xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 27ac582ae0c9e1edefc37d484f413663e0aea72f)
1 /*
2  * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9 
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18 
19 #include <platform_def.h>
20 
21 /**
22  * struct spmc_shmem_obj - Shared memory object.
23  * @desc_size:      Size of @desc.
24  * @desc_filled:    Size of @desc already received.
25  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
26  *                  without a matching ffa_mem_relinquish call.
27  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
28  */
29 struct spmc_shmem_obj {
30 	size_t desc_size;
31 	size_t desc_filled;
32 	size_t in_use;
33 	struct ffa_mtd desc;
34 };
35 
36 /*
37  * Declare our data structure to store the metadata of memory share requests.
38  * The main datastore is allocated on a per platform basis to ensure enough
39  * storage can be made available.
40  * The address of the data store will be populated by the SPMC during its
41  * initialization.
42  */
43 
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 	/* Set start value for handle so top 32 bits are needed quickly. */
46 	.next_handle = 0xffffffc0U,
47 };
48 
49 /**
50  * spmc_shmem_obj_size - Convert from descriptor size to object size.
51  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
52  *
53  * Return: Size of struct spmc_shmem_obj object.
54  */
55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59 
60 /**
61  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62  * @state:      Global state.
63  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
64  *              allocated object will hold.
65  *
66  * Return: Pointer to newly allocated object, or %NULL if there not enough space
67  *         left. The returned pointer is only valid while @state is locked, to
68  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
69  *         called.
70  */
71 static struct spmc_shmem_obj *
72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 	struct spmc_shmem_obj *obj;
75 	size_t free = state->data_size - state->allocated;
76 	size_t obj_size;
77 
78 	if (state->data == NULL) {
79 		ERROR("Missing shmem datastore!\n");
80 		return NULL;
81 	}
82 
83 	/* Ensure that descriptor size is aligned */
84 	if (!is_aligned(desc_size, 16)) {
85 		WARN("%s(0x%zx) desc_size not 16-byte aligned\n",
86 		     __func__, desc_size);
87 		return NULL;
88 	}
89 
90 	obj_size = spmc_shmem_obj_size(desc_size);
91 
92 	/* Ensure the obj size has not overflowed. */
93 	if (obj_size < desc_size) {
94 		WARN("%s(0x%zx) desc_size overflow\n",
95 		     __func__, desc_size);
96 		return NULL;
97 	}
98 
99 	if (obj_size > free) {
100 		WARN("%s(0x%zx) failed, free 0x%zx\n",
101 		     __func__, desc_size, free);
102 		return NULL;
103 	}
104 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
105 	obj->desc = (struct ffa_mtd) {0};
106 	obj->desc_size = desc_size;
107 	obj->desc_filled = 0;
108 	obj->in_use = 0;
109 	state->allocated += obj_size;
110 	return obj;
111 }
112 
113 /**
114  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
115  * @state:      Global state.
116  * @obj:        Object to free.
117  *
118  * Release memory used by @obj. Other objects may move, so on return all
119  * pointers to struct spmc_shmem_obj object should be considered invalid, not
120  * just @obj.
121  *
122  * The current implementation always compacts the remaining objects to simplify
123  * the allocator and to avoid fragmentation.
124  */
125 
126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
127 				  struct spmc_shmem_obj *obj)
128 {
129 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
130 	uint8_t *shift_dest = (uint8_t *)obj;
131 	uint8_t *shift_src = shift_dest + free_size;
132 	size_t shift_size = state->allocated - (shift_src - state->data);
133 
134 	if (shift_size != 0U) {
135 		memmove(shift_dest, shift_src, shift_size);
136 	}
137 	state->allocated -= free_size;
138 }
139 
140 /**
141  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
142  * @state:      Global state.
143  * @handle:     Unique handle of object to return.
144  *
145  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
146  *         %NULL, if not object in @state->data has a matching handle.
147  */
148 static struct spmc_shmem_obj *
149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
150 {
151 	uint8_t *curr = state->data;
152 
153 	while (curr - state->data < state->allocated) {
154 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
155 
156 		if (obj->desc.handle == handle) {
157 			return obj;
158 		}
159 		curr += spmc_shmem_obj_size(obj->desc_size);
160 	}
161 	return NULL;
162 }
163 
164 /**
165  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
166  * @offset:     Offset used to track which objects have previously been
167  *              returned.
168  *
169  * Return: the next struct spmc_shmem_obj_state object from the provided
170  *	   offset.
171  *	   %NULL, if there are no more objects.
172  */
173 static struct spmc_shmem_obj *
174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
175 {
176 	uint8_t *curr = state->data + *offset;
177 
178 	if (curr - state->data < state->allocated) {
179 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
180 
181 		*offset += spmc_shmem_obj_size(obj->desc_size);
182 
183 		return obj;
184 	}
185 	return NULL;
186 }
187 
188 /*******************************************************************************
189  * FF-A memory descriptor helper functions.
190  ******************************************************************************/
191 /**
192  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
193  *                           clients FF-A version.
194  * @desc:         The memory transaction descriptor.
195  * @index:        The index of the emad element to be accessed.
196  * @ffa_version:  FF-A version of the provided structure.
197  * @emad_size:    Will be populated with the size of the returned emad
198  *                descriptor.
199  * Return: A pointer to the requested emad structure.
200  */
201 static void *
202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
203 			uint32_t ffa_version, size_t *emad_size)
204 {
205 	uint8_t *emad;
206 
207 	assert(index < desc->emad_count);
208 
209 	/*
210 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
211 	 * format, otherwise assume it is a v1.1 format.
212 	 */
213 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
214 		emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
215 		*emad_size = sizeof(struct ffa_emad_v1_0);
216 	} else {
217 		assert(is_aligned(desc->emad_offset, 16));
218 		emad = ((uint8_t *) desc + desc->emad_offset);
219 		*emad_size = desc->emad_size;
220 	}
221 
222 	assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
223 	return (emad + (*emad_size * index));
224 }
225 
226 /**
227  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
228  *				 FF-A version of the descriptor.
229  * @obj:    Object containing ffa_memory_region_descriptor.
230  *
231  * Return: struct ffa_comp_mrd object corresponding to the composite memory
232  *	   region descriptor.
233  */
234 static struct ffa_comp_mrd *
235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
236 {
237 	size_t emad_size;
238 	/*
239 	 * The comp_mrd_offset field of the emad descriptor remains consistent
240 	 * between FF-A versions therefore we can use the v1.0 descriptor here
241 	 * in all cases.
242 	 */
243 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
244 							     ffa_version,
245 							     &emad_size);
246 
247 	/* Ensure the composite descriptor offset is aligned. */
248 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
249 		WARN("Unaligned composite memory region descriptor offset.\n");
250 		return NULL;
251 	}
252 
253 	return (struct ffa_comp_mrd *)
254 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
255 }
256 
257 /**
258  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
259  *				a given memory transaction.
260  * @sp_id:      Partition ID to validate.
261  * @obj:        The shared memory object containing the descriptor
262  *              of the memory transaction.
263  * Return: true if ID is valid, else false.
264  */
265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
266 {
267 	bool found = false;
268 	struct ffa_mtd *desc = &obj->desc;
269 	size_t desc_size = obj->desc_size;
270 
271 	/* Validate the partition is a valid participant. */
272 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
273 		size_t emad_size;
274 		struct ffa_emad_v1_0 *emad;
275 
276 		emad = spmc_shmem_obj_get_emad(desc, i,
277 					       MAKE_FFA_VERSION(1, 1),
278 					       &emad_size);
279 		/*
280 		 * Validate the calculated emad address resides within the
281 		 * descriptor.
282 		 */
283 		if ((emad == NULL) || (uintptr_t) emad >=
284 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
285 			VERBOSE("Invalid emad.\n");
286 			break;
287 		}
288 		if (sp_id == emad->mapd.endpoint_id) {
289 			found = true;
290 			break;
291 		}
292 	}
293 	return found;
294 }
295 
296 /*
297  * Compare two memory regions to determine if any range overlaps with another
298  * ongoing memory transaction.
299  */
300 static bool
301 overlapping_memory_regions(struct ffa_comp_mrd *region1,
302 			   struct ffa_comp_mrd *region2)
303 {
304 	uint64_t region1_start;
305 	uint64_t region1_size;
306 	uint64_t region1_end;
307 	uint64_t region2_start;
308 	uint64_t region2_size;
309 	uint64_t region2_end;
310 
311 	assert(region1 != NULL);
312 	assert(region2 != NULL);
313 
314 	if (region1 == region2) {
315 		return true;
316 	}
317 
318 	/*
319 	 * Check each memory region in the request against existing
320 	 * transactions.
321 	 */
322 	for (size_t i = 0; i < region1->address_range_count; i++) {
323 
324 		region1_start = region1->address_range_array[i].address;
325 		region1_size =
326 			region1->address_range_array[i].page_count *
327 			PAGE_SIZE_4KB;
328 		region1_end = region1_start + region1_size;
329 
330 		for (size_t j = 0; j < region2->address_range_count; j++) {
331 
332 			region2_start = region2->address_range_array[j].address;
333 			region2_size =
334 				region2->address_range_array[j].page_count *
335 				PAGE_SIZE_4KB;
336 			region2_end = region2_start + region2_size;
337 
338 			/* Check if regions are not overlapping. */
339 			if (!((region2_end <= region1_start) ||
340 			      (region1_end <= region2_start))) {
341 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
342 				     region1_start, region1_end,
343 				     region2_start, region2_end);
344 				return true;
345 			}
346 		}
347 	}
348 	return false;
349 }
350 
351 /*******************************************************************************
352  * FF-A v1.0 Memory Descriptor Conversion Helpers.
353  ******************************************************************************/
354 /**
355  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
356  *                                     converted descriptor.
357  * @orig:       The original v1.0 memory transaction descriptor.
358  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
359  *
360  * Return: the size required to store the descriptor store in the v1.1 format.
361  */
362 static uint64_t
363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
364 {
365 	uint64_t size = 0;
366 	struct ffa_comp_mrd *mrd;
367 	struct ffa_emad_v1_0 *emad_array = orig->emad;
368 
369 	/* Get the size of the v1.1 descriptor. */
370 	size += sizeof(struct ffa_mtd);
371 
372 	/* Add the size of the emad descriptors. */
373 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
374 
375 	/* Add the size of the composite mrds. */
376 	size += sizeof(struct ffa_comp_mrd);
377 
378 	/* Add the size of the constituent mrds. */
379 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
380 	      emad_array[0].comp_mrd_offset);
381 
382 	/* Add the size of the memory region descriptors. */
383 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
384 
385 	return size;
386 }
387 
388 /**
389  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
390  *                                     converted descriptor.
391  * @orig:       The original v1.1 memory transaction descriptor.
392  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
393  *
394  * Return: the size required to store the descriptor store in the v1.0 format.
395  */
396 static size_t
397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
398 {
399 	size_t size = 0;
400 	struct ffa_comp_mrd *mrd;
401 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
402 					   ((uint8_t *) orig +
403 					    orig->emad_offset);
404 
405 	/* Get the size of the v1.0 descriptor. */
406 	size += sizeof(struct ffa_mtd_v1_0);
407 
408 	/* Add the size of the v1.0 emad descriptors. */
409 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
410 
411 	/* Add the size of the composite mrds. */
412 	size += sizeof(struct ffa_comp_mrd);
413 
414 	/* Add the size of the constituent mrds. */
415 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
416 	      emad_array[0].comp_mrd_offset);
417 
418 	/* Check the calculated address is within the memory descriptor. */
419 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
420 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
421 		return 0;
422 	}
423 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
424 
425 	return size;
426 }
427 
428 /**
429  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
430  * @out_obj:	The shared memory object to populate the converted descriptor.
431  * @orig:	The shared memory object containing the v1.0 descriptor.
432  *
433  * Return: true if the conversion is successful else false.
434  */
435 static bool
436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
437 				     struct spmc_shmem_obj *orig)
438 {
439 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
440 	struct ffa_mtd *out = &out_obj->desc;
441 	struct ffa_emad_v1_0 *emad_array_in;
442 	struct ffa_emad_v1_0 *emad_array_out;
443 	struct ffa_comp_mrd *mrd_in;
444 	struct ffa_comp_mrd *mrd_out;
445 
446 	size_t mrd_in_offset;
447 	size_t mrd_out_offset;
448 	size_t mrd_size = 0;
449 
450 	/* Populate the new descriptor format from the v1.0 struct. */
451 	out->sender_id = mtd_orig->sender_id;
452 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
453 	out->flags = mtd_orig->flags;
454 	out->handle = mtd_orig->handle;
455 	out->tag = mtd_orig->tag;
456 	out->emad_count = mtd_orig->emad_count;
457 	out->emad_size = sizeof(struct ffa_emad_v1_0);
458 
459 	/*
460 	 * We will locate the emad descriptors directly after the ffa_mtd
461 	 * struct. This will be 8-byte aligned.
462 	 */
463 	out->emad_offset = sizeof(struct ffa_mtd);
464 
465 	emad_array_in = mtd_orig->emad;
466 	emad_array_out = (struct ffa_emad_v1_0 *)
467 			 ((uint8_t *) out + out->emad_offset);
468 
469 	/* Copy across the emad structs. */
470 	for (unsigned int i = 0U; i < out->emad_count; i++) {
471 		/* Bound check for emad array. */
472 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
473 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
474 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
475 			return false;
476 		}
477 		memcpy(&emad_array_out[i], &emad_array_in[i],
478 		       sizeof(struct ffa_emad_v1_0));
479 	}
480 
481 	/* Place the mrd descriptors after the end of the emad descriptors.*/
482 	mrd_in_offset = emad_array_in->comp_mrd_offset;
483 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
484 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
485 
486 	/* Add the size of the composite memory region descriptor. */
487 	mrd_size += sizeof(struct ffa_comp_mrd);
488 
489 	/* Find the mrd descriptor. */
490 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
491 
492 	/* Add the size of the constituent memory region descriptors. */
493 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
494 
495 	/*
496 	 * Update the offset in the emads by the delta between the input and
497 	 * output addresses.
498 	 */
499 	for (unsigned int i = 0U; i < out->emad_count; i++) {
500 		emad_array_out[i].comp_mrd_offset =
501 			emad_array_in[i].comp_mrd_offset +
502 			(mrd_out_offset - mrd_in_offset);
503 	}
504 
505 	/* Verify that we stay within bound of the memory descriptors. */
506 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
507 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
508 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
509 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
510 		ERROR("%s: Invalid mrd structure.\n", __func__);
511 		return false;
512 	}
513 
514 	/* Copy the mrd descriptors directly. */
515 	memcpy(mrd_out, mrd_in, mrd_size);
516 
517 	return true;
518 }
519 
520 /**
521  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
522  *                                v1.0 memory object.
523  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
524  * @orig:       The shared memory object containing the v1.1 descriptor.
525  *
526  * Return: true if the conversion is successful else false.
527  */
528 static bool
529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
530 			     struct spmc_shmem_obj *orig)
531 {
532 	struct ffa_mtd *mtd_orig = &orig->desc;
533 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
534 	struct ffa_emad_v1_0 *emad_in;
535 	struct ffa_emad_v1_0 *emad_array_in;
536 	struct ffa_emad_v1_0 *emad_array_out;
537 	struct ffa_comp_mrd *mrd_in;
538 	struct ffa_comp_mrd *mrd_out;
539 
540 	size_t mrd_in_offset;
541 	size_t mrd_out_offset;
542 	size_t emad_out_array_size;
543 	size_t mrd_size = 0;
544 	size_t orig_desc_size = orig->desc_size;
545 
546 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
547 	out->sender_id = mtd_orig->sender_id;
548 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
549 	out->flags = mtd_orig->flags;
550 	out->handle = mtd_orig->handle;
551 	out->tag = mtd_orig->tag;
552 	out->emad_count = mtd_orig->emad_count;
553 
554 	/* Determine the location of the emad array in both descriptors. */
555 	emad_array_in = (struct ffa_emad_v1_0 *)
556 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
557 	emad_array_out = out->emad;
558 
559 	/* Copy across the emad structs. */
560 	emad_in = emad_array_in;
561 	for (unsigned int i = 0U; i < out->emad_count; i++) {
562 		/* Bound check for emad array. */
563 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
564 				((uint8_t *) mtd_orig + orig_desc_size)) {
565 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
566 			return false;
567 		}
568 		memcpy(&emad_array_out[i], emad_in,
569 		       sizeof(struct ffa_emad_v1_0));
570 
571 		emad_in +=  mtd_orig->emad_size;
572 	}
573 
574 	/* Place the mrd descriptors after the end of the emad descriptors. */
575 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
576 
577 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
578 			  emad_out_array_size;
579 
580 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
581 
582 	mrd_in_offset = mtd_orig->emad_offset +
583 			(mtd_orig->emad_size * mtd_orig->emad_count);
584 
585 	/* Add the size of the composite memory region descriptor. */
586 	mrd_size += sizeof(struct ffa_comp_mrd);
587 
588 	/* Find the mrd descriptor. */
589 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
590 
591 	/* Add the size of the constituent memory region descriptors. */
592 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
593 
594 	/*
595 	 * Update the offset in the emads by the delta between the input and
596 	 * output addresses.
597 	 */
598 	emad_in = emad_array_in;
599 
600 	for (unsigned int i = 0U; i < out->emad_count; i++) {
601 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
602 						    (mrd_out_offset -
603 						     mrd_in_offset);
604 		emad_in +=  mtd_orig->emad_size;
605 	}
606 
607 	/* Verify that we stay within bound of the memory descriptors. */
608 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
609 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
610 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
611 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
612 		ERROR("%s: Invalid mrd structure.\n", __func__);
613 		return false;
614 	}
615 
616 	/* Copy the mrd descriptors directly. */
617 	memcpy(mrd_out, mrd_in, mrd_size);
618 
619 	return true;
620 }
621 
622 /**
623  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
624  *                                     the v1.0 format and populates the
625  *                                     provided buffer.
626  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
627  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
628  * @buf_size:	    Size of the buffer to populate.
629  * @offset:	    The offset of the converted descriptor to copy.
630  * @copy_size:	    Will be populated with the number of bytes copied.
631  * @out_desc_size:  Will be populated with the total size of the v1.0
632  *                  descriptor.
633  *
634  * Return: 0 if conversion and population succeeded.
635  * Note: This function invalidates the reference to @orig therefore
636  * `spmc_shmem_obj_lookup` must be called if further usage is required.
637  */
638 static uint32_t
639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
640 				 size_t buf_size, size_t offset,
641 				 size_t *copy_size, size_t *v1_0_desc_size)
642 {
643 		struct spmc_shmem_obj *v1_0_obj;
644 
645 		/* Calculate the size that the v1.0 descriptor will require. */
646 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
647 					&orig_obj->desc, orig_obj->desc_size);
648 
649 		if (*v1_0_desc_size == 0) {
650 			ERROR("%s: cannot determine size of descriptor.\n",
651 			      __func__);
652 			return FFA_ERROR_INVALID_PARAMETER;
653 		}
654 
655 		/* Get a new obj to store the v1.0 descriptor. */
656 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
657 						*v1_0_desc_size);
658 
659 		if (!v1_0_obj) {
660 			return FFA_ERROR_NO_MEMORY;
661 		}
662 
663 		/* Perform the conversion from v1.1 to v1.0. */
664 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
665 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
666 			return FFA_ERROR_INVALID_PARAMETER;
667 		}
668 
669 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
670 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
671 
672 		/*
673 		 * We're finished with the v1.0 descriptor for now so free it.
674 		 * Note that this will invalidate any references to the v1.1
675 		 * descriptor.
676 		 */
677 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
678 
679 		return 0;
680 }
681 
682 static int
683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
684 			size_t fragment_length, size_t total_length)
685 {
686 	unsigned long long emad_end;
687 	unsigned long long emad_size;
688 	unsigned long long emad_offset;
689 	unsigned int min_desc_size;
690 
691 	/* Determine the appropriate minimum descriptor size. */
692 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
693 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
694 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
695 		min_desc_size = sizeof(struct ffa_mtd);
696 	} else {
697 		return FFA_ERROR_INVALID_PARAMETER;
698 	}
699 	if (fragment_length < min_desc_size) {
700 		WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
701 		     min_desc_size);
702 		return FFA_ERROR_INVALID_PARAMETER;
703 	}
704 
705 	if (desc->emad_count == 0U) {
706 		WARN("%s: unsupported attribute desc count %u.\n",
707 		     __func__, desc->emad_count);
708 		return FFA_ERROR_INVALID_PARAMETER;
709 	}
710 
711 	/*
712 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
713 	 * format, otherwise assume it is a v1.1 format.
714 	 */
715 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
716 		emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
717 	} else {
718 		if (!is_aligned(desc->emad_offset, 16)) {
719 			WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
720 			     __func__, desc->emad_offset);
721 			return FFA_ERROR_INVALID_PARAMETER;
722 		}
723 		if (desc->emad_offset < sizeof(struct ffa_mtd)) {
724 			WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
725 			     __func__, desc->emad_offset,
726 			     sizeof(struct ffa_mtd));
727 			return FFA_ERROR_INVALID_PARAMETER;
728 		}
729 		emad_offset = desc->emad_offset;
730 		if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
731 			WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
732 			     desc->emad_size, sizeof(struct ffa_emad_v1_0));
733 			return FFA_ERROR_INVALID_PARAMETER;
734 		}
735 		if (!is_aligned(desc->emad_size, 16)) {
736 			WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
737 			     __func__, desc->emad_size);
738 			return FFA_ERROR_INVALID_PARAMETER;
739 		}
740 		emad_size = desc->emad_size;
741 	}
742 
743 	/*
744 	 * Overflow is impossible: the arithmetic happens in at least 64-bit
745 	 * precision, but all of the operands are bounded by UINT32_MAX, and
746 	 * ((2^32 - 1)^2 + (2^32 - 1) + (2^32 - 1)) = ((2^32 - 1) * (2^32 + 1))
747 	 * = (2^64 - 1).
748 	 */
749 	CASSERT(sizeof(desc->emad_count == 4), assert_emad_count_max_too_large);
750 	emad_end = (desc->emad_count * (unsigned long long)emad_size) +
751 		   (unsigned long long)sizeof(struct ffa_comp_mrd) +
752 		   (unsigned long long)emad_offset;
753 
754 	if (emad_end > total_length) {
755 		WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
756 		     __func__, emad_end, total_length);
757 		return FFA_ERROR_INVALID_PARAMETER;
758 	}
759 
760 	return 0;
761 }
762 
763 static inline const struct ffa_emad_v1_0 *
764 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset)
765 {
766 	return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset);
767 }
768 
769 /**
770  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
771  * @obj:	  Object containing ffa_memory_region_descriptor.
772  * @ffa_version:  FF-A version of the provided descriptor.
773  *
774  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if
775  * constituent_memory_region_descriptor offset or count is invalid.
776  */
777 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
778 				uint32_t ffa_version)
779 {
780 	const struct ffa_emad_v1_0 *first_emad;
781 	const struct ffa_emad_v1_0 *end_emad;
782 	size_t emad_size;
783 	uint32_t comp_mrd_offset = 0;
784 
785 	if (obj->desc_filled != obj->desc_size) {
786 		ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
787 		      __func__, obj->desc_filled, obj->desc_size);
788 		panic();
789 	}
790 
791 	if (spmc_validate_mtd_start(&obj->desc, ffa_version,
792 				    obj->desc_filled, obj->desc_size)) {
793 		ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
794 		      __func__);
795 		panic();
796 	}
797 
798 	first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
799 					     ffa_version, &emad_size);
800 	end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size);
801 
802 	/* Loop through the endpoint descriptors, validating each of them. */
803 	for (const struct ffa_emad_v1_0 *emad = first_emad;
804 	     emad < end_emad;
805 	     emad = emad_advance(emad, emad_size)) {
806 		size_t size;
807 		size_t count;
808 		size_t expected_size;
809 		uint64_t total_page_count;
810 		size_t header_emad_size;
811 		uint32_t offset;
812 		struct ffa_comp_mrd *comp;
813 		ffa_endpoint_id16_t ep_id;
814 
815 		offset = emad->comp_mrd_offset;
816 
817 		/*
818 		 * If a partition ID resides in the secure world validate that
819 		 * the partition ID is for a known partition. Ignore any
820 		 * partition ID belonging to the normal world as it is assumed
821 		 * the Hypervisor will have validated these.
822 		 */
823 		ep_id = emad->mapd.endpoint_id;
824 		if (ffa_is_secure_world_id(ep_id)) {
825 			if (spmc_get_sp_ctx(ep_id) == NULL) {
826 				WARN("%s: Invalid receiver id 0x%x\n",
827 				     __func__, ep_id);
828 				return FFA_ERROR_INVALID_PARAMETER;
829 			}
830 		}
831 
832 		/*
833 		 * The offset provided to the composite memory region descriptor
834 		 * should be consistent across endpoint descriptors. Store the
835 		 * first entry and compare against subsequent entries.
836 		 */
837 		if (comp_mrd_offset == 0) {
838 			comp_mrd_offset = offset;
839 		} else {
840 			if (comp_mrd_offset != offset) {
841 				ERROR("%s: mismatching offsets provided, %u != %u\n",
842 				       __func__, offset, comp_mrd_offset);
843 				return FFA_ERROR_INVALID_PARAMETER;
844 			}
845 			continue; /* Remainder only executed on first iteration. */
846 		}
847 
848 		header_emad_size = (size_t)((uint8_t *)emad - (uint8_t *)&obj->desc) +
849 			(obj->desc.emad_count * emad_size);
850 
851 		if (offset < header_emad_size) {
852 			WARN("%s: invalid object, offset %u < header + emad %zu\n",
853 			     __func__, offset, header_emad_size);
854 			return FFA_ERROR_INVALID_PARAMETER;
855 		}
856 
857 		/* Ensure the composite descriptor offset is aligned. */
858 		if (!is_aligned(comp_mrd_offset, 16)) {
859 			WARN("%s: invalid object, unaligned composite memory "
860 			     "region descriptor offset %u.\n",
861 			     __func__, comp_mrd_offset);
862 			return FFA_ERROR_INVALID_PARAMETER;
863 		}
864 
865 		size = obj->desc_size;
866 
867 		if (offset > size) {
868 			WARN("%s: invalid object, offset %u > total size %zu\n",
869 			     __func__, offset, obj->desc_size);
870 			return FFA_ERROR_INVALID_PARAMETER;
871 		}
872 		size -= offset;
873 
874 		if (size < sizeof(struct ffa_comp_mrd)) {
875 			WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
876 			     __func__, offset, obj->desc_size);
877 			return FFA_ERROR_INVALID_PARAMETER;
878 		}
879 		size -= sizeof(struct ffa_comp_mrd);
880 
881 		count = size / sizeof(struct ffa_cons_mrd);
882 
883 		comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
884 
885 		if (comp->address_range_count != count) {
886 			WARN("%s: invalid object, desc count %u != %zu\n",
887 			     __func__, comp->address_range_count, count);
888 			return FFA_ERROR_INVALID_PARAMETER;
889 		}
890 
891 		expected_size = offset + sizeof(*comp) +
892 			count * sizeof(struct ffa_cons_mrd);
893 
894 		if (expected_size != obj->desc_size) {
895 			WARN("%s: invalid object, computed size %zu != size %zu\n",
896 			       __func__, expected_size, obj->desc_size);
897 			return FFA_ERROR_INVALID_PARAMETER;
898 		}
899 
900 		total_page_count = 0;
901 
902 		for (size_t i = 0; i < count; i++) {
903 			total_page_count +=
904 				comp->address_range_array[i].page_count;
905 		}
906 		if (comp->total_page_count != total_page_count) {
907 			WARN("%s: invalid object, desc total_page_count %u != %" PRIu64 "\n",
908 			     __func__, comp->total_page_count,
909 			total_page_count);
910 			return FFA_ERROR_INVALID_PARAMETER;
911 		}
912 	}
913 	return 0;
914 }
915 
916 /**
917  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
918  *				regions that are currently involved with an
919  *				existing memory transactions. This implies that
920  *				the memory is not in a valid state for lending.
921  * @obj:    Object containing ffa_memory_region_descriptor.
922  *
923  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory
924  * state.
925  */
926 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
927 				      uint32_t ffa_version)
928 {
929 	size_t obj_offset = 0;
930 	struct spmc_shmem_obj *inflight_obj;
931 
932 	struct ffa_comp_mrd *other_mrd;
933 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
934 								  ffa_version);
935 
936 	if (requested_mrd == NULL) {
937 		return FFA_ERROR_INVALID_PARAMETER;
938 	}
939 
940 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
941 					       &obj_offset);
942 
943 	while (inflight_obj != NULL) {
944 		/*
945 		 * Don't compare the transaction to itself or to partially
946 		 * transmitted descriptors.
947 		 */
948 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
949 		    (obj->desc_size == obj->desc_filled)) {
950 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
951 							  FFA_VERSION_COMPILED);
952 			if (other_mrd == NULL) {
953 				return FFA_ERROR_INVALID_PARAMETER;
954 			}
955 			if (overlapping_memory_regions(requested_mrd,
956 						       other_mrd)) {
957 				return FFA_ERROR_INVALID_PARAMETER;
958 			}
959 		}
960 
961 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
962 						       &obj_offset);
963 	}
964 	return 0;
965 }
966 
967 static long spmc_ffa_fill_desc(struct mailbox *mbox,
968 			       struct spmc_shmem_obj *obj,
969 			       uint32_t fragment_length,
970 			       ffa_mtd_flag32_t mtd_flag,
971 			       uint32_t ffa_version,
972 			       void *smc_handle)
973 {
974 	int ret;
975 	size_t emad_size;
976 	uint32_t handle_low;
977 	uint32_t handle_high;
978 	struct ffa_emad_v1_0 *emad;
979 	struct ffa_emad_v1_0 *other_emad;
980 
981 	if (mbox->rxtx_page_count == 0U) {
982 		WARN("%s: buffer pair not registered.\n", __func__);
983 		ret = FFA_ERROR_INVALID_PARAMETER;
984 		goto err_arg;
985 	}
986 
987 	CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count);
988 	if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) {
989 		WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__,
990 		     fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB);
991 		ret = FFA_ERROR_INVALID_PARAMETER;
992 		goto err_arg;
993 	}
994 
995 	if (fragment_length > obj->desc_size - obj->desc_filled) {
996 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
997 		     fragment_length, obj->desc_size - obj->desc_filled);
998 		ret = FFA_ERROR_INVALID_PARAMETER;
999 		goto err_arg;
1000 	}
1001 
1002 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1003 	       (uint8_t *) mbox->tx_buffer, fragment_length);
1004 
1005 	/* Ensure that the sender ID resides in the normal world. */
1006 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1007 		WARN("%s: Invalid sender ID 0x%x.\n",
1008 		     __func__, obj->desc.sender_id);
1009 		ret = FFA_ERROR_DENIED;
1010 		goto err_arg;
1011 	}
1012 
1013 	/* Ensure the NS bit is set to 0. */
1014 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1015 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1016 		ret = FFA_ERROR_INVALID_PARAMETER;
1017 		goto err_arg;
1018 	}
1019 
1020 	/*
1021 	 * We don't currently support any optional flags so ensure none are
1022 	 * requested.
1023 	 */
1024 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
1025 	    (obj->desc.flags != mtd_flag)) {
1026 		WARN("%s: invalid memory transaction flags %u != %u\n",
1027 		     __func__, obj->desc.flags, mtd_flag);
1028 		ret = FFA_ERROR_INVALID_PARAMETER;
1029 		goto err_arg;
1030 	}
1031 
1032 	if (obj->desc_filled == 0U) {
1033 		/* First fragment, descriptor header has been copied */
1034 		ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1035 					      fragment_length, obj->desc_size);
1036 		if (ret != 0) {
1037 			goto err_bad_desc;
1038 		}
1039 
1040 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1041 		obj->desc.flags |= mtd_flag;
1042 	}
1043 
1044 	obj->desc_filled += fragment_length;
1045 
1046 	handle_low = (uint32_t)obj->desc.handle;
1047 	handle_high = obj->desc.handle >> 32;
1048 
1049 	if (obj->desc_filled != obj->desc_size) {
1050 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1051 			 handle_high, obj->desc_filled,
1052 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1053 	}
1054 
1055 	/* The full descriptor has been received, perform any final checks. */
1056 
1057 	ret = spmc_shmem_check_obj(obj, ffa_version);
1058 	if (ret != 0) {
1059 		goto err_bad_desc;
1060 	}
1061 
1062 	/* Ensure partition IDs are not duplicated. */
1063 	for (size_t i = 0; i < obj->desc.emad_count; i++) {
1064 		emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
1065 					       &emad_size);
1066 
1067 		for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
1068 			other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
1069 							     ffa_version,
1070 							     &emad_size);
1071 
1072 			if (emad->mapd.endpoint_id ==
1073 				other_emad->mapd.endpoint_id) {
1074 				WARN("%s: Duplicated endpoint id 0x%x\n",
1075 				     __func__, emad->mapd.endpoint_id);
1076 				ret = FFA_ERROR_INVALID_PARAMETER;
1077 				goto err_bad_desc;
1078 			}
1079 		}
1080 	}
1081 
1082 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1083 	if (ret) {
1084 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1085 		goto err_bad_desc;
1086 	}
1087 
1088 	/*
1089 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1090 	 * the descriptor format to use the v1.1 structures.
1091 	 */
1092 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1093 		struct spmc_shmem_obj *v1_1_obj;
1094 		uint64_t mem_handle;
1095 
1096 		/* Calculate the size that the v1.1 descriptor will required. */
1097 		uint64_t v1_1_desc_size =
1098 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1099 						      obj->desc_size);
1100 
1101 		if (v1_1_desc_size > UINT32_MAX) {
1102 			ret = FFA_ERROR_NO_MEMORY;
1103 			goto err_arg;
1104 		}
1105 
1106 		/* Get a new obj to store the v1.1 descriptor. */
1107 		v1_1_obj =
1108 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size);
1109 
1110 		if (!v1_1_obj) {
1111 			ret = FFA_ERROR_NO_MEMORY;
1112 			goto err_arg;
1113 		}
1114 
1115 		/* Perform the conversion from v1.0 to v1.1. */
1116 		v1_1_obj->desc_size = (uint32_t)v1_1_desc_size;
1117 		v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size;
1118 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1119 			ERROR("%s: Could not convert mtd!\n", __func__);
1120 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1121 			goto err_arg;
1122 		}
1123 
1124 		/*
1125 		 * We're finished with the v1.0 descriptor so free it
1126 		 * and continue our checks with the new v1.1 descriptor.
1127 		 */
1128 		mem_handle = obj->desc.handle;
1129 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1130 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1131 		if (obj == NULL) {
1132 			ERROR("%s: Failed to find converted descriptor.\n",
1133 			     __func__);
1134 			ret = FFA_ERROR_INVALID_PARAMETER;
1135 			return spmc_ffa_error_return(smc_handle, ret);
1136 		}
1137 	}
1138 
1139 	/* Allow for platform specific operations to be performed. */
1140 	ret = plat_spmc_shmem_begin(&obj->desc);
1141 	if (ret != 0) {
1142 		goto err_arg;
1143 	}
1144 
1145 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1146 		 0, 0, 0);
1147 
1148 err_bad_desc:
1149 err_arg:
1150 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1151 	return spmc_ffa_error_return(smc_handle, ret);
1152 }
1153 
1154 /**
1155  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1156  * @client:             Client state.
1157  * @total_length:       Total length of shared memory descriptor.
1158  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1159  *                      this call.
1160  * @address:            Not supported, must be 0.
1161  * @page_count:         Not supported, must be 0.
1162  * @smc_handle:         Handle passed to smc call. Used to return
1163  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1164  *
1165  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1166  * to share or lend memory from non-secure os to secure os (with no stream
1167  * endpoints).
1168  *
1169  * Return: 0 on success, error code on failure.
1170  */
1171 long spmc_ffa_mem_send(uint32_t smc_fid,
1172 			bool secure_origin,
1173 			uint64_t total_length,
1174 			uint32_t fragment_length,
1175 			uint64_t address,
1176 			uint32_t page_count,
1177 			void *cookie,
1178 			void *handle,
1179 			uint64_t flags)
1180 
1181 {
1182 	long ret;
1183 	struct spmc_shmem_obj *obj;
1184 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1185 	ffa_mtd_flag32_t mtd_flag;
1186 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1187 	size_t min_desc_size;
1188 
1189 	if (address != 0U || page_count != 0U) {
1190 		WARN("%s: custom memory region for message not supported.\n",
1191 		     __func__);
1192 		return spmc_ffa_error_return(handle,
1193 					     FFA_ERROR_INVALID_PARAMETER);
1194 	}
1195 
1196 	if (secure_origin) {
1197 		WARN("%s: unsupported share direction.\n", __func__);
1198 		return spmc_ffa_error_return(handle,
1199 					     FFA_ERROR_INVALID_PARAMETER);
1200 	}
1201 
1202 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1203 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1204 	} else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1205 		min_desc_size = sizeof(struct ffa_mtd);
1206 	} else {
1207 		WARN("%s: bad FF-A version.\n", __func__);
1208 		return spmc_ffa_error_return(handle,
1209 					     FFA_ERROR_INVALID_PARAMETER);
1210 	}
1211 
1212 	/* Check if the descriptor is too small for the FF-A version. */
1213 	if (fragment_length < min_desc_size) {
1214 		WARN("%s: bad first fragment size %u < %zu\n",
1215 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1216 		return spmc_ffa_error_return(handle,
1217 					     FFA_ERROR_INVALID_PARAMETER);
1218 	}
1219 
1220 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1221 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1222 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1223 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1224 	} else {
1225 		WARN("%s: invalid memory management operation.\n", __func__);
1226 		return spmc_ffa_error_return(handle,
1227 					     FFA_ERROR_INVALID_PARAMETER);
1228 	}
1229 
1230 	spin_lock(&spmc_shmem_obj_state.lock);
1231 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1232 	if (obj == NULL) {
1233 		ret = FFA_ERROR_NO_MEMORY;
1234 		goto err_unlock;
1235 	}
1236 
1237 	spin_lock(&mbox->lock);
1238 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1239 				 ffa_version, handle);
1240 	spin_unlock(&mbox->lock);
1241 
1242 	spin_unlock(&spmc_shmem_obj_state.lock);
1243 	return ret;
1244 
1245 err_unlock:
1246 	spin_unlock(&spmc_shmem_obj_state.lock);
1247 	return spmc_ffa_error_return(handle, ret);
1248 }
1249 
1250 /**
1251  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1252  * @client:             Client state.
1253  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1254  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1255  * @fragment_length:    Length of fragments transmitted.
1256  * @sender_id:          Vmid of sender in bits [31:16]
1257  * @smc_handle:         Handle passed to smc call. Used to return
1258  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1259  *
1260  * Return: @smc_handle on success, error code on failure.
1261  */
1262 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1263 			  bool secure_origin,
1264 			  uint64_t handle_low,
1265 			  uint64_t handle_high,
1266 			  uint32_t fragment_length,
1267 			  uint32_t sender_id,
1268 			  void *cookie,
1269 			  void *handle,
1270 			  uint64_t flags)
1271 {
1272 	long ret;
1273 	uint32_t desc_sender_id;
1274 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1275 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1276 
1277 	struct spmc_shmem_obj *obj;
1278 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1279 
1280 	spin_lock(&spmc_shmem_obj_state.lock);
1281 
1282 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1283 	if (obj == NULL) {
1284 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1285 		     __func__, mem_handle);
1286 		ret = FFA_ERROR_INVALID_PARAMETER;
1287 		goto err_unlock;
1288 	}
1289 
1290 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1291 	if (sender_id != desc_sender_id) {
1292 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1293 		     sender_id, desc_sender_id);
1294 		ret = FFA_ERROR_INVALID_PARAMETER;
1295 		goto err_unlock;
1296 	}
1297 
1298 	if (obj->desc_filled == obj->desc_size) {
1299 		WARN("%s: object desc already filled, %zu\n", __func__,
1300 		     obj->desc_filled);
1301 		ret = FFA_ERROR_INVALID_PARAMETER;
1302 		goto err_unlock;
1303 	}
1304 
1305 	spin_lock(&mbox->lock);
1306 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1307 				 handle);
1308 	spin_unlock(&mbox->lock);
1309 
1310 	spin_unlock(&spmc_shmem_obj_state.lock);
1311 	return ret;
1312 
1313 err_unlock:
1314 	spin_unlock(&spmc_shmem_obj_state.lock);
1315 	return spmc_ffa_error_return(handle, ret);
1316 }
1317 
1318 /**
1319  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1320  *				      if the caller implements a version greater
1321  *				      than FF-A 1.0 or if they have requested
1322  *				      the functionality.
1323  *				      TODO: We are assuming that the caller is
1324  *				      an SP. To support retrieval from the
1325  *				      normal world this function will need to be
1326  *				      expanded accordingly.
1327  * @resp:       Descriptor populated in callers RX buffer.
1328  * @sp_ctx:     Context of the calling SP.
1329  */
1330 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1331 			 struct secure_partition_desc *sp_ctx)
1332 {
1333 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1334 	    sp_ctx->ns_bit_requested) {
1335 		/*
1336 		 * Currently memory senders must reside in the normal
1337 		 * world, and we do not have the functionlaity to change
1338 		 * the state of memory dynamically. Therefore we can always set
1339 		 * the NS bit to 1.
1340 		 */
1341 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1342 	}
1343 }
1344 
1345 /**
1346  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1347  * @smc_fid:            FID of SMC
1348  * @total_length:       Total length of retrieve request descriptor if this is
1349  *                      the first call. Otherwise (unsupported) must be 0.
1350  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1351  *                      in this call. Only @fragment_length == @length is
1352  *                      supported by this implementation.
1353  * @address:            Not supported, must be 0.
1354  * @page_count:         Not supported, must be 0.
1355  * @smc_handle:         Handle passed to smc call. Used to return
1356  *                      FFA_MEM_RETRIEVE_RESP.
1357  *
1358  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1359  * Used by secure os to retrieve memory already shared by non-secure os.
1360  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1361  * the client must call FFA_MEM_FRAG_RX until the full response has been
1362  * received.
1363  *
1364  * Return: @handle on success, error code on failure.
1365  */
1366 long
1367 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1368 			  bool secure_origin,
1369 			  uint32_t total_length,
1370 			  uint32_t fragment_length,
1371 			  uint64_t address,
1372 			  uint32_t page_count,
1373 			  void *cookie,
1374 			  void *handle,
1375 			  uint64_t flags)
1376 {
1377 	int ret;
1378 	size_t buf_size;
1379 	size_t copy_size = 0;
1380 	size_t min_desc_size;
1381 	size_t out_desc_size = 0;
1382 
1383 	/*
1384 	 * Currently we are only accessing fields that are the same in both the
1385 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1386 	 * here. We only need validate against the appropriate struct size.
1387 	 */
1388 	struct ffa_mtd *resp;
1389 	const struct ffa_mtd *req;
1390 	struct spmc_shmem_obj *obj = NULL;
1391 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1392 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1393 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1394 
1395 	if (!secure_origin) {
1396 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1397 		return spmc_ffa_error_return(handle,
1398 					     FFA_ERROR_INVALID_PARAMETER);
1399 	}
1400 
1401 	if (address != 0U || page_count != 0U) {
1402 		WARN("%s: custom memory region not supported.\n", __func__);
1403 		return spmc_ffa_error_return(handle,
1404 					     FFA_ERROR_INVALID_PARAMETER);
1405 	}
1406 
1407 	spin_lock(&mbox->lock);
1408 
1409 	req = mbox->tx_buffer;
1410 	resp = mbox->rx_buffer;
1411 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1412 
1413 	if (mbox->rxtx_page_count == 0U) {
1414 		WARN("%s: buffer pair not registered.\n", __func__);
1415 		ret = FFA_ERROR_INVALID_PARAMETER;
1416 		goto err_unlock_mailbox;
1417 	}
1418 
1419 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1420 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1421 		ret = FFA_ERROR_DENIED;
1422 		goto err_unlock_mailbox;
1423 	}
1424 
1425 	if (fragment_length != total_length) {
1426 		WARN("%s: fragmented retrieve request not supported.\n",
1427 		     __func__);
1428 		ret = FFA_ERROR_INVALID_PARAMETER;
1429 		goto err_unlock_mailbox;
1430 	}
1431 
1432 	if (req->emad_count == 0U) {
1433 		WARN("%s: unsupported attribute desc count %u.\n",
1434 		     __func__, obj->desc.emad_count);
1435 		ret = FFA_ERROR_INVALID_PARAMETER;
1436 		goto err_unlock_mailbox;
1437 	}
1438 
1439 	/* Determine the appropriate minimum descriptor size. */
1440 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1441 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1442 	} else {
1443 		min_desc_size = sizeof(struct ffa_mtd);
1444 	}
1445 	if (total_length < min_desc_size) {
1446 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1447 		     min_desc_size);
1448 		ret = FFA_ERROR_INVALID_PARAMETER;
1449 		goto err_unlock_mailbox;
1450 	}
1451 
1452 	spin_lock(&spmc_shmem_obj_state.lock);
1453 
1454 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1455 	if (obj == NULL) {
1456 		ret = FFA_ERROR_INVALID_PARAMETER;
1457 		goto err_unlock_all;
1458 	}
1459 
1460 	if (obj->desc_filled != obj->desc_size) {
1461 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1462 		     __func__, obj->desc_filled, obj->desc_size);
1463 		ret = FFA_ERROR_INVALID_PARAMETER;
1464 		goto err_unlock_all;
1465 	}
1466 
1467 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1468 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1469 		     __func__, req->sender_id, obj->desc.sender_id);
1470 		ret = FFA_ERROR_INVALID_PARAMETER;
1471 		goto err_unlock_all;
1472 	}
1473 
1474 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1475 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1476 		     __func__, req->tag, obj->desc.tag);
1477 		ret = FFA_ERROR_INVALID_PARAMETER;
1478 		goto err_unlock_all;
1479 	}
1480 
1481 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1482 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1483 		     __func__, req->emad_count, obj->desc.emad_count);
1484 		ret = FFA_ERROR_INVALID_PARAMETER;
1485 		goto err_unlock_all;
1486 	}
1487 
1488 	/* Ensure the NS bit is set to 0 in the request. */
1489 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1490 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1491 		ret = FFA_ERROR_INVALID_PARAMETER;
1492 		goto err_unlock_all;
1493 	}
1494 
1495 	if (req->flags != 0U) {
1496 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1497 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1498 			/*
1499 			 * If the retrieve request specifies the memory
1500 			 * transaction ensure it matches what we expect.
1501 			 */
1502 			WARN("%s: wrong mem transaction flags %x != %x\n",
1503 			__func__, req->flags, obj->desc.flags);
1504 			ret = FFA_ERROR_INVALID_PARAMETER;
1505 			goto err_unlock_all;
1506 		}
1507 
1508 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1509 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1510 			/*
1511 			 * Current implementation does not support donate and
1512 			 * it supports no other flags.
1513 			 */
1514 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1515 			ret = FFA_ERROR_INVALID_PARAMETER;
1516 			goto err_unlock_all;
1517 		}
1518 	}
1519 
1520 	/* Validate the caller is a valid participant. */
1521 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1522 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1523 			__func__, sp_ctx->sp_id);
1524 		ret = FFA_ERROR_INVALID_PARAMETER;
1525 		goto err_unlock_all;
1526 	}
1527 
1528 	/* Validate that the provided emad offset and structure is valid.*/
1529 	for (size_t i = 0; i < req->emad_count; i++) {
1530 		size_t emad_size;
1531 		struct ffa_emad_v1_0 *emad;
1532 
1533 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1534 					       &emad_size);
1535 
1536 		if ((uintptr_t) emad >= (uintptr_t)
1537 					((uint8_t *) req + total_length)) {
1538 			WARN("Invalid emad access.\n");
1539 			ret = FFA_ERROR_INVALID_PARAMETER;
1540 			goto err_unlock_all;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Validate all the endpoints match in the case of multiple
1546 	 * borrowers. We don't mandate that the order of the borrowers
1547 	 * must match in the descriptors therefore check to see if the
1548 	 * endpoints match in any order.
1549 	 */
1550 	for (size_t i = 0; i < req->emad_count; i++) {
1551 		bool found = false;
1552 		size_t emad_size;
1553 		struct ffa_emad_v1_0 *emad;
1554 		struct ffa_emad_v1_0 *other_emad;
1555 
1556 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1557 					       &emad_size);
1558 
1559 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1560 			other_emad = spmc_shmem_obj_get_emad(
1561 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1562 					&emad_size);
1563 
1564 			if (req->emad_count &&
1565 			    emad->mapd.endpoint_id ==
1566 			    other_emad->mapd.endpoint_id) {
1567 				found = true;
1568 				break;
1569 			}
1570 		}
1571 
1572 		if (!found) {
1573 			WARN("%s: invalid receiver id (0x%x).\n",
1574 			     __func__, emad->mapd.endpoint_id);
1575 			ret = FFA_ERROR_INVALID_PARAMETER;
1576 			goto err_unlock_all;
1577 		}
1578 	}
1579 
1580 	mbox->state = MAILBOX_STATE_FULL;
1581 
1582 	if (req->emad_count != 0U) {
1583 		obj->in_use++;
1584 	}
1585 
1586 	/*
1587 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1588 	 * directly.
1589 	 */
1590 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1591 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1592 							&copy_size,
1593 							&out_desc_size);
1594 		if (ret != 0U) {
1595 			ERROR("%s: Failed to process descriptor.\n", __func__);
1596 			goto err_unlock_all;
1597 		}
1598 	} else {
1599 		copy_size = MIN(obj->desc_size, buf_size);
1600 		out_desc_size = obj->desc_size;
1601 
1602 		memcpy(resp, &obj->desc, copy_size);
1603 	}
1604 
1605 	/* Set the NS bit in the response if applicable. */
1606 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1607 
1608 	spin_unlock(&spmc_shmem_obj_state.lock);
1609 	spin_unlock(&mbox->lock);
1610 
1611 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1612 		 copy_size, 0, 0, 0, 0, 0);
1613 
1614 err_unlock_all:
1615 	spin_unlock(&spmc_shmem_obj_state.lock);
1616 err_unlock_mailbox:
1617 	spin_unlock(&mbox->lock);
1618 	return spmc_ffa_error_return(handle, ret);
1619 }
1620 
1621 /**
1622  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1623  * @client:             Client state.
1624  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1625  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1626  * @fragment_offset:    Byte offset in descriptor to resume at.
1627  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1628  *                      hypervisor. 0 otherwise.
1629  * @smc_handle:         Handle passed to smc call. Used to return
1630  *                      FFA_MEM_FRAG_TX.
1631  *
1632  * Return: @smc_handle on success, error code on failure.
1633  */
1634 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1635 			  bool secure_origin,
1636 			  uint32_t handle_low,
1637 			  uint32_t handle_high,
1638 			  uint32_t fragment_offset,
1639 			  uint32_t sender_id,
1640 			  void *cookie,
1641 			  void *handle,
1642 			  uint64_t flags)
1643 {
1644 	int ret;
1645 	void *src;
1646 	size_t buf_size;
1647 	size_t copy_size;
1648 	size_t full_copy_size;
1649 	uint32_t desc_sender_id;
1650 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1651 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1652 	struct spmc_shmem_obj *obj;
1653 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1654 
1655 	if (!secure_origin) {
1656 		WARN("%s: can only be called from swld.\n",
1657 		     __func__);
1658 		return spmc_ffa_error_return(handle,
1659 					     FFA_ERROR_INVALID_PARAMETER);
1660 	}
1661 
1662 	spin_lock(&spmc_shmem_obj_state.lock);
1663 
1664 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1665 	if (obj == NULL) {
1666 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1667 		     __func__, mem_handle);
1668 		ret = FFA_ERROR_INVALID_PARAMETER;
1669 		goto err_unlock_shmem;
1670 	}
1671 
1672 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1673 	if (sender_id != 0U && sender_id != desc_sender_id) {
1674 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1675 		     sender_id, desc_sender_id);
1676 		ret = FFA_ERROR_INVALID_PARAMETER;
1677 		goto err_unlock_shmem;
1678 	}
1679 
1680 	if (fragment_offset >= obj->desc_size) {
1681 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1682 		     __func__, fragment_offset, obj->desc_size);
1683 		ret = FFA_ERROR_INVALID_PARAMETER;
1684 		goto err_unlock_shmem;
1685 	}
1686 
1687 	spin_lock(&mbox->lock);
1688 
1689 	if (mbox->rxtx_page_count == 0U) {
1690 		WARN("%s: buffer pair not registered.\n", __func__);
1691 		ret = FFA_ERROR_INVALID_PARAMETER;
1692 		goto err_unlock_all;
1693 	}
1694 
1695 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1696 		WARN("%s: RX Buffer is full!\n", __func__);
1697 		ret = FFA_ERROR_DENIED;
1698 		goto err_unlock_all;
1699 	}
1700 
1701 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1702 
1703 	mbox->state = MAILBOX_STATE_FULL;
1704 
1705 	/*
1706 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1707 	 * directly.
1708 	 */
1709 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1710 		size_t out_desc_size;
1711 
1712 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1713 							buf_size,
1714 							fragment_offset,
1715 							&copy_size,
1716 							&out_desc_size);
1717 		if (ret != 0U) {
1718 			ERROR("%s: Failed to process descriptor.\n", __func__);
1719 			goto err_unlock_all;
1720 		}
1721 	} else {
1722 		full_copy_size = obj->desc_size - fragment_offset;
1723 		copy_size = MIN(full_copy_size, buf_size);
1724 
1725 		src = &obj->desc;
1726 
1727 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1728 	}
1729 
1730 	spin_unlock(&mbox->lock);
1731 	spin_unlock(&spmc_shmem_obj_state.lock);
1732 
1733 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1734 		 copy_size, sender_id, 0, 0, 0);
1735 
1736 err_unlock_all:
1737 	spin_unlock(&mbox->lock);
1738 err_unlock_shmem:
1739 	spin_unlock(&spmc_shmem_obj_state.lock);
1740 	return spmc_ffa_error_return(handle, ret);
1741 }
1742 
1743 /**
1744  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1745  * @client:             Client state.
1746  *
1747  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1748  * Used by secure os release previously shared memory to non-secure os.
1749  *
1750  * The handle to release must be in the client's (secure os's) transmit buffer.
1751  *
1752  * Return: 0 on success, error code on failure.
1753  */
1754 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1755 			    bool secure_origin,
1756 			    uint32_t handle_low,
1757 			    uint32_t handle_high,
1758 			    uint32_t fragment_offset,
1759 			    uint32_t sender_id,
1760 			    void *cookie,
1761 			    void *handle,
1762 			    uint64_t flags)
1763 {
1764 	int ret;
1765 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1766 	struct spmc_shmem_obj *obj;
1767 	const struct ffa_mem_relinquish_descriptor *req;
1768 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1769 
1770 	if (!secure_origin) {
1771 		WARN("%s: unsupported relinquish direction.\n", __func__);
1772 		return spmc_ffa_error_return(handle,
1773 					     FFA_ERROR_INVALID_PARAMETER);
1774 	}
1775 
1776 	spin_lock(&mbox->lock);
1777 
1778 	if (mbox->rxtx_page_count == 0U) {
1779 		WARN("%s: buffer pair not registered.\n", __func__);
1780 		ret = FFA_ERROR_INVALID_PARAMETER;
1781 		goto err_unlock_mailbox;
1782 	}
1783 
1784 	req = mbox->tx_buffer;
1785 
1786 	if (req->flags != 0U) {
1787 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1788 		ret = FFA_ERROR_INVALID_PARAMETER;
1789 		goto err_unlock_mailbox;
1790 	}
1791 
1792 	if (req->endpoint_count == 0) {
1793 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1794 		ret = FFA_ERROR_INVALID_PARAMETER;
1795 		goto err_unlock_mailbox;
1796 	}
1797 
1798 	spin_lock(&spmc_shmem_obj_state.lock);
1799 
1800 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1801 	if (obj == NULL) {
1802 		ret = FFA_ERROR_INVALID_PARAMETER;
1803 		goto err_unlock_all;
1804 	}
1805 
1806 	/*
1807 	 * Validate the endpoint ID was populated correctly. We don't currently
1808 	 * support proxy endpoints so the endpoint count should always be 1.
1809 	 */
1810 	if (req->endpoint_count != 1U) {
1811 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1812 		     req->endpoint_count);
1813 		ret = FFA_ERROR_INVALID_PARAMETER;
1814 		goto err_unlock_all;
1815 	}
1816 
1817 	/* Validate provided endpoint ID matches the partition ID. */
1818 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1819 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1820 		     req->endpoint_array[0], sp_ctx->sp_id);
1821 		ret = FFA_ERROR_INVALID_PARAMETER;
1822 		goto err_unlock_all;
1823 	}
1824 
1825 	/* Validate the caller is a valid participant. */
1826 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1827 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1828 			__func__, req->endpoint_array[0]);
1829 		ret = FFA_ERROR_INVALID_PARAMETER;
1830 		goto err_unlock_all;
1831 	}
1832 
1833 	if (obj->in_use == 0U) {
1834 		ret = FFA_ERROR_INVALID_PARAMETER;
1835 		goto err_unlock_all;
1836 	}
1837 	obj->in_use--;
1838 
1839 	spin_unlock(&spmc_shmem_obj_state.lock);
1840 	spin_unlock(&mbox->lock);
1841 
1842 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1843 
1844 err_unlock_all:
1845 	spin_unlock(&spmc_shmem_obj_state.lock);
1846 err_unlock_mailbox:
1847 	spin_unlock(&mbox->lock);
1848 	return spmc_ffa_error_return(handle, ret);
1849 }
1850 
1851 /**
1852  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1853  * @client:         Client state.
1854  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1855  * @handle_high:    Unique handle of shared memory object to reclaim.
1856  *                  Bit[63:32].
1857  * @flags:          Unsupported, ignored.
1858  *
1859  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1860  * Used by non-secure os reclaim memory previously shared with secure os.
1861  *
1862  * Return: 0 on success, error code on failure.
1863  */
1864 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1865 			 bool secure_origin,
1866 			 uint32_t handle_low,
1867 			 uint32_t handle_high,
1868 			 uint32_t mem_flags,
1869 			 uint64_t x4,
1870 			 void *cookie,
1871 			 void *handle,
1872 			 uint64_t flags)
1873 {
1874 	int ret;
1875 	struct spmc_shmem_obj *obj;
1876 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1877 
1878 	if (secure_origin) {
1879 		WARN("%s: unsupported reclaim direction.\n", __func__);
1880 		return spmc_ffa_error_return(handle,
1881 					     FFA_ERROR_INVALID_PARAMETER);
1882 	}
1883 
1884 	if (mem_flags != 0U) {
1885 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1886 		return spmc_ffa_error_return(handle,
1887 					     FFA_ERROR_INVALID_PARAMETER);
1888 	}
1889 
1890 	spin_lock(&spmc_shmem_obj_state.lock);
1891 
1892 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1893 	if (obj == NULL) {
1894 		ret = FFA_ERROR_INVALID_PARAMETER;
1895 		goto err_unlock;
1896 	}
1897 	if (obj->in_use != 0U) {
1898 		ret = FFA_ERROR_DENIED;
1899 		goto err_unlock;
1900 	}
1901 
1902 	if (obj->desc_filled != obj->desc_size) {
1903 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1904 		     __func__, obj->desc_filled, obj->desc_size);
1905 		ret = FFA_ERROR_INVALID_PARAMETER;
1906 		goto err_unlock;
1907 	}
1908 
1909 	/* Allow for platform specific operations to be performed. */
1910 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1911 	if (ret != 0) {
1912 		goto err_unlock;
1913 	}
1914 
1915 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1916 	spin_unlock(&spmc_shmem_obj_state.lock);
1917 
1918 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1919 
1920 err_unlock:
1921 	spin_unlock(&spmc_shmem_obj_state.lock);
1922 	return spmc_ffa_error_return(handle, ret);
1923 }
1924