1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 #include <inttypes.h> 9 10 #include <common/debug.h> 11 #include <common/runtime_svc.h> 12 #include <lib/object_pool.h> 13 #include <lib/spinlock.h> 14 #include <lib/xlat_tables/xlat_tables_v2.h> 15 #include <services/ffa_svc.h> 16 #include "spmc.h" 17 #include "spmc_shared_mem.h" 18 19 #include <platform_def.h> 20 21 /** 22 * struct spmc_shmem_obj - Shared memory object. 23 * @desc_size: Size of @desc. 24 * @desc_filled: Size of @desc already received. 25 * @in_use: Number of clients that have called ffa_mem_retrieve_req 26 * without a matching ffa_mem_relinquish call. 27 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 28 */ 29 struct spmc_shmem_obj { 30 size_t desc_size; 31 size_t desc_filled; 32 size_t in_use; 33 struct ffa_mtd desc; 34 }; 35 36 /* 37 * Declare our data structure to store the metadata of memory share requests. 38 * The main datastore is allocated on a per platform basis to ensure enough 39 * storage can be made available. 40 * The address of the data store will be populated by the SPMC during its 41 * initialization. 42 */ 43 44 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 45 /* Set start value for handle so top 32 bits are needed quickly. */ 46 .next_handle = 0xffffffc0U, 47 }; 48 49 /** 50 * spmc_shmem_obj_size - Convert from descriptor size to object size. 51 * @desc_size: Size of struct ffa_memory_region_descriptor object. 52 * 53 * Return: Size of struct spmc_shmem_obj object. 54 */ 55 static size_t spmc_shmem_obj_size(size_t desc_size) 56 { 57 return desc_size + offsetof(struct spmc_shmem_obj, desc); 58 } 59 60 /** 61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 62 * @state: Global state. 63 * @desc_size: Size of struct ffa_memory_region_descriptor object that 64 * allocated object will hold. 65 * 66 * Return: Pointer to newly allocated object, or %NULL if there not enough space 67 * left. The returned pointer is only valid while @state is locked, to 68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 69 * called. 70 */ 71 static struct spmc_shmem_obj * 72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 73 { 74 struct spmc_shmem_obj *obj; 75 size_t free = state->data_size - state->allocated; 76 size_t obj_size; 77 78 if (state->data == NULL) { 79 ERROR("Missing shmem datastore!\n"); 80 return NULL; 81 } 82 83 /* Ensure that descriptor size is aligned */ 84 if (!is_aligned(desc_size, 16)) { 85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n", 86 __func__, desc_size); 87 return NULL; 88 } 89 90 obj_size = spmc_shmem_obj_size(desc_size); 91 92 /* Ensure the obj size has not overflowed. */ 93 if (obj_size < desc_size) { 94 WARN("%s(0x%zx) desc_size overflow\n", 95 __func__, desc_size); 96 return NULL; 97 } 98 99 if (obj_size > free) { 100 WARN("%s(0x%zx) failed, free 0x%zx\n", 101 __func__, desc_size, free); 102 return NULL; 103 } 104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 105 obj->desc = (struct ffa_mtd) {0}; 106 obj->desc_size = desc_size; 107 obj->desc_filled = 0; 108 obj->in_use = 0; 109 state->allocated += obj_size; 110 return obj; 111 } 112 113 /** 114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 115 * @state: Global state. 116 * @obj: Object to free. 117 * 118 * Release memory used by @obj. Other objects may move, so on return all 119 * pointers to struct spmc_shmem_obj object should be considered invalid, not 120 * just @obj. 121 * 122 * The current implementation always compacts the remaining objects to simplify 123 * the allocator and to avoid fragmentation. 124 */ 125 126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 127 struct spmc_shmem_obj *obj) 128 { 129 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 130 uint8_t *shift_dest = (uint8_t *)obj; 131 uint8_t *shift_src = shift_dest + free_size; 132 size_t shift_size = state->allocated - (shift_src - state->data); 133 134 if (shift_size != 0U) { 135 memmove(shift_dest, shift_src, shift_size); 136 } 137 state->allocated -= free_size; 138 } 139 140 /** 141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 142 * @state: Global state. 143 * @handle: Unique handle of object to return. 144 * 145 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 146 * %NULL, if not object in @state->data has a matching handle. 147 */ 148 static struct spmc_shmem_obj * 149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 150 { 151 uint8_t *curr = state->data; 152 153 while (curr - state->data < state->allocated) { 154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 155 156 if (obj->desc.handle == handle) { 157 return obj; 158 } 159 curr += spmc_shmem_obj_size(obj->desc_size); 160 } 161 return NULL; 162 } 163 164 /** 165 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 166 * @offset: Offset used to track which objects have previously been 167 * returned. 168 * 169 * Return: the next struct spmc_shmem_obj_state object from the provided 170 * offset. 171 * %NULL, if there are no more objects. 172 */ 173 static struct spmc_shmem_obj * 174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 175 { 176 uint8_t *curr = state->data + *offset; 177 178 if (curr - state->data < state->allocated) { 179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 180 181 *offset += spmc_shmem_obj_size(obj->desc_size); 182 183 return obj; 184 } 185 return NULL; 186 } 187 188 /******************************************************************************* 189 * FF-A memory descriptor helper functions. 190 ******************************************************************************/ 191 /** 192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 193 * clients FF-A version. 194 * @desc: The memory transaction descriptor. 195 * @index: The index of the emad element to be accessed. 196 * @ffa_version: FF-A version of the provided structure. 197 * @emad_size: Will be populated with the size of the returned emad 198 * descriptor. 199 * Return: A pointer to the requested emad structure. 200 */ 201 static void * 202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 203 uint32_t ffa_version, size_t *emad_size) 204 { 205 uint8_t *emad; 206 207 assert(index < desc->emad_count); 208 209 /* 210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 211 * format, otherwise assume it is a v1.1 format. 212 */ 213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad); 215 *emad_size = sizeof(struct ffa_emad_v1_0); 216 } else { 217 assert(is_aligned(desc->emad_offset, 16)); 218 emad = ((uint8_t *) desc + desc->emad_offset); 219 *emad_size = desc->emad_size; 220 } 221 222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX); 223 return (emad + (*emad_size * index)); 224 } 225 226 /** 227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 228 * FF-A version of the descriptor. 229 * @obj: Object containing ffa_memory_region_descriptor. 230 * 231 * Return: struct ffa_comp_mrd object corresponding to the composite memory 232 * region descriptor. 233 */ 234 static struct ffa_comp_mrd * 235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 236 { 237 size_t emad_size; 238 /* 239 * The comp_mrd_offset field of the emad descriptor remains consistent 240 * between FF-A versions therefore we can use the v1.0 descriptor here 241 * in all cases. 242 */ 243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 244 ffa_version, 245 &emad_size); 246 247 /* Ensure the composite descriptor offset is aligned. */ 248 if (!is_aligned(emad->comp_mrd_offset, 8)) { 249 WARN("Unaligned composite memory region descriptor offset.\n"); 250 return NULL; 251 } 252 253 return (struct ffa_comp_mrd *) 254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 255 } 256 257 /** 258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 259 * a given memory transaction. 260 * @sp_id: Partition ID to validate. 261 * @obj: The shared memory object containing the descriptor 262 * of the memory transaction. 263 * Return: true if ID is valid, else false. 264 */ 265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id) 266 { 267 bool found = false; 268 struct ffa_mtd *desc = &obj->desc; 269 size_t desc_size = obj->desc_size; 270 271 /* Validate the partition is a valid participant. */ 272 for (unsigned int i = 0U; i < desc->emad_count; i++) { 273 size_t emad_size; 274 struct ffa_emad_v1_0 *emad; 275 276 emad = spmc_shmem_obj_get_emad(desc, i, 277 MAKE_FFA_VERSION(1, 1), 278 &emad_size); 279 /* 280 * Validate the calculated emad address resides within the 281 * descriptor. 282 */ 283 if ((emad == NULL) || (uintptr_t) emad >= 284 (uintptr_t)((uint8_t *) desc + desc_size)) { 285 VERBOSE("Invalid emad.\n"); 286 break; 287 } 288 if (sp_id == emad->mapd.endpoint_id) { 289 found = true; 290 break; 291 } 292 } 293 return found; 294 } 295 296 /* 297 * Compare two memory regions to determine if any range overlaps with another 298 * ongoing memory transaction. 299 */ 300 static bool 301 overlapping_memory_regions(struct ffa_comp_mrd *region1, 302 struct ffa_comp_mrd *region2) 303 { 304 uint64_t region1_start; 305 uint64_t region1_size; 306 uint64_t region1_end; 307 uint64_t region2_start; 308 uint64_t region2_size; 309 uint64_t region2_end; 310 311 assert(region1 != NULL); 312 assert(region2 != NULL); 313 314 if (region1 == region2) { 315 return true; 316 } 317 318 /* 319 * Check each memory region in the request against existing 320 * transactions. 321 */ 322 for (size_t i = 0; i < region1->address_range_count; i++) { 323 324 region1_start = region1->address_range_array[i].address; 325 region1_size = 326 region1->address_range_array[i].page_count * 327 PAGE_SIZE_4KB; 328 region1_end = region1_start + region1_size; 329 330 for (size_t j = 0; j < region2->address_range_count; j++) { 331 332 region2_start = region2->address_range_array[j].address; 333 region2_size = 334 region2->address_range_array[j].page_count * 335 PAGE_SIZE_4KB; 336 region2_end = region2_start + region2_size; 337 338 /* Check if regions are not overlapping. */ 339 if (!((region2_end <= region1_start) || 340 (region1_end <= region2_start))) { 341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 342 region1_start, region1_end, 343 region2_start, region2_end); 344 return true; 345 } 346 } 347 } 348 return false; 349 } 350 351 /******************************************************************************* 352 * FF-A v1.0 Memory Descriptor Conversion Helpers. 353 ******************************************************************************/ 354 /** 355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 356 * converted descriptor. 357 * @orig: The original v1.0 memory transaction descriptor. 358 * @desc_size: The size of the original v1.0 memory transaction descriptor. 359 * 360 * Return: the size required to store the descriptor store in the v1.1 format. 361 */ 362 static uint64_t 363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 364 { 365 uint64_t size = 0; 366 struct ffa_comp_mrd *mrd; 367 struct ffa_emad_v1_0 *emad_array = orig->emad; 368 369 /* Get the size of the v1.1 descriptor. */ 370 size += sizeof(struct ffa_mtd); 371 372 /* Add the size of the emad descriptors. */ 373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 374 375 /* Add the size of the composite mrds. */ 376 size += sizeof(struct ffa_comp_mrd); 377 378 /* Add the size of the constituent mrds. */ 379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 380 emad_array[0].comp_mrd_offset); 381 382 /* Add the size of the memory region descriptors. */ 383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 384 385 return size; 386 } 387 388 /** 389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 390 * converted descriptor. 391 * @orig: The original v1.1 memory transaction descriptor. 392 * @desc_size: The size of the original v1.1 memory transaction descriptor. 393 * 394 * Return: the size required to store the descriptor store in the v1.0 format. 395 */ 396 static size_t 397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 398 { 399 size_t size = 0; 400 struct ffa_comp_mrd *mrd; 401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 402 ((uint8_t *) orig + 403 orig->emad_offset); 404 405 /* Get the size of the v1.0 descriptor. */ 406 size += sizeof(struct ffa_mtd_v1_0); 407 408 /* Add the size of the v1.0 emad descriptors. */ 409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 410 411 /* Add the size of the composite mrds. */ 412 size += sizeof(struct ffa_comp_mrd); 413 414 /* Add the size of the constituent mrds. */ 415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 416 emad_array[0].comp_mrd_offset); 417 418 /* Check the calculated address is within the memory descriptor. */ 419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) > 420 (uintptr_t)((uint8_t *) orig + desc_size)) { 421 return 0; 422 } 423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 424 425 return size; 426 } 427 428 /** 429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 430 * @out_obj: The shared memory object to populate the converted descriptor. 431 * @orig: The shared memory object containing the v1.0 descriptor. 432 * 433 * Return: true if the conversion is successful else false. 434 */ 435 static bool 436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 437 struct spmc_shmem_obj *orig) 438 { 439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 440 struct ffa_mtd *out = &out_obj->desc; 441 struct ffa_emad_v1_0 *emad_array_in; 442 struct ffa_emad_v1_0 *emad_array_out; 443 struct ffa_comp_mrd *mrd_in; 444 struct ffa_comp_mrd *mrd_out; 445 446 size_t mrd_in_offset; 447 size_t mrd_out_offset; 448 size_t mrd_size = 0; 449 450 /* Populate the new descriptor format from the v1.0 struct. */ 451 out->sender_id = mtd_orig->sender_id; 452 out->memory_region_attributes = mtd_orig->memory_region_attributes; 453 out->flags = mtd_orig->flags; 454 out->handle = mtd_orig->handle; 455 out->tag = mtd_orig->tag; 456 out->emad_count = mtd_orig->emad_count; 457 out->emad_size = sizeof(struct ffa_emad_v1_0); 458 459 /* 460 * We will locate the emad descriptors directly after the ffa_mtd 461 * struct. This will be 8-byte aligned. 462 */ 463 out->emad_offset = sizeof(struct ffa_mtd); 464 465 emad_array_in = mtd_orig->emad; 466 emad_array_out = (struct ffa_emad_v1_0 *) 467 ((uint8_t *) out + out->emad_offset); 468 469 /* Copy across the emad structs. */ 470 for (unsigned int i = 0U; i < out->emad_count; i++) { 471 /* Bound check for emad array. */ 472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) > 473 ((uint8_t *) mtd_orig + orig->desc_size)) { 474 VERBOSE("%s: Invalid mtd structure.\n", __func__); 475 return false; 476 } 477 memcpy(&emad_array_out[i], &emad_array_in[i], 478 sizeof(struct ffa_emad_v1_0)); 479 } 480 481 /* Place the mrd descriptors after the end of the emad descriptors.*/ 482 mrd_in_offset = emad_array_in->comp_mrd_offset; 483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 485 486 /* Add the size of the composite memory region descriptor. */ 487 mrd_size += sizeof(struct ffa_comp_mrd); 488 489 /* Find the mrd descriptor. */ 490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 491 492 /* Add the size of the constituent memory region descriptors. */ 493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 494 495 /* 496 * Update the offset in the emads by the delta between the input and 497 * output addresses. 498 */ 499 for (unsigned int i = 0U; i < out->emad_count; i++) { 500 emad_array_out[i].comp_mrd_offset = 501 emad_array_in[i].comp_mrd_offset + 502 (mrd_out_offset - mrd_in_offset); 503 } 504 505 /* Verify that we stay within bound of the memory descriptors. */ 506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 510 ERROR("%s: Invalid mrd structure.\n", __func__); 511 return false; 512 } 513 514 /* Copy the mrd descriptors directly. */ 515 memcpy(mrd_out, mrd_in, mrd_size); 516 517 return true; 518 } 519 520 /** 521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 522 * v1.0 memory object. 523 * @out_obj: The shared memory object to populate the v1.0 descriptor. 524 * @orig: The shared memory object containing the v1.1 descriptor. 525 * 526 * Return: true if the conversion is successful else false. 527 */ 528 static bool 529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 530 struct spmc_shmem_obj *orig) 531 { 532 struct ffa_mtd *mtd_orig = &orig->desc; 533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 534 struct ffa_emad_v1_0 *emad_in; 535 struct ffa_emad_v1_0 *emad_array_in; 536 struct ffa_emad_v1_0 *emad_array_out; 537 struct ffa_comp_mrd *mrd_in; 538 struct ffa_comp_mrd *mrd_out; 539 540 size_t mrd_in_offset; 541 size_t mrd_out_offset; 542 size_t emad_out_array_size; 543 size_t mrd_size = 0; 544 size_t orig_desc_size = orig->desc_size; 545 546 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 547 out->sender_id = mtd_orig->sender_id; 548 out->memory_region_attributes = mtd_orig->memory_region_attributes; 549 out->flags = mtd_orig->flags; 550 out->handle = mtd_orig->handle; 551 out->tag = mtd_orig->tag; 552 out->emad_count = mtd_orig->emad_count; 553 554 /* Determine the location of the emad array in both descriptors. */ 555 emad_array_in = (struct ffa_emad_v1_0 *) 556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 557 emad_array_out = out->emad; 558 559 /* Copy across the emad structs. */ 560 emad_in = emad_array_in; 561 for (unsigned int i = 0U; i < out->emad_count; i++) { 562 /* Bound check for emad array. */ 563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) > 564 ((uint8_t *) mtd_orig + orig_desc_size)) { 565 VERBOSE("%s: Invalid mtd structure.\n", __func__); 566 return false; 567 } 568 memcpy(&emad_array_out[i], emad_in, 569 sizeof(struct ffa_emad_v1_0)); 570 571 emad_in += mtd_orig->emad_size; 572 } 573 574 /* Place the mrd descriptors after the end of the emad descriptors. */ 575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 576 577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 578 emad_out_array_size; 579 580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 581 582 mrd_in_offset = mtd_orig->emad_offset + 583 (mtd_orig->emad_size * mtd_orig->emad_count); 584 585 /* Add the size of the composite memory region descriptor. */ 586 mrd_size += sizeof(struct ffa_comp_mrd); 587 588 /* Find the mrd descriptor. */ 589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 590 591 /* Add the size of the constituent memory region descriptors. */ 592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 593 594 /* 595 * Update the offset in the emads by the delta between the input and 596 * output addresses. 597 */ 598 emad_in = emad_array_in; 599 600 for (unsigned int i = 0U; i < out->emad_count; i++) { 601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 602 (mrd_out_offset - 603 mrd_in_offset); 604 emad_in += mtd_orig->emad_size; 605 } 606 607 /* Verify that we stay within bound of the memory descriptors. */ 608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 612 ERROR("%s: Invalid mrd structure.\n", __func__); 613 return false; 614 } 615 616 /* Copy the mrd descriptors directly. */ 617 memcpy(mrd_out, mrd_in, mrd_size); 618 619 return true; 620 } 621 622 /** 623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 624 * the v1.0 format and populates the 625 * provided buffer. 626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 628 * @buf_size: Size of the buffer to populate. 629 * @offset: The offset of the converted descriptor to copy. 630 * @copy_size: Will be populated with the number of bytes copied. 631 * @out_desc_size: Will be populated with the total size of the v1.0 632 * descriptor. 633 * 634 * Return: 0 if conversion and population succeeded. 635 * Note: This function invalidates the reference to @orig therefore 636 * `spmc_shmem_obj_lookup` must be called if further usage is required. 637 */ 638 static uint32_t 639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 640 size_t buf_size, size_t offset, 641 size_t *copy_size, size_t *v1_0_desc_size) 642 { 643 struct spmc_shmem_obj *v1_0_obj; 644 645 /* Calculate the size that the v1.0 descriptor will require. */ 646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 647 &orig_obj->desc, orig_obj->desc_size); 648 649 if (*v1_0_desc_size == 0) { 650 ERROR("%s: cannot determine size of descriptor.\n", 651 __func__); 652 return FFA_ERROR_INVALID_PARAMETER; 653 } 654 655 /* Get a new obj to store the v1.0 descriptor. */ 656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 657 *v1_0_desc_size); 658 659 if (!v1_0_obj) { 660 return FFA_ERROR_NO_MEMORY; 661 } 662 663 /* Perform the conversion from v1.1 to v1.0. */ 664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 666 return FFA_ERROR_INVALID_PARAMETER; 667 } 668 669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 671 672 /* 673 * We're finished with the v1.0 descriptor for now so free it. 674 * Note that this will invalidate any references to the v1.1 675 * descriptor. 676 */ 677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 678 679 return 0; 680 } 681 682 static int 683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version, 684 size_t fragment_length, size_t total_length) 685 { 686 unsigned long long emad_end; 687 unsigned long long emad_size; 688 unsigned long long emad_offset; 689 unsigned int min_desc_size; 690 691 /* Determine the appropriate minimum descriptor size. */ 692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 693 min_desc_size = sizeof(struct ffa_mtd_v1_0); 694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 695 min_desc_size = sizeof(struct ffa_mtd); 696 } else { 697 return FFA_ERROR_INVALID_PARAMETER; 698 } 699 if (fragment_length < min_desc_size) { 700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length, 701 min_desc_size); 702 return FFA_ERROR_INVALID_PARAMETER; 703 } 704 705 if (desc->emad_count == 0U) { 706 WARN("%s: unsupported attribute desc count %u.\n", 707 __func__, desc->emad_count); 708 return FFA_ERROR_INVALID_PARAMETER; 709 } 710 711 /* 712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 713 * format, otherwise assume it is a v1.1 format. 714 */ 715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0); 717 } else { 718 if (!is_aligned(desc->emad_offset, 16)) { 719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n", 720 __func__, desc->emad_offset); 721 return FFA_ERROR_INVALID_PARAMETER; 722 } 723 if (desc->emad_offset < sizeof(struct ffa_mtd)) { 724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n", 725 __func__, desc->emad_offset, 726 sizeof(struct ffa_mtd)); 727 return FFA_ERROR_INVALID_PARAMETER; 728 } 729 emad_offset = desc->emad_offset; 730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) { 731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__, 732 desc->emad_size, sizeof(struct ffa_emad_v1_0)); 733 return FFA_ERROR_INVALID_PARAMETER; 734 } 735 if (!is_aligned(desc->emad_size, 16)) { 736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n", 737 __func__, desc->emad_size); 738 return FFA_ERROR_INVALID_PARAMETER; 739 } 740 emad_size = desc->emad_size; 741 } 742 743 /* 744 * Overflow is impossible: the arithmetic happens in at least 64-bit 745 * precision, but all of the operands are bounded by UINT32_MAX, and 746 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1)) 747 * = (2^64 - 1). 748 */ 749 CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large); 750 emad_end = (desc->emad_count * (unsigned long long)emad_size) + 751 (unsigned long long)sizeof(struct ffa_comp_mrd) + 752 (unsigned long long)emad_offset; 753 754 if (emad_end > total_length) { 755 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n", 756 __func__, emad_end, total_length); 757 return FFA_ERROR_INVALID_PARAMETER; 758 } 759 760 return 0; 761 } 762 763 static inline const struct ffa_emad_v1_0 * 764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset) 765 { 766 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset); 767 } 768 769 /** 770 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 771 * @obj: Object containing ffa_memory_region_descriptor. 772 * @ffa_version: FF-A version of the provided descriptor. 773 * 774 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if 775 * constituent_memory_region_descriptor offset or count is invalid. 776 */ 777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 778 uint32_t ffa_version) 779 { 780 const struct ffa_emad_v1_0 *first_emad; 781 const struct ffa_emad_v1_0 *end_emad; 782 size_t emad_size; 783 uint32_t comp_mrd_offset = 0; 784 785 if (obj->desc_filled != obj->desc_size) { 786 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n", 787 __func__, obj->desc_filled, obj->desc_size); 788 panic(); 789 } 790 791 if (spmc_validate_mtd_start(&obj->desc, ffa_version, 792 obj->desc_filled, obj->desc_size)) { 793 ERROR("BUG: %s called on object with corrupt memory region descriptor\n", 794 __func__); 795 panic(); 796 } 797 798 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 799 ffa_version, &emad_size); 800 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size); 801 802 /* Loop through the endpoint descriptors, validating each of them. */ 803 for (const struct ffa_emad_v1_0 *emad = first_emad; 804 emad < end_emad; 805 emad = emad_advance(emad, emad_size)) { 806 size_t size; 807 size_t count; 808 size_t expected_size; 809 uint64_t total_page_count; 810 size_t header_emad_size; 811 uint32_t offset; 812 struct ffa_comp_mrd *comp; 813 ffa_endpoint_id16_t ep_id; 814 815 offset = emad->comp_mrd_offset; 816 817 /* 818 * If a partition ID resides in the secure world validate that 819 * the partition ID is for a known partition. Ignore any 820 * partition ID belonging to the normal world as it is assumed 821 * the Hypervisor will have validated these. 822 */ 823 ep_id = emad->mapd.endpoint_id; 824 if (ffa_is_secure_world_id(ep_id)) { 825 if (spmc_get_sp_ctx(ep_id) == NULL) { 826 WARN("%s: Invalid receiver id 0x%x\n", 827 __func__, ep_id); 828 return FFA_ERROR_INVALID_PARAMETER; 829 } 830 } 831 832 /* 833 * The offset provided to the composite memory region descriptor 834 * should be consistent across endpoint descriptors. Store the 835 * first entry and compare against subsequent entries. 836 */ 837 if (comp_mrd_offset == 0) { 838 comp_mrd_offset = offset; 839 } else { 840 if (comp_mrd_offset != offset) { 841 ERROR("%s: mismatching offsets provided, %u != %u\n", 842 __func__, offset, comp_mrd_offset); 843 return FFA_ERROR_INVALID_PARAMETER; 844 } 845 continue; /* Remainder only executed on first iteration. */ 846 } 847 848 header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) + 849 (obj->desc.emad_count * emad_size); 850 851 if (offset < header_emad_size) { 852 WARN("%s: invalid object, offset %u < header + emad %zu\n", 853 __func__, offset, header_emad_size); 854 return FFA_ERROR_INVALID_PARAMETER; 855 } 856 857 /* Ensure the composite descriptor offset is aligned. */ 858 if (!is_aligned(comp_mrd_offset, 16)) { 859 WARN("%s: invalid object, unaligned composite memory " 860 "region descriptor offset %u.\n", 861 __func__, comp_mrd_offset); 862 return FFA_ERROR_INVALID_PARAMETER; 863 } 864 865 size = obj->desc_size; 866 867 if (offset > size) { 868 WARN("%s: invalid object, offset %u > total size %zu\n", 869 __func__, offset, obj->desc_size); 870 return FFA_ERROR_INVALID_PARAMETER; 871 } 872 size -= offset; 873 874 if (size < sizeof(struct ffa_comp_mrd)) { 875 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 876 __func__, offset, obj->desc_size); 877 return FFA_ERROR_INVALID_PARAMETER; 878 } 879 size -= sizeof(struct ffa_comp_mrd); 880 881 count = size / sizeof(struct ffa_cons_mrd); 882 883 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 884 885 if (comp->address_range_count != count) { 886 WARN("%s: invalid object, desc count %u != %zu\n", 887 __func__, comp->address_range_count, count); 888 return FFA_ERROR_INVALID_PARAMETER; 889 } 890 891 expected_size = offset + sizeof(*comp) + 892 count * sizeof(struct ffa_cons_mrd); 893 894 if (expected_size != obj->desc_size) { 895 WARN("%s: invalid object, computed size %zu != size %zu\n", 896 __func__, expected_size, obj->desc_size); 897 return FFA_ERROR_INVALID_PARAMETER; 898 } 899 900 total_page_count = 0; 901 902 for (size_t i = 0; i < count; i++) { 903 total_page_count += 904 comp->address_range_array[i].page_count; 905 } 906 if (comp->total_page_count != total_page_count) { 907 WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n", 908 __func__, comp->total_page_count, 909 total_page_count); 910 return FFA_ERROR_INVALID_PARAMETER; 911 } 912 } 913 return 0; 914 } 915 916 /** 917 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 918 * regions that are currently involved with an 919 * existing memory transactions. This implies that 920 * the memory is not in a valid state for lending. 921 * @obj: Object containing ffa_memory_region_descriptor. 922 * 923 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory 924 * state. 925 */ 926 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 927 uint32_t ffa_version) 928 { 929 size_t obj_offset = 0; 930 struct spmc_shmem_obj *inflight_obj; 931 932 struct ffa_comp_mrd *other_mrd; 933 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 934 ffa_version); 935 936 if (requested_mrd == NULL) { 937 return FFA_ERROR_INVALID_PARAMETER; 938 } 939 940 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 941 &obj_offset); 942 943 while (inflight_obj != NULL) { 944 /* 945 * Don't compare the transaction to itself or to partially 946 * transmitted descriptors. 947 */ 948 if ((obj->desc.handle != inflight_obj->desc.handle) && 949 (obj->desc_size == obj->desc_filled)) { 950 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 951 FFA_VERSION_COMPILED); 952 if (other_mrd == NULL) { 953 return FFA_ERROR_INVALID_PARAMETER; 954 } 955 if (overlapping_memory_regions(requested_mrd, 956 other_mrd)) { 957 return FFA_ERROR_INVALID_PARAMETER; 958 } 959 } 960 961 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 962 &obj_offset); 963 } 964 return 0; 965 } 966 967 static long spmc_ffa_fill_desc(struct mailbox *mbox, 968 struct spmc_shmem_obj *obj, 969 uint32_t fragment_length, 970 ffa_mtd_flag32_t mtd_flag, 971 uint32_t ffa_version, 972 void *smc_handle) 973 { 974 int ret; 975 size_t emad_size; 976 uint32_t handle_low; 977 uint32_t handle_high; 978 struct ffa_emad_v1_0 *emad; 979 struct ffa_emad_v1_0 *other_emad; 980 981 if (mbox->rxtx_page_count == 0U) { 982 WARN("%s: buffer pair not registered.\n", __func__); 983 ret = FFA_ERROR_INVALID_PARAMETER; 984 goto err_arg; 985 } 986 987 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count); 988 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) { 989 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__, 990 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB); 991 ret = FFA_ERROR_INVALID_PARAMETER; 992 goto err_arg; 993 } 994 995 if (fragment_length > obj->desc_size - obj->desc_filled) { 996 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 997 fragment_length, obj->desc_size - obj->desc_filled); 998 ret = FFA_ERROR_INVALID_PARAMETER; 999 goto err_arg; 1000 } 1001 1002 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 1003 (uint8_t *) mbox->tx_buffer, fragment_length); 1004 1005 /* Ensure that the sender ID resides in the normal world. */ 1006 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 1007 WARN("%s: Invalid sender ID 0x%x.\n", 1008 __func__, obj->desc.sender_id); 1009 ret = FFA_ERROR_DENIED; 1010 goto err_arg; 1011 } 1012 1013 /* Ensure the NS bit is set to 0. */ 1014 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1015 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1016 ret = FFA_ERROR_INVALID_PARAMETER; 1017 goto err_arg; 1018 } 1019 1020 /* 1021 * We don't currently support any optional flags so ensure none are 1022 * requested. 1023 */ 1024 if (obj->desc.flags != 0U && mtd_flag != 0U && 1025 (obj->desc.flags != mtd_flag)) { 1026 WARN("%s: invalid memory transaction flags %u != %u\n", 1027 __func__, obj->desc.flags, mtd_flag); 1028 ret = FFA_ERROR_INVALID_PARAMETER; 1029 goto err_arg; 1030 } 1031 1032 if (obj->desc_filled == 0U) { 1033 /* First fragment, descriptor header has been copied */ 1034 ret = spmc_validate_mtd_start(&obj->desc, ffa_version, 1035 fragment_length, obj->desc_size); 1036 if (ret != 0) { 1037 goto err_bad_desc; 1038 } 1039 1040 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 1041 obj->desc.flags |= mtd_flag; 1042 } 1043 1044 obj->desc_filled += fragment_length; 1045 1046 handle_low = (uint32_t)obj->desc.handle; 1047 handle_high = obj->desc.handle >> 32; 1048 1049 if (obj->desc_filled != obj->desc_size) { 1050 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 1051 handle_high, obj->desc_filled, 1052 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 1053 } 1054 1055 /* The full descriptor has been received, perform any final checks. */ 1056 1057 ret = spmc_shmem_check_obj(obj, ffa_version); 1058 if (ret != 0) { 1059 goto err_bad_desc; 1060 } 1061 1062 /* Ensure partition IDs are not duplicated. */ 1063 for (size_t i = 0; i < obj->desc.emad_count; i++) { 1064 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 1065 &emad_size); 1066 1067 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 1068 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 1069 ffa_version, 1070 &emad_size); 1071 1072 if (emad->mapd.endpoint_id == 1073 other_emad->mapd.endpoint_id) { 1074 WARN("%s: Duplicated endpoint id 0x%x\n", 1075 __func__, emad->mapd.endpoint_id); 1076 ret = FFA_ERROR_INVALID_PARAMETER; 1077 goto err_bad_desc; 1078 } 1079 } 1080 } 1081 1082 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1083 if (ret) { 1084 ERROR("%s: invalid memory region descriptor.\n", __func__); 1085 goto err_bad_desc; 1086 } 1087 1088 /* 1089 * Everything checks out, if the sender was using FF-A v1.0, convert 1090 * the descriptor format to use the v1.1 structures. 1091 */ 1092 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1093 struct spmc_shmem_obj *v1_1_obj; 1094 uint64_t mem_handle; 1095 1096 /* Calculate the size that the v1.1 descriptor will required. */ 1097 uint64_t v1_1_desc_size = 1098 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1099 obj->desc_size); 1100 1101 if (v1_1_desc_size > UINT32_MAX) { 1102 ret = FFA_ERROR_NO_MEMORY; 1103 goto err_arg; 1104 } 1105 1106 /* Get a new obj to store the v1.1 descriptor. */ 1107 v1_1_obj = 1108 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size); 1109 1110 if (!v1_1_obj) { 1111 ret = FFA_ERROR_NO_MEMORY; 1112 goto err_arg; 1113 } 1114 1115 /* Perform the conversion from v1.0 to v1.1. */ 1116 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size; 1117 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size; 1118 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1119 ERROR("%s: Could not convert mtd!\n", __func__); 1120 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1121 goto err_arg; 1122 } 1123 1124 /* 1125 * We're finished with the v1.0 descriptor so free it 1126 * and continue our checks with the new v1.1 descriptor. 1127 */ 1128 mem_handle = obj->desc.handle; 1129 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1130 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1131 if (obj == NULL) { 1132 ERROR("%s: Failed to find converted descriptor.\n", 1133 __func__); 1134 ret = FFA_ERROR_INVALID_PARAMETER; 1135 return spmc_ffa_error_return(smc_handle, ret); 1136 } 1137 } 1138 1139 /* Allow for platform specific operations to be performed. */ 1140 ret = plat_spmc_shmem_begin(&obj->desc); 1141 if (ret != 0) { 1142 goto err_arg; 1143 } 1144 1145 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1146 0, 0, 0); 1147 1148 err_bad_desc: 1149 err_arg: 1150 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1151 return spmc_ffa_error_return(smc_handle, ret); 1152 } 1153 1154 /** 1155 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1156 * @client: Client state. 1157 * @total_length: Total length of shared memory descriptor. 1158 * @fragment_length: Length of fragment of shared memory descriptor passed in 1159 * this call. 1160 * @address: Not supported, must be 0. 1161 * @page_count: Not supported, must be 0. 1162 * @smc_handle: Handle passed to smc call. Used to return 1163 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1164 * 1165 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1166 * to share or lend memory from non-secure os to secure os (with no stream 1167 * endpoints). 1168 * 1169 * Return: 0 on success, error code on failure. 1170 */ 1171 long spmc_ffa_mem_send(uint32_t smc_fid, 1172 bool secure_origin, 1173 uint64_t total_length, 1174 uint32_t fragment_length, 1175 uint64_t address, 1176 uint32_t page_count, 1177 void *cookie, 1178 void *handle, 1179 uint64_t flags) 1180 1181 { 1182 long ret; 1183 struct spmc_shmem_obj *obj; 1184 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1185 ffa_mtd_flag32_t mtd_flag; 1186 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1187 size_t min_desc_size; 1188 1189 if (address != 0U || page_count != 0U) { 1190 WARN("%s: custom memory region for message not supported.\n", 1191 __func__); 1192 return spmc_ffa_error_return(handle, 1193 FFA_ERROR_INVALID_PARAMETER); 1194 } 1195 1196 if (secure_origin) { 1197 WARN("%s: unsupported share direction.\n", __func__); 1198 return spmc_ffa_error_return(handle, 1199 FFA_ERROR_INVALID_PARAMETER); 1200 } 1201 1202 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1203 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1204 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) { 1205 min_desc_size = sizeof(struct ffa_mtd); 1206 } else { 1207 WARN("%s: bad FF-A version.\n", __func__); 1208 return spmc_ffa_error_return(handle, 1209 FFA_ERROR_INVALID_PARAMETER); 1210 } 1211 1212 /* Check if the descriptor is too small for the FF-A version. */ 1213 if (fragment_length < min_desc_size) { 1214 WARN("%s: bad first fragment size %u < %zu\n", 1215 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1216 return spmc_ffa_error_return(handle, 1217 FFA_ERROR_INVALID_PARAMETER); 1218 } 1219 1220 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1221 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1222 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1223 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1224 } else { 1225 WARN("%s: invalid memory management operation.\n", __func__); 1226 return spmc_ffa_error_return(handle, 1227 FFA_ERROR_INVALID_PARAMETER); 1228 } 1229 1230 spin_lock(&spmc_shmem_obj_state.lock); 1231 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1232 if (obj == NULL) { 1233 ret = FFA_ERROR_NO_MEMORY; 1234 goto err_unlock; 1235 } 1236 1237 spin_lock(&mbox->lock); 1238 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1239 ffa_version, handle); 1240 spin_unlock(&mbox->lock); 1241 1242 spin_unlock(&spmc_shmem_obj_state.lock); 1243 return ret; 1244 1245 err_unlock: 1246 spin_unlock(&spmc_shmem_obj_state.lock); 1247 return spmc_ffa_error_return(handle, ret); 1248 } 1249 1250 /** 1251 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1252 * @client: Client state. 1253 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1254 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1255 * @fragment_length: Length of fragments transmitted. 1256 * @sender_id: Vmid of sender in bits [31:16] 1257 * @smc_handle: Handle passed to smc call. Used to return 1258 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1259 * 1260 * Return: @smc_handle on success, error code on failure. 1261 */ 1262 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1263 bool secure_origin, 1264 uint64_t handle_low, 1265 uint64_t handle_high, 1266 uint32_t fragment_length, 1267 uint32_t sender_id, 1268 void *cookie, 1269 void *handle, 1270 uint64_t flags) 1271 { 1272 long ret; 1273 uint32_t desc_sender_id; 1274 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1275 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1276 1277 struct spmc_shmem_obj *obj; 1278 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1279 1280 spin_lock(&spmc_shmem_obj_state.lock); 1281 1282 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1283 if (obj == NULL) { 1284 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1285 __func__, mem_handle); 1286 ret = FFA_ERROR_INVALID_PARAMETER; 1287 goto err_unlock; 1288 } 1289 1290 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1291 if (sender_id != desc_sender_id) { 1292 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1293 sender_id, desc_sender_id); 1294 ret = FFA_ERROR_INVALID_PARAMETER; 1295 goto err_unlock; 1296 } 1297 1298 if (obj->desc_filled == obj->desc_size) { 1299 WARN("%s: object desc already filled, %zu\n", __func__, 1300 obj->desc_filled); 1301 ret = FFA_ERROR_INVALID_PARAMETER; 1302 goto err_unlock; 1303 } 1304 1305 spin_lock(&mbox->lock); 1306 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1307 handle); 1308 spin_unlock(&mbox->lock); 1309 1310 spin_unlock(&spmc_shmem_obj_state.lock); 1311 return ret; 1312 1313 err_unlock: 1314 spin_unlock(&spmc_shmem_obj_state.lock); 1315 return spmc_ffa_error_return(handle, ret); 1316 } 1317 1318 /** 1319 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1320 * if the caller implements a version greater 1321 * than FF-A 1.0 or if they have requested 1322 * the functionality. 1323 * TODO: We are assuming that the caller is 1324 * an SP. To support retrieval from the 1325 * normal world this function will need to be 1326 * expanded accordingly. 1327 * @resp: Descriptor populated in callers RX buffer. 1328 * @sp_ctx: Context of the calling SP. 1329 */ 1330 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1331 struct secure_partition_desc *sp_ctx) 1332 { 1333 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1334 sp_ctx->ns_bit_requested) { 1335 /* 1336 * Currently memory senders must reside in the normal 1337 * world, and we do not have the functionlaity to change 1338 * the state of memory dynamically. Therefore we can always set 1339 * the NS bit to 1. 1340 */ 1341 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1342 } 1343 } 1344 1345 /** 1346 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1347 * @smc_fid: FID of SMC 1348 * @total_length: Total length of retrieve request descriptor if this is 1349 * the first call. Otherwise (unsupported) must be 0. 1350 * @fragment_length: Length of fragment of retrieve request descriptor passed 1351 * in this call. Only @fragment_length == @length is 1352 * supported by this implementation. 1353 * @address: Not supported, must be 0. 1354 * @page_count: Not supported, must be 0. 1355 * @smc_handle: Handle passed to smc call. Used to return 1356 * FFA_MEM_RETRIEVE_RESP. 1357 * 1358 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1359 * Used by secure os to retrieve memory already shared by non-secure os. 1360 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1361 * the client must call FFA_MEM_FRAG_RX until the full response has been 1362 * received. 1363 * 1364 * Return: @handle on success, error code on failure. 1365 */ 1366 long 1367 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1368 bool secure_origin, 1369 uint32_t total_length, 1370 uint32_t fragment_length, 1371 uint64_t address, 1372 uint32_t page_count, 1373 void *cookie, 1374 void *handle, 1375 uint64_t flags) 1376 { 1377 int ret; 1378 size_t buf_size; 1379 size_t copy_size = 0; 1380 size_t min_desc_size; 1381 size_t out_desc_size = 0; 1382 1383 /* 1384 * Currently we are only accessing fields that are the same in both the 1385 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1386 * here. We only need validate against the appropriate struct size. 1387 */ 1388 struct ffa_mtd *resp; 1389 const struct ffa_mtd *req; 1390 struct spmc_shmem_obj *obj = NULL; 1391 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1392 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1393 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1394 1395 if (!secure_origin) { 1396 WARN("%s: unsupported retrieve req direction.\n", __func__); 1397 return spmc_ffa_error_return(handle, 1398 FFA_ERROR_INVALID_PARAMETER); 1399 } 1400 1401 if (address != 0U || page_count != 0U) { 1402 WARN("%s: custom memory region not supported.\n", __func__); 1403 return spmc_ffa_error_return(handle, 1404 FFA_ERROR_INVALID_PARAMETER); 1405 } 1406 1407 spin_lock(&mbox->lock); 1408 1409 req = mbox->tx_buffer; 1410 resp = mbox->rx_buffer; 1411 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1412 1413 if (mbox->rxtx_page_count == 0U) { 1414 WARN("%s: buffer pair not registered.\n", __func__); 1415 ret = FFA_ERROR_INVALID_PARAMETER; 1416 goto err_unlock_mailbox; 1417 } 1418 1419 if (mbox->state != MAILBOX_STATE_EMPTY) { 1420 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1421 ret = FFA_ERROR_DENIED; 1422 goto err_unlock_mailbox; 1423 } 1424 1425 if (fragment_length != total_length) { 1426 WARN("%s: fragmented retrieve request not supported.\n", 1427 __func__); 1428 ret = FFA_ERROR_INVALID_PARAMETER; 1429 goto err_unlock_mailbox; 1430 } 1431 1432 if (req->emad_count == 0U) { 1433 WARN("%s: unsupported attribute desc count %u.\n", 1434 __func__, obj->desc.emad_count); 1435 ret = FFA_ERROR_INVALID_PARAMETER; 1436 goto err_unlock_mailbox; 1437 } 1438 1439 /* Determine the appropriate minimum descriptor size. */ 1440 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1441 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1442 } else { 1443 min_desc_size = sizeof(struct ffa_mtd); 1444 } 1445 if (total_length < min_desc_size) { 1446 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1447 min_desc_size); 1448 ret = FFA_ERROR_INVALID_PARAMETER; 1449 goto err_unlock_mailbox; 1450 } 1451 1452 spin_lock(&spmc_shmem_obj_state.lock); 1453 1454 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1455 if (obj == NULL) { 1456 ret = FFA_ERROR_INVALID_PARAMETER; 1457 goto err_unlock_all; 1458 } 1459 1460 if (obj->desc_filled != obj->desc_size) { 1461 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1462 __func__, obj->desc_filled, obj->desc_size); 1463 ret = FFA_ERROR_INVALID_PARAMETER; 1464 goto err_unlock_all; 1465 } 1466 1467 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1468 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1469 __func__, req->sender_id, obj->desc.sender_id); 1470 ret = FFA_ERROR_INVALID_PARAMETER; 1471 goto err_unlock_all; 1472 } 1473 1474 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1475 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1476 __func__, req->tag, obj->desc.tag); 1477 ret = FFA_ERROR_INVALID_PARAMETER; 1478 goto err_unlock_all; 1479 } 1480 1481 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1482 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1483 __func__, req->emad_count, obj->desc.emad_count); 1484 ret = FFA_ERROR_INVALID_PARAMETER; 1485 goto err_unlock_all; 1486 } 1487 1488 /* Ensure the NS bit is set to 0 in the request. */ 1489 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1490 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1491 ret = FFA_ERROR_INVALID_PARAMETER; 1492 goto err_unlock_all; 1493 } 1494 1495 if (req->flags != 0U) { 1496 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1497 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1498 /* 1499 * If the retrieve request specifies the memory 1500 * transaction ensure it matches what we expect. 1501 */ 1502 WARN("%s: wrong mem transaction flags %x != %x\n", 1503 __func__, req->flags, obj->desc.flags); 1504 ret = FFA_ERROR_INVALID_PARAMETER; 1505 goto err_unlock_all; 1506 } 1507 1508 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1509 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1510 /* 1511 * Current implementation does not support donate and 1512 * it supports no other flags. 1513 */ 1514 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1515 ret = FFA_ERROR_INVALID_PARAMETER; 1516 goto err_unlock_all; 1517 } 1518 } 1519 1520 /* Validate the caller is a valid participant. */ 1521 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1522 WARN("%s: Invalid endpoint ID (0x%x).\n", 1523 __func__, sp_ctx->sp_id); 1524 ret = FFA_ERROR_INVALID_PARAMETER; 1525 goto err_unlock_all; 1526 } 1527 1528 /* Validate that the provided emad offset and structure is valid.*/ 1529 for (size_t i = 0; i < req->emad_count; i++) { 1530 size_t emad_size; 1531 struct ffa_emad_v1_0 *emad; 1532 1533 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1534 &emad_size); 1535 1536 if ((uintptr_t) emad >= (uintptr_t) 1537 ((uint8_t *) req + total_length)) { 1538 WARN("Invalid emad access.\n"); 1539 ret = FFA_ERROR_INVALID_PARAMETER; 1540 goto err_unlock_all; 1541 } 1542 } 1543 1544 /* 1545 * Validate all the endpoints match in the case of multiple 1546 * borrowers. We don't mandate that the order of the borrowers 1547 * must match in the descriptors therefore check to see if the 1548 * endpoints match in any order. 1549 */ 1550 for (size_t i = 0; i < req->emad_count; i++) { 1551 bool found = false; 1552 size_t emad_size; 1553 struct ffa_emad_v1_0 *emad; 1554 struct ffa_emad_v1_0 *other_emad; 1555 1556 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1557 &emad_size); 1558 1559 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1560 other_emad = spmc_shmem_obj_get_emad( 1561 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1562 &emad_size); 1563 1564 if (req->emad_count && 1565 emad->mapd.endpoint_id == 1566 other_emad->mapd.endpoint_id) { 1567 found = true; 1568 break; 1569 } 1570 } 1571 1572 if (!found) { 1573 WARN("%s: invalid receiver id (0x%x).\n", 1574 __func__, emad->mapd.endpoint_id); 1575 ret = FFA_ERROR_INVALID_PARAMETER; 1576 goto err_unlock_all; 1577 } 1578 } 1579 1580 mbox->state = MAILBOX_STATE_FULL; 1581 1582 if (req->emad_count != 0U) { 1583 obj->in_use++; 1584 } 1585 1586 /* 1587 * If the caller is v1.0 convert the descriptor, otherwise copy 1588 * directly. 1589 */ 1590 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1591 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1592 ©_size, 1593 &out_desc_size); 1594 if (ret != 0U) { 1595 ERROR("%s: Failed to process descriptor.\n", __func__); 1596 goto err_unlock_all; 1597 } 1598 } else { 1599 copy_size = MIN(obj->desc_size, buf_size); 1600 out_desc_size = obj->desc_size; 1601 1602 memcpy(resp, &obj->desc, copy_size); 1603 } 1604 1605 /* Set the NS bit in the response if applicable. */ 1606 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1607 1608 spin_unlock(&spmc_shmem_obj_state.lock); 1609 spin_unlock(&mbox->lock); 1610 1611 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1612 copy_size, 0, 0, 0, 0, 0); 1613 1614 err_unlock_all: 1615 spin_unlock(&spmc_shmem_obj_state.lock); 1616 err_unlock_mailbox: 1617 spin_unlock(&mbox->lock); 1618 return spmc_ffa_error_return(handle, ret); 1619 } 1620 1621 /** 1622 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1623 * @client: Client state. 1624 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1625 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1626 * @fragment_offset: Byte offset in descriptor to resume at. 1627 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1628 * hypervisor. 0 otherwise. 1629 * @smc_handle: Handle passed to smc call. Used to return 1630 * FFA_MEM_FRAG_TX. 1631 * 1632 * Return: @smc_handle on success, error code on failure. 1633 */ 1634 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1635 bool secure_origin, 1636 uint32_t handle_low, 1637 uint32_t handle_high, 1638 uint32_t fragment_offset, 1639 uint32_t sender_id, 1640 void *cookie, 1641 void *handle, 1642 uint64_t flags) 1643 { 1644 int ret; 1645 void *src; 1646 size_t buf_size; 1647 size_t copy_size; 1648 size_t full_copy_size; 1649 uint32_t desc_sender_id; 1650 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1651 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1652 struct spmc_shmem_obj *obj; 1653 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1654 1655 if (!secure_origin) { 1656 WARN("%s: can only be called from swld.\n", 1657 __func__); 1658 return spmc_ffa_error_return(handle, 1659 FFA_ERROR_INVALID_PARAMETER); 1660 } 1661 1662 spin_lock(&spmc_shmem_obj_state.lock); 1663 1664 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1665 if (obj == NULL) { 1666 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1667 __func__, mem_handle); 1668 ret = FFA_ERROR_INVALID_PARAMETER; 1669 goto err_unlock_shmem; 1670 } 1671 1672 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1673 if (sender_id != 0U && sender_id != desc_sender_id) { 1674 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1675 sender_id, desc_sender_id); 1676 ret = FFA_ERROR_INVALID_PARAMETER; 1677 goto err_unlock_shmem; 1678 } 1679 1680 if (fragment_offset >= obj->desc_size) { 1681 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1682 __func__, fragment_offset, obj->desc_size); 1683 ret = FFA_ERROR_INVALID_PARAMETER; 1684 goto err_unlock_shmem; 1685 } 1686 1687 spin_lock(&mbox->lock); 1688 1689 if (mbox->rxtx_page_count == 0U) { 1690 WARN("%s: buffer pair not registered.\n", __func__); 1691 ret = FFA_ERROR_INVALID_PARAMETER; 1692 goto err_unlock_all; 1693 } 1694 1695 if (mbox->state != MAILBOX_STATE_EMPTY) { 1696 WARN("%s: RX Buffer is full!\n", __func__); 1697 ret = FFA_ERROR_DENIED; 1698 goto err_unlock_all; 1699 } 1700 1701 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1702 1703 mbox->state = MAILBOX_STATE_FULL; 1704 1705 /* 1706 * If the caller is v1.0 convert the descriptor, otherwise copy 1707 * directly. 1708 */ 1709 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1710 size_t out_desc_size; 1711 1712 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1713 buf_size, 1714 fragment_offset, 1715 ©_size, 1716 &out_desc_size); 1717 if (ret != 0U) { 1718 ERROR("%s: Failed to process descriptor.\n", __func__); 1719 goto err_unlock_all; 1720 } 1721 } else { 1722 full_copy_size = obj->desc_size - fragment_offset; 1723 copy_size = MIN(full_copy_size, buf_size); 1724 1725 src = &obj->desc; 1726 1727 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1728 } 1729 1730 spin_unlock(&mbox->lock); 1731 spin_unlock(&spmc_shmem_obj_state.lock); 1732 1733 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1734 copy_size, sender_id, 0, 0, 0); 1735 1736 err_unlock_all: 1737 spin_unlock(&mbox->lock); 1738 err_unlock_shmem: 1739 spin_unlock(&spmc_shmem_obj_state.lock); 1740 return spmc_ffa_error_return(handle, ret); 1741 } 1742 1743 /** 1744 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1745 * @client: Client state. 1746 * 1747 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1748 * Used by secure os release previously shared memory to non-secure os. 1749 * 1750 * The handle to release must be in the client's (secure os's) transmit buffer. 1751 * 1752 * Return: 0 on success, error code on failure. 1753 */ 1754 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1755 bool secure_origin, 1756 uint32_t handle_low, 1757 uint32_t handle_high, 1758 uint32_t fragment_offset, 1759 uint32_t sender_id, 1760 void *cookie, 1761 void *handle, 1762 uint64_t flags) 1763 { 1764 int ret; 1765 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1766 struct spmc_shmem_obj *obj; 1767 const struct ffa_mem_relinquish_descriptor *req; 1768 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1769 1770 if (!secure_origin) { 1771 WARN("%s: unsupported relinquish direction.\n", __func__); 1772 return spmc_ffa_error_return(handle, 1773 FFA_ERROR_INVALID_PARAMETER); 1774 } 1775 1776 spin_lock(&mbox->lock); 1777 1778 if (mbox->rxtx_page_count == 0U) { 1779 WARN("%s: buffer pair not registered.\n", __func__); 1780 ret = FFA_ERROR_INVALID_PARAMETER; 1781 goto err_unlock_mailbox; 1782 } 1783 1784 req = mbox->tx_buffer; 1785 1786 if (req->flags != 0U) { 1787 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1788 ret = FFA_ERROR_INVALID_PARAMETER; 1789 goto err_unlock_mailbox; 1790 } 1791 1792 if (req->endpoint_count == 0) { 1793 WARN("%s: endpoint count cannot be 0.\n", __func__); 1794 ret = FFA_ERROR_INVALID_PARAMETER; 1795 goto err_unlock_mailbox; 1796 } 1797 1798 spin_lock(&spmc_shmem_obj_state.lock); 1799 1800 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1801 if (obj == NULL) { 1802 ret = FFA_ERROR_INVALID_PARAMETER; 1803 goto err_unlock_all; 1804 } 1805 1806 /* 1807 * Validate the endpoint ID was populated correctly. We don't currently 1808 * support proxy endpoints so the endpoint count should always be 1. 1809 */ 1810 if (req->endpoint_count != 1U) { 1811 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1812 req->endpoint_count); 1813 ret = FFA_ERROR_INVALID_PARAMETER; 1814 goto err_unlock_all; 1815 } 1816 1817 /* Validate provided endpoint ID matches the partition ID. */ 1818 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1819 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1820 req->endpoint_array[0], sp_ctx->sp_id); 1821 ret = FFA_ERROR_INVALID_PARAMETER; 1822 goto err_unlock_all; 1823 } 1824 1825 /* Validate the caller is a valid participant. */ 1826 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) { 1827 WARN("%s: Invalid endpoint ID (0x%x).\n", 1828 __func__, req->endpoint_array[0]); 1829 ret = FFA_ERROR_INVALID_PARAMETER; 1830 goto err_unlock_all; 1831 } 1832 1833 if (obj->in_use == 0U) { 1834 ret = FFA_ERROR_INVALID_PARAMETER; 1835 goto err_unlock_all; 1836 } 1837 obj->in_use--; 1838 1839 spin_unlock(&spmc_shmem_obj_state.lock); 1840 spin_unlock(&mbox->lock); 1841 1842 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1843 1844 err_unlock_all: 1845 spin_unlock(&spmc_shmem_obj_state.lock); 1846 err_unlock_mailbox: 1847 spin_unlock(&mbox->lock); 1848 return spmc_ffa_error_return(handle, ret); 1849 } 1850 1851 /** 1852 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1853 * @client: Client state. 1854 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1855 * @handle_high: Unique handle of shared memory object to reclaim. 1856 * Bit[63:32]. 1857 * @flags: Unsupported, ignored. 1858 * 1859 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1860 * Used by non-secure os reclaim memory previously shared with secure os. 1861 * 1862 * Return: 0 on success, error code on failure. 1863 */ 1864 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1865 bool secure_origin, 1866 uint32_t handle_low, 1867 uint32_t handle_high, 1868 uint32_t mem_flags, 1869 uint64_t x4, 1870 void *cookie, 1871 void *handle, 1872 uint64_t flags) 1873 { 1874 int ret; 1875 struct spmc_shmem_obj *obj; 1876 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1877 1878 if (secure_origin) { 1879 WARN("%s: unsupported reclaim direction.\n", __func__); 1880 return spmc_ffa_error_return(handle, 1881 FFA_ERROR_INVALID_PARAMETER); 1882 } 1883 1884 if (mem_flags != 0U) { 1885 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1886 return spmc_ffa_error_return(handle, 1887 FFA_ERROR_INVALID_PARAMETER); 1888 } 1889 1890 spin_lock(&spmc_shmem_obj_state.lock); 1891 1892 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1893 if (obj == NULL) { 1894 ret = FFA_ERROR_INVALID_PARAMETER; 1895 goto err_unlock; 1896 } 1897 if (obj->in_use != 0U) { 1898 ret = FFA_ERROR_DENIED; 1899 goto err_unlock; 1900 } 1901 1902 if (obj->desc_filled != obj->desc_size) { 1903 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1904 __func__, obj->desc_filled, obj->desc_size); 1905 ret = FFA_ERROR_INVALID_PARAMETER; 1906 goto err_unlock; 1907 } 1908 1909 /* Allow for platform specific operations to be performed. */ 1910 ret = plat_spmc_shmem_reclaim(&obj->desc); 1911 if (ret != 0) { 1912 goto err_unlock; 1913 } 1914 1915 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1916 spin_unlock(&spmc_shmem_obj_state.lock); 1917 1918 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1919 1920 err_unlock: 1921 spin_unlock(&spmc_shmem_obj_state.lock); 1922 return spmc_ffa_error_return(handle, ret); 1923 } 1924