 634 size_t *copy_size, size_t *v1_0_desc_size) 635 { 636 struct spmc_shmem_obj *v1_0_obj; 637 638 /* Calculate the size that the v1.0 descriptor will require. */ 639 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 640 &orig_obj->desc, orig_obj->desc_size); 641 642 if (*v1_0_desc_size == 0) { 643 ERROR("%s: cannot determine size of descriptor.\n", 644 __func__); 645 return FFA_ERROR_INVALID_PARAMETER; 646 } 647 648 /* Get a new obj to store the v1.0 descriptor. */ 649 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 650 *v1_0_desc_size); 651 652 if (!v1_0_obj) { 653 return FFA_ERROR_NO_MEMORY; 654 } 655 656 /* Perform the conversion from v1.1 to v1.0. */ 657 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 658 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 659 return FFA_ERROR_INVALID_PARAMETER; 660 } 661 662 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 663 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 664 665 /* 666 * We're finished with the v1.0 descriptor for now so free it. 667 * Note that this will invalidate any references to the v1.1 668 * descriptor. 669 */ 670 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 671 672 return 0; 673 } 674 675 static int 676 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 677 size_t fragment_length, size_t total_length) 678 { 679 unsigned long long emad_end; 680 unsigned long long emad_size; 681 unsigned long long emad_offset; 682 unsigned int min_desc_size; 683 684 /* Determine the appropriate minimum descriptor size. */ 685 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 686 min_desc_size = sizeof(struct ffa_mtd_v1_0); 687 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 688 min_desc_size = sizeof(struct ffa_mtd); 689 } else { 690 return FFA_ERROR_INVALID_PARAMETER; 691 } 692 if (fragment_length < min_desc_size) { 693 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 694 min_desc_size); 695 return FFA_ERROR_INVALID_PARAMETER; 696 } 697 698 if (desc->emad_count == 0U) { 699 WARN("%s: unsupported attribute desc count %u.\n", 700 __func__, desc->emad_count); 701 return FFA_ERROR_INVALID_PARAMETER; 702 } 703 704 /* 705 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 706 * format, otherwise assume it is a v1.1 format. 707 */ 708 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 709 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 710 } else { 711 if (!is_aligned(desc->emad_offset, 16)) { 712 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 713 __func__, desc->emad_offset); 714 return FFA_ERROR_INVALID_PARAMETER; 715 } 716 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 717 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 718 __func__, desc->emad_offset, 719 sizeof(struct ffa_mtd)); 720 return FFA_ERROR_INVALID_PARAMETER; 721 } 722 emad_offset = desc->emad_offset; 723 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 724 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 725 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 726 return FFA_ERROR_INVALID_PARAMETER; 727 } 728 if (!is_aligned(desc->emad_size, 16)) { 729 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 730 __func__, desc->emad_size); 731 return FFA_ERROR_INVALID_PARAMETER; 732 } 733 emad_size = desc->emad_size; 734 } 735 736 /* 737 * Overflow is impossible: the arithmetic happens in at least 64-bit 738 * precision, but all of the operands are bounded by UINT32_MAX, and 739 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 740 * = (2^64 - 1). 741 */ 742 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 743 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 744 (unsigned long long)sizeof(struct ffa_comp_mrd) + 745 (unsigned long long)emad_offset; 746 747 if (emad_end > total_length) { 748 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 749 __func__, emad_end, total_length); 750 return FFA_ERROR_INVALID_PARAMETER; 751 } 752 753 return 0; 754 } 755 756 /** 757 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 758 * @obj: Object containing ffa_memory_region_descriptor. 759 * @ffa_version: FF-A version of the provided descriptor. 760 * 761 * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor 762 * offset or count is invalid. 763 */ 764 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 765 uint32_t ffa_version) 766 { 767 const struct ffa_emad_v1_0 *emad; 768 size_t emad_size; 769 uint32_t comp_mrd_offset = 0; 770 771 if (obj->desc_filled != obj->desc_size) { 772 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 773 __func__, obj->desc_filled, obj->desc_size); 774 panic(); 775 } 776 777 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 778 obj->desc_filled, obj->desc_size)) { 779 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 780 __func__); 781 panic(); 782 } 783 784 emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 785 ffa_version, &emad_size); 786 787 for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { 788 size_t size; 789 size_t count; 790 size_t expected_size; 791 uint64_t total_page_count; 792 size_t header_emad_size; 793 uint32_t offset; 794 struct ffa_comp_mrd *comp; 795 ffa_endpoint_id16_t ep_id; 796 797 /* 798 * Validate the calculated emad address resides within the 799 * descriptor. 800 */ 801 if ((uintptr_t) emad > 802 ((uintptr_t) &obj->desc + obj->desc_size - emad_size)) { 803 ERROR("BUG: Invalid emad access not detected earlier.\n"); 804 panic(); 805 } 806 807 emad = (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + emad_size); 808 offset = emad->comp_mrd_offset; 809 810 /* 811 * If a partition ID resides in the secure world validate that 812 * the partition ID is for a known partition. Ignore any 813 * partition ID belonging to the normal world as it is assumed 814 * the Hypervisor will have validated these. 815 */ 816 ep_id = emad->mapd.endpoint_id; 817 if (ffa_is_secure_world_id(ep_id)) { 818 if (spmc_get_sp_ctx(ep_id) == NULL) { 819 WARN("%s: Invalid receiver id 0x%x\n", 820 __func__, ep_id); 821 return -EINVAL; 822 } 823 } 824 825 /* 826 * The offset provided to the composite memory region descriptor 827 * should be consistent across endpoint descriptors. Store the 828 * first entry and compare against subsequent entries. 829 */ 830 if (comp_mrd_offset == 0) { 831 comp_mrd_offset = offset; 832 } else { 833 if (comp_mrd_offset != offset) { 834 ERROR("%s: mismatching offsets provided, %u != %u\n", 835 __func__, offset, comp_mrd_offset); 836 return -EINVAL; 837 } 838 continue; /* Remainder only executed on first iteration. */ 839 } 840 841 header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) + 842 (obj->desc.emad_count * emad_size); 843 844 if (offset < header_emad_size) { 845 WARN("%s: invalid object, offset %u < header + emad %zu\n", 846 __func__, offset, header_emad_size); 847 return -EINVAL; 848 } 849 850 size = obj->desc_size; 851 852 if (offset > size) { 853 WARN("%s: invalid object, offset %u > total size %zu\n", 854 __func__, offset, obj->desc_size); 855 return -EINVAL; 856 } 857 size -= offset; 858 859 if (size < sizeof(struct ffa_comp_mrd)) { 860 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 861 __func__, offset, obj->desc_size); 862 return -EINVAL; 863 } 864 size -= sizeof(struct ffa_comp_mrd); 865 866 count = size / sizeof(struct ffa_cons_mrd); 867 868 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 869 870 if (comp == NULL) { 871 WARN("%s: invalid comp_mrd offset\n", __func__); 872 return -EINVAL; 873 } 874 875 if (comp->address_range_count != count) { 876 WARN("%s: invalid object, desc count %u != %zu\n", 877 __func__, comp->address_range_count, count); 878 return -EINVAL; 879 } 880 881 expected_size = offset + sizeof(*comp) + 882 count * sizeof(struct ffa_cons_mrd); 883 884 if (expected_size != obj->desc_size) { 885 WARN("%s: invalid object, computed size %zu != size %zu\n", 886 __func__, expected_size, obj->desc_size); 887 return -EINVAL; 888 } 889 890 total_page_count = 0; 891 892 for (size_t i = 0; i < count; i++) { 893 total_page_count += 894 comp->address_range_array[i].page_count; 895 } 896 if (comp->total_page_count != total_page_count) { 897 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 898 __func__, comp->total_page_count, 899 total_page_count); 900 return -EINVAL; 901 } 902 } 903 return 0; 904 } 905 906 /** 907 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 908 * regions that are currently involved with an 909 * existing memory transactions. This implies that 910 * the memory is not in a valid state for lending. 911 * @obj: Object containing ffa_memory_region_descriptor. 912 * 913 * Return: 0 if object is valid, -EINVAL if invalid memory state. 914 */ 915 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 916 uint32_t ffa_version) 917 { 918 size_t obj_offset = 0; 919 struct spmc_shmem_obj *inflight_obj; 920 921 struct ffa_comp_mrd *other_mrd; 922 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 923 ffa_version); 924 925 if (requested_mrd == NULL) { 926 return -EINVAL; 927 } 928 929 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 930 &obj_offset); 931 932 while (inflight_obj != NULL) { 933 /* 934 * Don't compare the transaction to itself or to partially 935 * transmitted descriptors. 936 */ 937 if ((obj->desc.handle != inflight_obj->desc.handle) && 938 (obj->desc_size == obj->desc_filled)) { 939 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 940 FFA_VERSION_COMPILED); 941 if (other_mrd == NULL) { 942 return -EINVAL; 943 } 944 if (overlapping_memory_regions(requested_mrd, 945 other_mrd)) { 946 return -EINVAL; 947 } 948 } 949 950 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 951 &obj_offset); 952 } 953 return 0; 954 } 955 956 static long spmc_ffa_fill_desc(struct mailbox *mbox, 957 struct spmc_shmem_obj *obj, 958 uint32_t fragment_length, 959 ffa_mtd_flag32_t mtd_flag, 960 uint32_t ffa_version, 961 void *smc_handle) 962 { 963 int ret; 964 size_t emad_size; 965 uint32_t handle_low; 966 uint32_t handle_high; 967 struct ffa_emad_v1_0 *emad; 968 struct ffa_emad_v1_0 *other_emad; 969 970 if (mbox->rxtx_page_count == 0U) { 971 WARN("%s: buffer pair not registered.\n", __func__); 972 ret = FFA_ERROR_INVALID_PARAMETER; 973 goto err_arg; 974 } 975 976 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 977 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 978 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 979 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 980 ret = FFA_ERROR_INVALID_PARAMETER; 981 goto err_arg; 982 } 983 984 if (fragment_length > obj->desc_size - obj->desc_filled) { 985 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 986 fragment_length, obj->desc_size - obj->desc_filled); 987 ret = FFA_ERROR_INVALID_PARAMETER; 988 goto err_arg; 989 } 990 991 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 992 (uint8_t *) mbox->tx_buffer, fragment_length); 993 994 /* Ensure that the sender ID resides in the normal world. */ 995 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 996 WARN("%s: Invalid sender ID 0x%x.\n", 997 __func__, obj->desc.sender_id); 998 ret = FFA_ERROR_DENIED; 999 goto err_arg; 1000 } 1001 1002 /* Ensure the NS bit is set to 0. */ 1003 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1004 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1005 ret = FFA_ERROR_INVALID_PARAMETER; 1006 goto err_arg; 1007 } 1008 1009 /* 1010 * We don't currently support any optional flags so ensure none are 1011 * requested. 1012 */ 1013 if (obj->desc.flags != 0U && mtd_flag != 0U && 1014 (obj->desc.flags != mtd_flag)) { 1015 WARN("%s: invalid memory transaction flags %u != %u\n", 1016 __func__, obj->desc.flags, mtd_flag); 1017 ret = FFA_ERROR_INVALID_PARAMETER; 1018 goto err_arg; 1019 } 1020 1021 if (obj->desc_filled == 0U) { 1022 /* First fragment, descriptor header has been copied */ 1023 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1024 fragment_length, obj->desc_size); 1025 if (ret != 0) { 1026 goto err_bad_desc; 1027 } 1028 1029 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1030 obj->desc.flags |= mtd_flag; 1031 } 1032 1033 obj->desc_filled += fragment_length; 1034 1035 handle_low = (uint32_t)obj->desc.handle; 1036 handle_high = obj->desc.handle >> 32; 1037 1038 if (obj->desc_filled != obj->desc_size) { 1039 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1040 handle_high, obj->desc_filled, 1041 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1042 } 1043 1044 /* The full descriptor has been received, perform any final checks. */ 1045 1046 ret = spmc_shmem_check_obj(obj, ffa_version); 1047 if (ret != 0) { 1048 ret = FFA_ERROR_INVALID_PARAMETER; 1049 goto err_bad_desc; 1050 } 1051 1052 /* Ensure partition IDs are not duplicated. */ 1053 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1054 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1055 &emad_size); 1056 1057 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1058 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1059 ffa_version, 1060 &emad_size); 1061 1062 if (emad->mapd.endpoint_id == 1063 other_emad->mapd.endpoint_id) { 1064 WARN("%s: Duplicated endpoint id 0x%x\n", 1065 __func__, emad->mapd.endpoint_id); 1066 ret = FFA_ERROR_INVALID_PARAMETER; 1067 goto err_bad_desc; 1068 } 1069 } 1070 } 1071 1072 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1073 if (ret) { 1074 ERROR("%s: invalid memory region descriptor.\n", __func__); 1075 ret = FFA_ERROR_INVALID_PARAMETER; 1076 goto err_bad_desc; 1077 } 1078 1079 /* 1080 * Everything checks out, if the sender was using FF-A v1.0, convert 1081 * the descriptor format to use the v1.1 structures. 1082 */ 1083 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1084 struct spmc_shmem_obj *v1_1_obj; 1085 uint64_t mem_handle; 1086 1087 /* Calculate the size that the v1.1 descriptor will required. */ 1088 uint64_t v1_1_desc_size = 1089 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1090 obj->desc_size); 1091 1092 if (v1_1_desc_size > UINT32_MAX) { 1093 ret = FFA_ERROR_NO_MEMORY; 1094 goto err_arg; 1095 } 1096 1097 /* Get a new obj to store the v1.1 descriptor. */ 1098 v1_1_obj = 1099 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1100 1101 if (!v1_1_obj) { 1102 ret = FFA_ERROR_NO_MEMORY; 1103 goto err_arg; 1104 } 1105 1106 /* Perform the conversion from v1.0 to v1.1. */ 1107 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1108 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1109 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1110 ERROR("%s: Could not convert mtd!\n", __func__); 1111 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1112 goto err_arg; 1113 } 1114 1115 /* 1116 * We're finished with the v1.0 descriptor so free it 1117 * and continue our checks with the new v1.1 descriptor. 1118 */ 1119 mem_handle = obj->desc.handle; 1120 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1121 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1122 if (obj == NULL) { 1123 ERROR("%s: Failed to find converted descriptor.\n", 1124 __func__); 1125 ret = FFA_ERROR_INVALID_PARAMETER; 1126 return spmc_ffa_error_return(smc_handle, ret); 1127 } 1128 } 1129 1130 /* Allow for platform specific operations to be performed. */ 1131 ret = plat_spmc_shmem_begin(&obj->desc); 1132 if (ret != 0) { 1133 goto err_arg; 1134 } 1135 1136 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1137 0, 0, 0); 1138 1139 err_bad_desc: 1140 err_arg: 1141 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1142 return spmc_ffa_error_return(smc_handle, ret); 1143 } 1144 1145 /** 1146 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1147 * @client: Client state. 1148 * @total_length: Total length of shared memory descriptor. 1149 * @fragment_length: Length of fragment of shared memory descriptor passed in 1150 * this call. 1151 * @address: Not supported, must be 0. 1152 * @page_count: Not supported, must be 0. 1153 * @smc_handle: Handle passed to smc call. Used to return 1154 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1155 * 1156 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1157 * to share or lend memory from non-secure os to secure os (with no stream 1158 * endpoints). 1159 * 1160 * Return: 0 on success, error code on failure. 1161 */ 1162 long spmc_ffa_mem_send(uint32_t smc_fid, 1163 bool secure_origin, 1164 uint64_t total_length, 1165 uint32_t fragment_length, 1166 uint64_t address, 1167 uint32_t page_count, 1168 void *cookie, 1169 void *handle, 1170 uint64_t flags) 1171 1172 { 1173 long ret; 1174 struct spmc_shmem_obj *obj; 1175 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1176 ffa_mtd_flag32_t mtd_flag; 1177 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1178 size_t min_desc_size; 1179 1180 if (address != 0U || page_count != 0U) { 1181 WARN("%s: custom memory region for message not supported.\n", 1182 __func__); 1183 return spmc_ffa_error_return(handle, 1184 FFA_ERROR_INVALID_PARAMETER); 1185 } 1186 1187 if (secure_origin) { 1188 WARN("%s: unsupported share direction.\n", __func__); 1189 return spmc_ffa_error_return(handle, 1190 FFA_ERROR_INVALID_PARAMETER); 1191 } 1192 1193 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1194 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1195 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1196 min_desc_size = sizeof(struct ffa_mtd); 1197 } else { 1198 WARN("%s: bad FF-A version.\n", __func__); 1199 return spmc_ffa_error_return(handle, 1200 FFA_ERROR_INVALID_PARAMETER); 1201 } 1202 1203 /* Check if the descriptor is too small for the FF-A version. */ 1204 if (fragment_length < min_desc_size) { 1205 WARN("%s: bad first fragment size %u < %zu\n", 1206 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1207 return spmc_ffa_error_return(handle, 1208 FFA_ERROR_INVALID_PARAMETER); 1209 } 1210 1211 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1212 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1213 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1214 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1215 } else { 1216 WARN("%s: invalid memory management operation.\n", __func__); 1217 return spmc_ffa_error_return(handle, 1218 FFA_ERROR_INVALID_PARAMETER); 1219 } 1220 1221 spin_lock(&spmc_shmem_obj_state.lock); 1222 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1223 if (obj == NULL) { 1224 ret = FFA_ERROR_NO_MEMORY; 1225 goto err_unlock; 1226 } 1227 1228 spin_lock(&mbox->lock); 1229 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1230 ffa_version, handle); 1231 spin_unlock(&mbox->lock); 1232 1233 spin_unlock(&spmc_shmem_obj_state.lock); 1234 return ret; 1235 1236 err_unlock: 1237 spin_unlock(&spmc_shmem_obj_state.lock); 1238 return spmc_ffa_error_return(handle, ret); 1239 } 1240 1241 /** 1242 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1243 * @client: Client state. 1244 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1245 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1246 * @fragment_length: Length of fragments transmitted. 1247 * @sender_id: Vmid of sender in bits [31:16] 1248 * @smc_handle: Handle passed to smc call. Used to return 1249 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1250 * 1251 * Return: @smc_handle on success, error code on failure. 1252 */ 1253 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1254 bool secure_origin, 1255 uint64_t handle_low, 1256 uint64_t handle_high, 1257 uint32_t fragment_length, 1258 uint32_t sender_id, 1259 void *cookie, 1260 void *handle, 1261 uint64_t flags) 1262 { 1263 long ret; 1264 uint32_t desc_sender_id; 1265 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1266 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1267 1268 struct spmc_shmem_obj *obj; 1269 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1270 1271 spin_lock(&spmc_shmem_obj_state.lock); 1272 1273 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1274 if (obj == NULL) { 1275 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1276 __func__, mem_handle); 1277 ret = FFA_ERROR_INVALID_PARAMETER; 1278 goto err_unlock; 1279 } 1280 1281 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1282 if (sender_id != desc_sender_id) { 1283 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1284 sender_id, desc_sender_id); 1285 ret = FFA_ERROR_INVALID_PARAMETER; 1286 goto err_unlock; 1287 } 1288 1289 if (obj->desc_filled == obj->desc_size) { 1290 WARN("%s: object desc already filled, %zu\n", __func__, 1291 obj->desc_filled); 1292 ret = FFA_ERROR_INVALID_PARAMETER; 1293 goto err_unlock; 1294 } 1295 1296 spin_lock(&mbox->lock); 1297 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1298 handle); 1299 spin_unlock(&mbox->lock); 1300 1301 spin_unlock(&spmc_shmem_obj_state.lock); 1302 return ret; 1303 1304 err_unlock: 1305 spin_unlock(&spmc_shmem_obj_state.lock); 1306 return spmc_ffa_error_return(handle, ret); 1307 } 1308 1309 /** 1310 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1311 * if the caller implements a version greater 1312 * than FF-A 1.0 or if they have requested 1313 * the functionality. 1314 * TODO: We are assuming that the caller is 1315 * an SP. To support retrieval from the 1316 * normal world this function will need to be 1317 * expanded accordingly. 1318 * @resp: Descriptor populated in callers RX buffer. 1319 * @sp_ctx: Context of the calling SP. 1320 */ 1321 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1322 struct secure_partition_desc *sp_ctx) 1323 { 1324 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1325 sp_ctx->ns_bit_requested) { 1326 /* 1327 * Currently memory senders must reside in the normal 1328 * world, and we do not have the functionlaity to change 1329 * the state of memory dynamically. Therefore we can always set 1330 * the NS bit to 1. 1331 */ 1332 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1333 } 1334 } 1335 1336 /** 1337 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1338 * @smc_fid: FID of SMC 1339 * @total_length: Total length of retrieve request descriptor if this is 1340 * the first call. Otherwise (unsupported) must be 0. 1341 * @fragment_length: Length of fragment of retrieve request descriptor passed 1342 * in this call. Only @fragment_length == @length is 1343 * supported by this implementation. 1344 * @address: Not supported, must be 0. 1345 * @page_count: Not supported, must be 0. 1346 * @smc_handle: Handle passed to smc call. Used to return 1347 * FFA_MEM_RETRIEVE_RESP. 1348 * 1349 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1350 * Used by secure os to retrieve memory already shared by non-secure os. 1351 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1352 * the client must call FFA_MEM_FRAG_RX until the full response has been 1353 * received. 1354 * 1355 * Return: @handle on success, error code on failure. 1356 */ 1357 long 1358 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1359 bool secure_origin, 1360 uint32_t total_length, 1361 uint32_t fragment_length, 1362 uint64_t address, 1363 uint32_t page_count, 1364 void *cookie, 1365 void *handle, 1366 uint64_t flags) 1367 { 1368 int ret; 1369 size_t buf_size; 1370 size_t copy_size = 0; 1371 size_t min_desc_size; 1372 size_t out_desc_size = 0; 1373 1374 /* 1375 * Currently we are only accessing fields that are the same in both the 1376 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1377 * here. We only need validate against the appropriate struct size. 1378 */ 1379 struct ffa_mtd *resp; 1380 const struct ffa_mtd *req; 1381 struct spmc_shmem_obj *obj = NULL; 1382 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1383 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1384 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1385 1386 if (!secure_origin) { 1387 WARN("%s: unsupported retrieve req direction.\n", __func__); 1388 return spmc_ffa_error_return(handle, 1389 FFA_ERROR_INVALID_PARAMETER); 1390 } 1391 1392 if (address != 0U || page_count != 0U) { 1393 WARN("%s: custom memory region not supported.\n", __func__); 1394 return spmc_ffa_error_return(handle, 1395 FFA_ERROR_INVALID_PARAMETER); 1396 } 1397 1398 spin_lock(&mbox->lock); 1399 1400 req = mbox->tx_buffer; 1401 resp = mbox->rx_buffer; 1402 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1403 1404 if (mbox->rxtx_page_count == 0U) { 1405 WARN("%s: buffer pair not registered.\n", __func__); 1406 ret = FFA_ERROR_INVALID_PARAMETER; 1407 goto err_unlock_mailbox; 1408 } 1409 1410 if (mbox->state != MAILBOX_STATE_EMPTY) { 1411 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1412 ret = FFA_ERROR_DENIED; 1413 goto err_unlock_mailbox; 1414 } 1415 1416 if (fragment_length != total_length) { 1417 WARN("%s: fragmented retrieve request not supported.\n", 1418 __func__); 1419 ret = FFA_ERROR_INVALID_PARAMETER; 1420 goto err_unlock_mailbox; 1421 } 1422 1423 if (req->emad_count == 0U) { 1424 WARN("%s: unsupported attribute desc count %u.\n", 1425 __func__, obj->desc.emad_count); 1426 ret = FFA_ERROR_INVALID_PARAMETER; 1427 goto err_unlock_mailbox; 1428 } 1429 1430 /* Determine the appropriate minimum descriptor size. */ 1431 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1432 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1433 } else { 1434 min_desc_size = sizeof(struct ffa_mtd); 1435 } 1436 if (total_length < min_desc_size) { 1437 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1438 min_desc_size); 1439 ret = FFA_ERROR_INVALID_PARAMETER; 1440 goto err_unlock_mailbox; 1441 } 1442 1443 spin_lock(&spmc_shmem_obj_state.lock); 1444 1445 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1446 if (obj == NULL) { 1447 ret = FFA_ERROR_INVALID_PARAMETER; 1448 goto err_unlock_all; 1449 } 1450 1451 if (obj->desc_filled != obj->desc_size) { 1452 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1453 __func__, obj->desc_filled, obj->desc_size); 1454 ret = FFA_ERROR_INVALID_PARAMETER; 1455 goto err_unlock_all; 1456 } 1457 1458 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1459 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1460 __func__, req->sender_id, obj->desc.sender_id); 1461 ret = FFA_ERROR_INVALID_PARAMETER; 1462 goto err_unlock_all; 1463 } 1464 1465 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1466 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1467 __func__, req->tag, obj->desc.tag); 1468 ret = FFA_ERROR_INVALID_PARAMETER; 1469 goto err_unlock_all; 1470 } 1471 1472 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1473 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1474 __func__, req->emad_count, obj->desc.emad_count); 1475 ret = FFA_ERROR_INVALID_PARAMETER; 1476 goto err_unlock_all; 1477 } 1478 1479 /* Ensure the NS bit is set to 0 in the request. */ 1480 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1481 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1482 ret = FFA_ERROR_INVALID_PARAMETER; 1483 goto err_unlock_all; 1484 } 1485 1486 if (req->flags != 0U) { 1487 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1488 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1489 /* 1490 * If the retrieve request specifies the memory 1491 * transaction ensure it matches what we expect. 1492 */ 1493 WARN("%s: wrong mem transaction flags %x != %x\n", 1494 __func__, req->flags, obj->desc.flags); 1495 ret = FFA_ERROR_INVALID_PARAMETER; 1496 goto err_unlock_all; 1497 } 1498 1499 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1500 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1501 /* 1502 * Current implementation does not support donate and 1503 * it supports no other flags. 1504 */ 1505 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1506 ret = FFA_ERROR_INVALID_PARAMETER; 1507 goto err_unlock_all; 1508 } 1509 } 1510 1511 /* Validate the caller is a valid participant. */ 1512 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1513 WARN("%s: Invalid endpoint ID (0x%x).\n", 1514 __func__, sp_ctx->sp_id); 1515 ret = FFA_ERROR_INVALID_PARAMETER; 1516 goto err_unlock_all; 1517 } 1518 1519 /* Validate that the provided emad offset and structure is valid.*/ 1520 for (size_t i = 0; i < req->emad_count; i++) { 1521 size_t emad_size; 1522 struct ffa_emad_v1_0 *emad; 1523 1524 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1525 &emad_size); 1526 1527 if ((uintptr_t) emad >= (uintptr_t) 1528 ((uint8_t *) req + total_length)) { 1529 WARN("Invalid emad access.\n"); 1530 ret = FFA_ERROR_INVALID_PARAMETER; 1531 goto err_unlock_all; 1532 } 1533 } 1534 1535 /* 1536 * Validate all the endpoints match in the case of multiple 1537 * borrowers. We don't mandate that the order of the borrowers 1538 * must match in the descriptors therefore check to see if the 1539 * endpoints match in any order. 1540 */ 1541 for (size_t i = 0; i < req->emad_count; i++) { 1542 bool found = false; 1543 size_t emad_size; 1544 struct ffa_emad_v1_0 *emad; 1545 struct ffa_emad_v1_0 *other_emad; 1546 1547 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1548 &emad_size); 1549 1550 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1551 other_emad = spmc_shmem_obj_get_emad( 1552 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1553 &emad_size); 1554 1555 if (req->emad_count && 1556 emad->mapd.endpoint_id == 1557 other_emad->mapd.endpoint_id) { 1558 found = true; 1559 break; 1560 } 1561 } 1562 1563 if (!found) { 1564 WARN("%s: invalid receiver id (0x%x).\n", 1565 __func__, emad->mapd.endpoint_id); 1566 ret = FFA_ERROR_INVALID_PARAMETER; 1567 goto err_unlock_all; 1568 } 1569 } 1570 1571 mbox->state = MAILBOX_STATE_FULL; 1572 1573 if (req->emad_count != 0U) { 1574 obj->in_use++; 1575 } 1576 1577 /* 1578 * If the caller is v1.0 convert the descriptor, otherwise copy 1579 * directly. 1580 */ 1581 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1582 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1583 ©_size, 1584 &out_desc_size); 1585 if (ret != 0U) { 1586 ERROR("%s: Failed to process descriptor.\n", __func__); 1587 goto err_unlock_all; 1588 } 1589 } else { 1590 copy_size = MIN(obj->desc_size, buf_size); 1591 out_desc_size = obj->desc_size; 1592 1593 memcpy(resp, &obj->desc, copy_size); 1594 } 1595 1596 /* Set the NS bit in the response if applicable. */ 1597 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1598 1599 spin_unlock(&spmc_shmem_obj_state.lock); 1600 spin_unlock(&mbox->lock); 1601 1602 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1603 copy_size, 0, 0, 0, 0, 0); 1604 1605 err_unlock_all: 1606 spin_unlock(&spmc_shmem_obj_state.lock); 1607 err_unlock_mailbox: 1608 spin_unlock(&mbox->lock); 1609 return spmc_ffa_error_return(handle, ret); 1610 } 1611 1612 /** 1613 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1614 * @client: Client state. 1615 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1616 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1617 * @fragment_offset: Byte offset in descriptor to resume at. 1618 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1619 * hypervisor. 0 otherwise. 1620 * @smc_handle: Handle passed to smc call. Used to return 1621 * FFA_MEM_FRAG_TX. 1622 * 1623 * Return: @smc_handle on success, error code on failure. 1624 */ 1625 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1626 bool secure_origin, 1627 uint32_t handle_low, 1628 uint32_t handle_high, 1629 uint32_t fragment_offset, 1630 uint32_t sender_id, 1631 void *cookie, 1632 void *handle, 1633 uint64_t flags) 1634 { 1635 int ret; 1636 void *src; 1637 size_t buf_size; 1638 size_t copy_size; 1639 size_t full_copy_size; 1640 uint32_t desc_sender_id; 1641 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1642 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1643 struct spmc_shmem_obj *obj; 1644 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1645 1646 if (!secure_origin) { 1647 WARN("%s: can only be called from swld.\n", 1648 __func__); 1649 return spmc_ffa_error_return(handle, 1650 FFA_ERROR_INVALID_PARAMETER); 1651 } 1652 1653 spin_lock(&spmc_shmem_obj_state.lock); 1654 1655 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1656 if (obj == NULL) { 1657 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1658 __func__, mem_handle); 1659 ret = FFA_ERROR_INVALID_PARAMETER; 1660 goto err_unlock_shmem; 1661 } 1662 1663 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1664 if (sender_id != 0U && sender_id != desc_sender_id) { 1665 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1666 sender_id, desc_sender_id); 1667 ret = FFA_ERROR_INVALID_PARAMETER; 1668 goto err_unlock_shmem; 1669 } 1670 1671 if (fragment_offset >= obj->desc_size) { 1672 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1673 __func__, fragment_offset, obj->desc_size); 1674 ret = FFA_ERROR_INVALID_PARAMETER; 1675 goto err_unlock_shmem; 1676 } 1677 1678 spin_lock(&mbox->lock); 1679 1680 if (mbox->rxtx_page_count == 0U) { 1681 WARN("%s: buffer pair not registered.\n", __func__); 1682 ret = FFA_ERROR_INVALID_PARAMETER; 1683 goto err_unlock_all; 1684 } 1685 1686 if (mbox->state != MAILBOX_STATE_EMPTY) { 1687 WARN("%s: RX Buffer is full!\n", __func__); 1688 ret = FFA_ERROR_DENIED; 1689 goto err_unlock_all; 1690 } 1691 1692 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1693 1694 mbox->state = MAILBOX_STATE_FULL; 1695 1696 /* 1697 * If the caller is v1.0 convert the descriptor, otherwise copy 1698 * directly. 1699 */ 1700 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1701 size_t out_desc_size; 1702 1703 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1704 buf_size, 1705 fragment_offset, 1706 ©_size, 1707 &out_desc_size); 1708 if (ret != 0U) { 1709 ERROR("%s: Failed to process descriptor.\n", __func__); 1710 goto err_unlock_all; 1711 } 1712 } else { 1713 full_copy_size = obj->desc_size - fragment_offset; 1714 copy_size = MIN(full_copy_size, buf_size); 1715 1716 src = &obj->desc; 1717 1718 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1719 } 1720 1721 spin_unlock(&mbox->lock); 1722 spin_unlock(&spmc_shmem_obj_state.lock); 1723 1724 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1725 copy_size, sender_id, 0, 0, 0); 1726 1727 err_unlock_all: 1728 spin_unlock(&mbox->lock); 1729 err_unlock_shmem: 1730 spin_unlock(&spmc_shmem_obj_state.lock); 1731 return spmc_ffa_error_return(handle, ret); 1732 } 1733 1734 /** 1735 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1736 * @client: Client state. 1737 * 1738 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1739 * Used by secure os release previously shared memory to non-secure os. 1740 * 1741 * The handle to release must be in the client's (secure os's) transmit buffer. 1742 * 1743 * Return: 0 on success, error code on failure. 1744 */ 1745 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1746 bool secure_origin, 1747 uint32_t handle_low, 1748 uint32_t handle_high, 1749 uint32_t fragment_offset, 1750 uint32_t sender_id, 1751 void *cookie, 1752 void *handle, 1753 uint64_t flags) 1754 { 1755 int ret; 1756 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1757 struct spmc_shmem_obj *obj; 1758 const struct ffa_mem_relinquish_descriptor *req; 1759 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1760 1761 if (!secure_origin) { 1762 WARN("%s: unsupported relinquish direction.\n", __func__); 1763 return spmc_ffa_error_return(handle, 1764 FFA_ERROR_INVALID_PARAMETER); 1765 } 1766 1767 spin_lock(&mbox->lock); 1768 1769 if (mbox->rxtx_page_count == 0U) { 1770 WARN("%s: buffer pair not registered.\n", __func__); 1771 ret = FFA_ERROR_INVALID_PARAMETER; 1772 goto err_unlock_mailbox; 1773 } 1774 1775 req = mbox->tx_buffer; 1776 1777 if (req->flags != 0U) { 1778 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1779 ret = FFA_ERROR_INVALID_PARAMETER; 1780 goto err_unlock_mailbox; 1781 } 1782 1783 if (req->endpoint_count == 0) { 1784 WARN("%s: endpoint count cannot be 0.\n", __func__); 1785 ret = FFA_ERROR_INVALID_PARAMETER; 1786 goto err_unlock_mailbox; 1787 } 1788 1789 spin_lock(&spmc_shmem_obj_state.lock); 1790 1791 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1792 if (obj == NULL) { 1793 ret = FFA_ERROR_INVALID_PARAMETER; 1794 goto err_unlock_all; 1795 } 1796 1797 /* 1798 * Validate the endpoint ID was populated correctly. We don't currently 1799 * support proxy endpoints so the endpoint count should always be 1. 1800 */ 1801 if (req->endpoint_count != 1U) { 1802 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1803 req->endpoint_count); 1804 ret = FFA_ERROR_INVALID_PARAMETER; 1805 goto err_unlock_all; 1806 } 1807 1808 /* Validate provided endpoint ID matches the partition ID. */ 1809 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1810 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1811 req->endpoint_array[0], sp_ctx->sp_id); 1812 ret = FFA_ERROR_INVALID_PARAMETER; 1813 goto err_unlock_all; 1814 } 1815 1816 /* Validate the caller is a valid participant. */ 1817 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1818 WARN("%s: Invalid endpoint ID (0x%x).\n", 1819 __func__, req->endpoint_array[0]); 1820 ret = FFA_ERROR_INVALID_PARAMETER; 1821 goto err_unlock_all; 1822 } 1823 1824 if (obj->in_use == 0U) { 1825 ret = FFA_ERROR_INVALID_PARAMETER; 1826 goto err_unlock_all; 1827 } 1828 obj->in_use--; 1829 1830 spin_unlock(&spmc_shmem_obj_state.lock); 1831 spin_unlock(&mbox->lock); 1832 1833 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1834 1835 err_unlock_all: 1836 spin_unlock(&spmc_shmem_obj_state.lock); 1837 err_unlock_mailbox: 1838 spin_unlock(&mbox->lock); 1839 return spmc_ffa_error_return(handle, ret); 1840 } 1841 1842 /** 1843 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1844 * @client: Client state. 1845 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1846 * @handle_high: Unique handle of shared memory object to reclaim. 1847 * Bit[63:32]. 1848 * @flags: Unsupported, ignored. 1849 * 1850 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1851 * Used by non-secure os reclaim memory previously shared with secure os. 1852 * 1853 * Return: 0 on success, error code on failure. 1854 */ 1855 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1856 bool secure_origin, 1857 uint32_t handle_low, 1858 uint32_t handle_high, 1859 uint32_t mem_flags, 1860 uint64_t x4, 1861 void *cookie, 1862 void *handle, 1863 uint64_t flags) 1864 { 1865 int ret; 1866 struct spmc_shmem_obj *obj; 1867 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1868 1869 if (secure_origin) { 1870 WARN("%s: unsupported reclaim direction.\n", __func__); 1871 return spmc_ffa_error_return(handle, 1872 FFA_ERROR_INVALID_PARAMETER); 1873 } 1874 1875 if (mem_flags != 0U) { 1876 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1877 return spmc_ffa_error_return(handle, 1878 FFA_ERROR_INVALID_PARAMETER); 1879 } 1880 1881 spin_lock(&spmc_shmem_obj_state.lock); 1882 1883 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1884 if (obj == NULL) { 1885 ret = FFA_ERROR_INVALID_PARAMETER; 1886 goto err_unlock; 1887 } 1888 if (obj->in_use != 0U) { 1889 ret = FFA_ERROR_DENIED; 1890 goto err_unlock; 1891 } 1892 1893 if (obj->desc_filled != obj->desc_size) { 1894 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1895 __func__, obj->desc_filled, obj->desc_size); 1896 ret = FFA_ERROR_INVALID_PARAMETER; 1897 goto err_unlock; 1898 } 1899 1900 /* Allow for platform specific operations to be performed. */ 1901 ret = plat_spmc_shmem_reclaim(&obj->desc); 1902 if (ret != 0) { 1903 goto err_unlock; 1904 } 1905 1906 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1907 spin_unlock(&spmc_shmem_obj_state.lock); 1908 1909 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1910 1911 err_unlock: 1912 spin_unlock(&spmc_shmem_obj_state.lock); 1913 return spmc_ffa_error_return(handle, ret); 1914 } 1915