1 /* 2 * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 #include <assert.h> 7 #include <errno.h> 8 9 #include <common/debug.h> 10 #include <common/runtime_svc.h> 11 #include <lib/object_pool.h> 12 #include <lib/spinlock.h> 13 #include <lib/xlat_tables/xlat_tables_v2.h> 14 #include <services/ffa_svc.h> 15 #include "spmc.h" 16 #include "spmc_shared_mem.h" 17 18 #include <platform_def.h> 19 20 /** 21 * struct spmc_shmem_obj - Shared memory object. 22 * @desc_size: Size of @desc. 23 * @desc_filled: Size of @desc already received. 24 * @in_use: Number of clients that have called ffa_mem_retrieve_req 25 * without a matching ffa_mem_relinquish call. 26 * @desc: FF-A memory region descriptor passed in ffa_mem_share. 27 */ 28 struct spmc_shmem_obj { 29 size_t desc_size; 30 size_t desc_filled; 31 size_t in_use; 32 struct ffa_mtd desc; 33 }; 34 35 /* 36 * Declare our data structure to store the metadata of memory share requests. 37 * The main datastore is allocated on a per platform basis to ensure enough 38 * storage can be made available. 39 * The address of the data store will be populated by the SPMC during its 40 * initialization. 41 */ 42 43 struct spmc_shmem_obj_state spmc_shmem_obj_state = { 44 /* Set start value for handle so top 32 bits are needed quickly. */ 45 .next_handle = 0xffffffc0U, 46 }; 47 48 /** 49 * spmc_shmem_obj_size - Convert from descriptor size to object size. 50 * @desc_size: Size of struct ffa_memory_region_descriptor object. 51 * 52 * Return: Size of struct spmc_shmem_obj object. 53 */ 54 static size_t spmc_shmem_obj_size(size_t desc_size) 55 { 56 return desc_size + offsetof(struct spmc_shmem_obj, desc); 57 } 58 59 /** 60 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj. 61 * @state: Global state. 62 * @desc_size: Size of struct ffa_memory_region_descriptor object that 63 * allocated object will hold. 64 * 65 * Return: Pointer to newly allocated object, or %NULL if there not enough space 66 * left. The returned pointer is only valid while @state is locked, to 67 * used it again after unlocking @state, spmc_shmem_obj_lookup must be 68 * called. 69 */ 70 static struct spmc_shmem_obj * 71 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size) 72 { 73 struct spmc_shmem_obj *obj; 74 size_t free = state->data_size - state->allocated; 75 76 if (state->data == NULL) { 77 ERROR("Missing shmem datastore!\n"); 78 return NULL; 79 } 80 81 if (spmc_shmem_obj_size(desc_size) > free) { 82 WARN("%s(0x%zx) failed, free 0x%zx\n", 83 __func__, desc_size, free); 84 return NULL; 85 } 86 obj = (struct spmc_shmem_obj *)(state->data + state->allocated); 87 obj->desc = (struct ffa_mtd) {0}; 88 obj->desc_size = desc_size; 89 obj->desc_filled = 0; 90 obj->in_use = 0; 91 state->allocated += spmc_shmem_obj_size(desc_size); 92 return obj; 93 } 94 95 /** 96 * spmc_shmem_obj_free - Free struct spmc_shmem_obj. 97 * @state: Global state. 98 * @obj: Object to free. 99 * 100 * Release memory used by @obj. Other objects may move, so on return all 101 * pointers to struct spmc_shmem_obj object should be considered invalid, not 102 * just @obj. 103 * 104 * The current implementation always compacts the remaining objects to simplify 105 * the allocator and to avoid fragmentation. 106 */ 107 108 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state, 109 struct spmc_shmem_obj *obj) 110 { 111 size_t free_size = spmc_shmem_obj_size(obj->desc_size); 112 uint8_t *shift_dest = (uint8_t *)obj; 113 uint8_t *shift_src = shift_dest + free_size; 114 size_t shift_size = state->allocated - (shift_src - state->data); 115 116 if (shift_size != 0U) { 117 memmove(shift_dest, shift_src, shift_size); 118 } 119 state->allocated -= free_size; 120 } 121 122 /** 123 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle. 124 * @state: Global state. 125 * @handle: Unique handle of object to return. 126 * 127 * Return: struct spmc_shmem_obj_state object with handle matching @handle. 128 * %NULL, if not object in @state->data has a matching handle. 129 */ 130 static struct spmc_shmem_obj * 131 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle) 132 { 133 uint8_t *curr = state->data; 134 135 while (curr - state->data < state->allocated) { 136 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 137 138 if (obj->desc.handle == handle) { 139 return obj; 140 } 141 curr += spmc_shmem_obj_size(obj->desc_size); 142 } 143 return NULL; 144 } 145 146 /** 147 * spmc_shmem_obj_get_next - Get the next memory object from an offset. 148 * @offset: Offset used to track which objects have previously been 149 * returned. 150 * 151 * Return: the next struct spmc_shmem_obj_state object from the provided 152 * offset. 153 * %NULL, if there are no more objects. 154 */ 155 static struct spmc_shmem_obj * 156 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset) 157 { 158 uint8_t *curr = state->data + *offset; 159 160 if (curr - state->data < state->allocated) { 161 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr; 162 163 *offset += spmc_shmem_obj_size(obj->desc_size); 164 165 return obj; 166 } 167 return NULL; 168 } 169 170 /******************************************************************************* 171 * FF-A memory descriptor helper functions. 172 ******************************************************************************/ 173 /** 174 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the 175 * clients FF-A version. 176 * @desc: The memory transaction descriptor. 177 * @index: The index of the emad element to be accessed. 178 * @ffa_version: FF-A version of the provided structure. 179 * @emad_size: Will be populated with the size of the returned emad 180 * descriptor. 181 * Return: A pointer to the requested emad structure. 182 */ 183 static void * 184 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index, 185 uint32_t ffa_version, size_t *emad_size) 186 { 187 uint8_t *emad; 188 /* 189 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0 190 * format, otherwise assume it is a v1.1 format. 191 */ 192 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 193 /* Cast our descriptor to the v1.0 format. */ 194 struct ffa_mtd_v1_0 *mtd_v1_0 = 195 (struct ffa_mtd_v1_0 *) desc; 196 emad = (uint8_t *) &(mtd_v1_0->emad); 197 *emad_size = sizeof(struct ffa_emad_v1_0); 198 } else { 199 if (!is_aligned(desc->emad_offset, 16)) { 200 WARN("Emad offset is not aligned.\n"); 201 return NULL; 202 } 203 emad = ((uint8_t *) desc + desc->emad_offset); 204 *emad_size = desc->emad_size; 205 } 206 return (emad + (*emad_size * index)); 207 } 208 209 /** 210 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the 211 * FF-A version of the descriptor. 212 * @obj: Object containing ffa_memory_region_descriptor. 213 * 214 * Return: struct ffa_comp_mrd object corresponding to the composite memory 215 * region descriptor. 216 */ 217 static struct ffa_comp_mrd * 218 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version) 219 { 220 size_t emad_size; 221 /* 222 * The comp_mrd_offset field of the emad descriptor remains consistent 223 * between FF-A versions therefore we can use the v1.0 descriptor here 224 * in all cases. 225 */ 226 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0, 227 ffa_version, 228 &emad_size); 229 /* Ensure the emad array was found. */ 230 if (emad == NULL) { 231 return NULL; 232 } 233 234 /* Ensure the composite descriptor offset is aligned. */ 235 if (!is_aligned(emad->comp_mrd_offset, 8)) { 236 WARN("Unaligned composite memory region descriptor offset.\n"); 237 return NULL; 238 } 239 240 return (struct ffa_comp_mrd *) 241 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset); 242 } 243 244 /** 245 * spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj. 246 * @obj: Object containing ffa_memory_region_descriptor. 247 * 248 * Return: Size of ffa_constituent_memory_region_descriptors in @obj. 249 */ 250 static size_t 251 spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj, 252 uint32_t ffa_version) 253 { 254 struct ffa_comp_mrd *comp_mrd; 255 256 comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 257 if (comp_mrd == NULL) { 258 return 0; 259 } 260 return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd); 261 } 262 263 /** 264 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in 265 * a given memory transaction. 266 * @sp_id: Partition ID to validate. 267 * @desc: Descriptor of the memory transaction. 268 * 269 * Return: true if ID is valid, else false. 270 */ 271 bool spmc_shmem_obj_validate_id(const struct ffa_mtd *desc, uint16_t sp_id) 272 { 273 bool found = false; 274 275 /* Validate the partition is a valid participant. */ 276 for (unsigned int i = 0U; i < desc->emad_count; i++) { 277 size_t emad_size; 278 struct ffa_emad_v1_0 *emad; 279 280 emad = spmc_shmem_obj_get_emad(desc, i, 281 MAKE_FFA_VERSION(1, 1), 282 &emad_size); 283 if (sp_id == emad->mapd.endpoint_id) { 284 found = true; 285 break; 286 } 287 } 288 return found; 289 } 290 291 /* 292 * Compare two memory regions to determine if any range overlaps with another 293 * ongoing memory transaction. 294 */ 295 static bool 296 overlapping_memory_regions(struct ffa_comp_mrd *region1, 297 struct ffa_comp_mrd *region2) 298 { 299 uint64_t region1_start; 300 uint64_t region1_size; 301 uint64_t region1_end; 302 uint64_t region2_start; 303 uint64_t region2_size; 304 uint64_t region2_end; 305 306 assert(region1 != NULL); 307 assert(region2 != NULL); 308 309 if (region1 == region2) { 310 return true; 311 } 312 313 /* 314 * Check each memory region in the request against existing 315 * transactions. 316 */ 317 for (size_t i = 0; i < region1->address_range_count; i++) { 318 319 region1_start = region1->address_range_array[i].address; 320 region1_size = 321 region1->address_range_array[i].page_count * 322 PAGE_SIZE_4KB; 323 region1_end = region1_start + region1_size; 324 325 for (size_t j = 0; j < region2->address_range_count; j++) { 326 327 region2_start = region2->address_range_array[j].address; 328 region2_size = 329 region2->address_range_array[j].page_count * 330 PAGE_SIZE_4KB; 331 region2_end = region2_start + region2_size; 332 333 /* Check if regions are not overlapping. */ 334 if (!((region2_end <= region1_start) || 335 (region1_end <= region2_start))) { 336 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n", 337 region1_start, region1_end, 338 region2_start, region2_end); 339 return true; 340 } 341 } 342 } 343 return false; 344 } 345 346 /******************************************************************************* 347 * FF-A v1.0 Memory Descriptor Conversion Helpers. 348 ******************************************************************************/ 349 /** 350 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1 351 * converted descriptor. 352 * @orig: The original v1.0 memory transaction descriptor. 353 * @desc_size: The size of the original v1.0 memory transaction descriptor. 354 * 355 * Return: the size required to store the descriptor store in the v1.1 format. 356 */ 357 static size_t 358 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size) 359 { 360 size_t size = 0; 361 struct ffa_comp_mrd *mrd; 362 struct ffa_emad_v1_0 *emad_array = orig->emad; 363 364 /* Get the size of the v1.1 descriptor. */ 365 size += sizeof(struct ffa_mtd); 366 367 /* Add the size of the emad descriptors. */ 368 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 369 370 /* Add the size of the composite mrds. */ 371 size += sizeof(struct ffa_comp_mrd); 372 373 /* Add the size of the constituent mrds. */ 374 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 375 emad_array[0].comp_mrd_offset); 376 377 /* Check the calculated address is within the memory descriptor. */ 378 if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) { 379 return 0; 380 } 381 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 382 383 return size; 384 } 385 386 /** 387 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0 388 * converted descriptor. 389 * @orig: The original v1.1 memory transaction descriptor. 390 * @desc_size: The size of the original v1.1 memory transaction descriptor. 391 * 392 * Return: the size required to store the descriptor store in the v1.0 format. 393 */ 394 static size_t 395 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size) 396 { 397 size_t size = 0; 398 struct ffa_comp_mrd *mrd; 399 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *) 400 ((uint8_t *) orig + 401 orig->emad_offset); 402 403 /* Get the size of the v1.0 descriptor. */ 404 size += sizeof(struct ffa_mtd_v1_0); 405 406 /* Add the size of the v1.0 emad descriptors. */ 407 size += orig->emad_count * sizeof(struct ffa_emad_v1_0); 408 409 /* Add the size of the composite mrds. */ 410 size += sizeof(struct ffa_comp_mrd); 411 412 /* Add the size of the constituent mrds. */ 413 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig + 414 emad_array[0].comp_mrd_offset); 415 416 /* Check the calculated address is within the memory descriptor. */ 417 if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) { 418 return 0; 419 } 420 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd); 421 422 return size; 423 } 424 425 /** 426 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object. 427 * @out_obj: The shared memory object to populate the converted descriptor. 428 * @orig: The shared memory object containing the v1.0 descriptor. 429 * 430 * Return: true if the conversion is successful else false. 431 */ 432 static bool 433 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj, 434 struct spmc_shmem_obj *orig) 435 { 436 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc; 437 struct ffa_mtd *out = &out_obj->desc; 438 struct ffa_emad_v1_0 *emad_array_in; 439 struct ffa_emad_v1_0 *emad_array_out; 440 struct ffa_comp_mrd *mrd_in; 441 struct ffa_comp_mrd *mrd_out; 442 443 size_t mrd_in_offset; 444 size_t mrd_out_offset; 445 size_t mrd_size = 0; 446 447 /* Populate the new descriptor format from the v1.0 struct. */ 448 out->sender_id = mtd_orig->sender_id; 449 out->memory_region_attributes = mtd_orig->memory_region_attributes; 450 out->flags = mtd_orig->flags; 451 out->handle = mtd_orig->handle; 452 out->tag = mtd_orig->tag; 453 out->emad_count = mtd_orig->emad_count; 454 out->emad_size = sizeof(struct ffa_emad_v1_0); 455 456 /* 457 * We will locate the emad descriptors directly after the ffa_mtd 458 * struct. This will be 8-byte aligned. 459 */ 460 out->emad_offset = sizeof(struct ffa_mtd); 461 462 emad_array_in = mtd_orig->emad; 463 emad_array_out = (struct ffa_emad_v1_0 *) 464 ((uint8_t *) out + out->emad_offset); 465 466 /* Copy across the emad structs. */ 467 for (unsigned int i = 0U; i < out->emad_count; i++) { 468 memcpy(&emad_array_out[i], &emad_array_in[i], 469 sizeof(struct ffa_emad_v1_0)); 470 } 471 472 /* Place the mrd descriptors after the end of the emad descriptors.*/ 473 mrd_in_offset = emad_array_in->comp_mrd_offset; 474 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count); 475 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 476 477 /* Add the size of the composite memory region descriptor. */ 478 mrd_size += sizeof(struct ffa_comp_mrd); 479 480 /* Find the mrd descriptor. */ 481 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 482 483 /* Add the size of the constituent memory region descriptors. */ 484 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 485 486 /* 487 * Update the offset in the emads by the delta between the input and 488 * output addresses. 489 */ 490 for (unsigned int i = 0U; i < out->emad_count; i++) { 491 emad_array_out[i].comp_mrd_offset = 492 emad_array_in[i].comp_mrd_offset + 493 (mrd_out_offset - mrd_in_offset); 494 } 495 496 /* Verify that we stay within bound of the memory descriptors. */ 497 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 498 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 499 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 500 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 501 ERROR("%s: Invalid mrd structure.\n", __func__); 502 return false; 503 } 504 505 /* Copy the mrd descriptors directly. */ 506 memcpy(mrd_out, mrd_in, mrd_size); 507 508 return true; 509 } 510 511 /** 512 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to 513 * v1.0 memory object. 514 * @out_obj: The shared memory object to populate the v1.0 descriptor. 515 * @orig: The shared memory object containing the v1.1 descriptor. 516 * 517 * Return: true if the conversion is successful else false. 518 */ 519 static bool 520 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj, 521 struct spmc_shmem_obj *orig) 522 { 523 struct ffa_mtd *mtd_orig = &orig->desc; 524 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc; 525 struct ffa_emad_v1_0 *emad_in; 526 struct ffa_emad_v1_0 *emad_array_in; 527 struct ffa_emad_v1_0 *emad_array_out; 528 struct ffa_comp_mrd *mrd_in; 529 struct ffa_comp_mrd *mrd_out; 530 531 size_t mrd_in_offset; 532 size_t mrd_out_offset; 533 size_t emad_out_array_size; 534 size_t mrd_size = 0; 535 536 /* Populate the v1.0 descriptor format from the v1.1 struct. */ 537 out->sender_id = mtd_orig->sender_id; 538 out->memory_region_attributes = mtd_orig->memory_region_attributes; 539 out->flags = mtd_orig->flags; 540 out->handle = mtd_orig->handle; 541 out->tag = mtd_orig->tag; 542 out->emad_count = mtd_orig->emad_count; 543 544 /* Determine the location of the emad array in both descriptors. */ 545 emad_array_in = (struct ffa_emad_v1_0 *) 546 ((uint8_t *) mtd_orig + mtd_orig->emad_offset); 547 emad_array_out = out->emad; 548 549 /* Copy across the emad structs. */ 550 emad_in = emad_array_in; 551 for (unsigned int i = 0U; i < out->emad_count; i++) { 552 memcpy(&emad_array_out[i], emad_in, 553 sizeof(struct ffa_emad_v1_0)); 554 555 emad_in += mtd_orig->emad_size; 556 } 557 558 /* Place the mrd descriptors after the end of the emad descriptors. */ 559 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count; 560 561 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out + 562 emad_out_array_size; 563 564 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset); 565 566 mrd_in_offset = mtd_orig->emad_offset + 567 (mtd_orig->emad_size * mtd_orig->emad_count); 568 569 /* Add the size of the composite memory region descriptor. */ 570 mrd_size += sizeof(struct ffa_comp_mrd); 571 572 /* Find the mrd descriptor. */ 573 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset); 574 575 /* Add the size of the constituent memory region descriptors. */ 576 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd); 577 578 /* 579 * Update the offset in the emads by the delta between the input and 580 * output addresses. 581 */ 582 emad_in = emad_array_in; 583 584 for (unsigned int i = 0U; i < out->emad_count; i++) { 585 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset + 586 (mrd_out_offset - 587 mrd_in_offset); 588 emad_in += mtd_orig->emad_size; 589 } 590 591 /* Verify that we stay within bound of the memory descriptors. */ 592 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) > 593 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) || 594 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) > 595 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) { 596 ERROR("%s: Invalid mrd structure.\n", __func__); 597 return false; 598 } 599 600 /* Copy the mrd descriptors directly. */ 601 memcpy(mrd_out, mrd_in, mrd_size); 602 603 return true; 604 } 605 606 /** 607 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to 608 * the v1.0 format and populates the 609 * provided buffer. 610 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor. 611 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor. 612 * @buf_size: Size of the buffer to populate. 613 * @offset: The offset of the converted descriptor to copy. 614 * @copy_size: Will be populated with the number of bytes copied. 615 * @out_desc_size: Will be populated with the total size of the v1.0 616 * descriptor. 617 * 618 * Return: 0 if conversion and population succeeded. 619 * Note: This function invalidates the reference to @orig therefore 620 * `spmc_shmem_obj_lookup` must be called if further usage is required. 621 */ 622 static uint32_t 623 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj, 624 size_t buf_size, size_t offset, 625 size_t *copy_size, size_t *v1_0_desc_size) 626 { 627 struct spmc_shmem_obj *v1_0_obj; 628 629 /* Calculate the size that the v1.0 descriptor will require. */ 630 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size( 631 &orig_obj->desc, orig_obj->desc_size); 632 633 if (*v1_0_desc_size == 0) { 634 ERROR("%s: cannot determine size of descriptor.\n", 635 __func__); 636 return FFA_ERROR_INVALID_PARAMETER; 637 } 638 639 /* Get a new obj to store the v1.0 descriptor. */ 640 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, 641 *v1_0_desc_size); 642 643 if (!v1_0_obj) { 644 return FFA_ERROR_NO_MEMORY; 645 } 646 647 /* Perform the conversion from v1.1 to v1.0. */ 648 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) { 649 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 650 return FFA_ERROR_INVALID_PARAMETER; 651 } 652 653 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size); 654 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size); 655 656 /* 657 * We're finished with the v1.0 descriptor for now so free it. 658 * Note that this will invalidate any references to the v1.1 659 * descriptor. 660 */ 661 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj); 662 663 return 0; 664 } 665 666 /** 667 * spmc_shmem_check_obj - Check that counts in descriptor match overall size. 668 * @obj: Object containing ffa_memory_region_descriptor. 669 * @ffa_version: FF-A version of the provided descriptor. 670 * 671 * Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor 672 * offset or count is invalid. 673 */ 674 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj, 675 uint32_t ffa_version) 676 { 677 uint32_t comp_mrd_offset = 0; 678 679 if (obj->desc.emad_count == 0U) { 680 WARN("%s: unsupported attribute desc count %u.\n", 681 __func__, obj->desc.emad_count); 682 return -EINVAL; 683 } 684 685 for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) { 686 size_t size; 687 size_t count; 688 size_t expected_size; 689 size_t total_page_count; 690 size_t emad_size; 691 size_t desc_size; 692 size_t header_emad_size; 693 uint32_t offset; 694 struct ffa_comp_mrd *comp; 695 struct ffa_emad_v1_0 *emad; 696 697 emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num, 698 ffa_version, &emad_size); 699 if (emad == NULL) { 700 WARN("%s: invalid emad structure.\n", __func__); 701 return -EINVAL; 702 } 703 704 /* 705 * Validate the calculated emad address resides within the 706 * descriptor. 707 */ 708 if ((uintptr_t) emad >= 709 (uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) { 710 WARN("Invalid emad access.\n"); 711 return -EINVAL; 712 } 713 714 offset = emad->comp_mrd_offset; 715 716 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 717 desc_size = sizeof(struct ffa_mtd_v1_0); 718 } else { 719 desc_size = sizeof(struct ffa_mtd); 720 } 721 722 header_emad_size = desc_size + 723 (obj->desc.emad_count * emad_size); 724 725 if (offset < header_emad_size) { 726 WARN("%s: invalid object, offset %u < header + emad %zu\n", 727 __func__, offset, header_emad_size); 728 return -EINVAL; 729 } 730 731 size = obj->desc_size; 732 733 if (offset > size) { 734 WARN("%s: invalid object, offset %u > total size %zu\n", 735 __func__, offset, obj->desc_size); 736 return -EINVAL; 737 } 738 size -= offset; 739 740 if (size < sizeof(struct ffa_comp_mrd)) { 741 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n", 742 __func__, offset, obj->desc_size); 743 return -EINVAL; 744 } 745 size -= sizeof(struct ffa_comp_mrd); 746 747 count = size / sizeof(struct ffa_cons_mrd); 748 749 comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version); 750 751 if (comp == NULL) { 752 WARN("%s: invalid comp_mrd offset\n", __func__); 753 return -EINVAL; 754 } 755 756 if (comp->address_range_count != count) { 757 WARN("%s: invalid object, desc count %u != %zu\n", 758 __func__, comp->address_range_count, count); 759 return -EINVAL; 760 } 761 762 expected_size = offset + sizeof(*comp) + 763 spmc_shmem_obj_ffa_constituent_size(obj, 764 ffa_version); 765 766 if (expected_size != obj->desc_size) { 767 WARN("%s: invalid object, computed size %zu != size %zu\n", 768 __func__, expected_size, obj->desc_size); 769 return -EINVAL; 770 } 771 772 if (obj->desc_filled < obj->desc_size) { 773 /* 774 * The whole descriptor has not yet been received. 775 * Skip final checks. 776 */ 777 return 0; 778 } 779 780 /* 781 * The offset provided to the composite memory region descriptor 782 * should be consistent across endpoint descriptors. Store the 783 * first entry and compare against subsequent entries. 784 */ 785 if (comp_mrd_offset == 0) { 786 comp_mrd_offset = offset; 787 } else { 788 if (comp_mrd_offset != offset) { 789 ERROR("%s: mismatching offsets provided, %u != %u\n", 790 __func__, offset, comp_mrd_offset); 791 return -EINVAL; 792 } 793 } 794 795 total_page_count = 0; 796 797 for (size_t i = 0; i < count; i++) { 798 total_page_count += 799 comp->address_range_array[i].page_count; 800 } 801 if (comp->total_page_count != total_page_count) { 802 WARN("%s: invalid object, desc total_page_count %u != %zu\n", 803 __func__, comp->total_page_count, 804 total_page_count); 805 return -EINVAL; 806 } 807 } 808 return 0; 809 } 810 811 /** 812 * spmc_shmem_check_state_obj - Check if the descriptor describes memory 813 * regions that are currently involved with an 814 * existing memory transactions. This implies that 815 * the memory is not in a valid state for lending. 816 * @obj: Object containing ffa_memory_region_descriptor. 817 * 818 * Return: 0 if object is valid, -EINVAL if invalid memory state. 819 */ 820 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj, 821 uint32_t ffa_version) 822 { 823 size_t obj_offset = 0; 824 struct spmc_shmem_obj *inflight_obj; 825 826 struct ffa_comp_mrd *other_mrd; 827 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj, 828 ffa_version); 829 830 if (requested_mrd == NULL) { 831 return -EINVAL; 832 } 833 834 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 835 &obj_offset); 836 837 while (inflight_obj != NULL) { 838 /* 839 * Don't compare the transaction to itself or to partially 840 * transmitted descriptors. 841 */ 842 if ((obj->desc.handle != inflight_obj->desc.handle) && 843 (obj->desc_size == obj->desc_filled)) { 844 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj, 845 FFA_VERSION_COMPILED); 846 if (other_mrd == NULL) { 847 return -EINVAL; 848 } 849 if (overlapping_memory_regions(requested_mrd, 850 other_mrd)) { 851 return -EINVAL; 852 } 853 } 854 855 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state, 856 &obj_offset); 857 } 858 return 0; 859 } 860 861 static long spmc_ffa_fill_desc(struct mailbox *mbox, 862 struct spmc_shmem_obj *obj, 863 uint32_t fragment_length, 864 ffa_mtd_flag32_t mtd_flag, 865 uint32_t ffa_version, 866 void *smc_handle) 867 { 868 int ret; 869 size_t emad_size; 870 uint32_t handle_low; 871 uint32_t handle_high; 872 struct ffa_emad_v1_0 *emad; 873 struct ffa_emad_v1_0 *other_emad; 874 875 if (mbox->rxtx_page_count == 0U) { 876 WARN("%s: buffer pair not registered.\n", __func__); 877 ret = FFA_ERROR_INVALID_PARAMETER; 878 goto err_arg; 879 } 880 881 if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) { 882 WARN("%s: bad fragment size %u > %u buffer size\n", __func__, 883 fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB); 884 ret = FFA_ERROR_INVALID_PARAMETER; 885 goto err_arg; 886 } 887 888 memcpy((uint8_t *)&obj->desc + obj->desc_filled, 889 (uint8_t *) mbox->tx_buffer, fragment_length); 890 891 if (fragment_length > obj->desc_size - obj->desc_filled) { 892 WARN("%s: bad fragment size %u > %zu remaining\n", __func__, 893 fragment_length, obj->desc_size - obj->desc_filled); 894 ret = FFA_ERROR_INVALID_PARAMETER; 895 goto err_arg; 896 } 897 898 /* Ensure that the sender ID resides in the normal world. */ 899 if (ffa_is_secure_world_id(obj->desc.sender_id)) { 900 WARN("%s: Invalid sender ID 0x%x.\n", 901 __func__, obj->desc.sender_id); 902 ret = FFA_ERROR_DENIED; 903 goto err_arg; 904 } 905 906 /* Ensure the NS bit is set to 0. */ 907 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 908 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 909 ret = FFA_ERROR_INVALID_PARAMETER; 910 goto err_arg; 911 } 912 913 /* 914 * We don't currently support any optional flags so ensure none are 915 * requested. 916 */ 917 if (obj->desc.flags != 0U && mtd_flag != 0U && 918 (obj->desc.flags != mtd_flag)) { 919 WARN("%s: invalid memory transaction flags %u != %u\n", 920 __func__, obj->desc.flags, mtd_flag); 921 ret = FFA_ERROR_INVALID_PARAMETER; 922 goto err_arg; 923 } 924 925 if (obj->desc_filled == 0U) { 926 /* First fragment, descriptor header has been copied */ 927 obj->desc.handle = spmc_shmem_obj_state.next_handle++; 928 obj->desc.flags |= mtd_flag; 929 } 930 931 obj->desc_filled += fragment_length; 932 ret = spmc_shmem_check_obj(obj, ffa_version); 933 if (ret != 0) { 934 ret = FFA_ERROR_INVALID_PARAMETER; 935 goto err_bad_desc; 936 } 937 938 handle_low = (uint32_t)obj->desc.handle; 939 handle_high = obj->desc.handle >> 32; 940 941 if (obj->desc_filled != obj->desc_size) { 942 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low, 943 handle_high, obj->desc_filled, 944 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0); 945 } 946 947 /* The full descriptor has been received, perform any final checks. */ 948 949 /* 950 * If a partition ID resides in the secure world validate that the 951 * partition ID is for a known partition. Ignore any partition ID 952 * belonging to the normal world as it is assumed the Hypervisor will 953 * have validated these. 954 */ 955 for (size_t i = 0; i < obj->desc.emad_count; i++) { 956 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 957 &emad_size); 958 if (emad == NULL) { 959 ret = FFA_ERROR_INVALID_PARAMETER; 960 goto err_bad_desc; 961 } 962 963 ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id; 964 965 if (ffa_is_secure_world_id(ep_id)) { 966 if (spmc_get_sp_ctx(ep_id) == NULL) { 967 WARN("%s: Invalid receiver id 0x%x\n", 968 __func__, ep_id); 969 ret = FFA_ERROR_INVALID_PARAMETER; 970 goto err_bad_desc; 971 } 972 } 973 } 974 975 /* Ensure partition IDs are not duplicated. */ 976 for (size_t i = 0; i < obj->desc.emad_count; i++) { 977 emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version, 978 &emad_size); 979 if (emad == NULL) { 980 ret = FFA_ERROR_INVALID_PARAMETER; 981 goto err_bad_desc; 982 } 983 for (size_t j = i + 1; j < obj->desc.emad_count; j++) { 984 other_emad = spmc_shmem_obj_get_emad(&obj->desc, j, 985 ffa_version, 986 &emad_size); 987 if (other_emad == NULL) { 988 ret = FFA_ERROR_INVALID_PARAMETER; 989 goto err_bad_desc; 990 } 991 992 if (emad->mapd.endpoint_id == 993 other_emad->mapd.endpoint_id) { 994 WARN("%s: Duplicated endpoint id 0x%x\n", 995 __func__, emad->mapd.endpoint_id); 996 ret = FFA_ERROR_INVALID_PARAMETER; 997 goto err_bad_desc; 998 } 999 } 1000 } 1001 1002 ret = spmc_shmem_check_state_obj(obj, ffa_version); 1003 if (ret) { 1004 ERROR("%s: invalid memory region descriptor.\n", __func__); 1005 ret = FFA_ERROR_INVALID_PARAMETER; 1006 goto err_bad_desc; 1007 } 1008 1009 /* 1010 * Everything checks out, if the sender was using FF-A v1.0, convert 1011 * the descriptor format to use the v1.1 structures. 1012 */ 1013 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1014 struct spmc_shmem_obj *v1_1_obj; 1015 uint64_t mem_handle; 1016 1017 /* Calculate the size that the v1.1 descriptor will required. */ 1018 size_t v1_1_desc_size = 1019 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc, 1020 obj->desc_size); 1021 1022 if (v1_1_desc_size == 0U) { 1023 ERROR("%s: cannot determine size of descriptor.\n", 1024 __func__); 1025 goto err_arg; 1026 } 1027 1028 /* Get a new obj to store the v1.1 descriptor. */ 1029 v1_1_obj = 1030 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size); 1031 1032 if (!v1_1_obj) { 1033 ret = FFA_ERROR_NO_MEMORY; 1034 goto err_arg; 1035 } 1036 1037 /* Perform the conversion from v1.0 to v1.1. */ 1038 v1_1_obj->desc_size = v1_1_desc_size; 1039 v1_1_obj->desc_filled = v1_1_desc_size; 1040 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) { 1041 ERROR("%s: Could not convert mtd!\n", __func__); 1042 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj); 1043 goto err_arg; 1044 } 1045 1046 /* 1047 * We're finished with the v1.0 descriptor so free it 1048 * and continue our checks with the new v1.1 descriptor. 1049 */ 1050 mem_handle = obj->desc.handle; 1051 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1052 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1053 if (obj == NULL) { 1054 ERROR("%s: Failed to find converted descriptor.\n", 1055 __func__); 1056 ret = FFA_ERROR_INVALID_PARAMETER; 1057 return spmc_ffa_error_return(smc_handle, ret); 1058 } 1059 } 1060 1061 /* Allow for platform specific operations to be performed. */ 1062 ret = plat_spmc_shmem_begin(&obj->desc); 1063 if (ret != 0) { 1064 goto err_arg; 1065 } 1066 1067 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0, 1068 0, 0, 0); 1069 1070 err_bad_desc: 1071 err_arg: 1072 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1073 return spmc_ffa_error_return(smc_handle, ret); 1074 } 1075 1076 /** 1077 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation. 1078 * @client: Client state. 1079 * @total_length: Total length of shared memory descriptor. 1080 * @fragment_length: Length of fragment of shared memory descriptor passed in 1081 * this call. 1082 * @address: Not supported, must be 0. 1083 * @page_count: Not supported, must be 0. 1084 * @smc_handle: Handle passed to smc call. Used to return 1085 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1086 * 1087 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed 1088 * to share or lend memory from non-secure os to secure os (with no stream 1089 * endpoints). 1090 * 1091 * Return: 0 on success, error code on failure. 1092 */ 1093 long spmc_ffa_mem_send(uint32_t smc_fid, 1094 bool secure_origin, 1095 uint64_t total_length, 1096 uint32_t fragment_length, 1097 uint64_t address, 1098 uint32_t page_count, 1099 void *cookie, 1100 void *handle, 1101 uint64_t flags) 1102 1103 { 1104 long ret; 1105 struct spmc_shmem_obj *obj; 1106 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1107 ffa_mtd_flag32_t mtd_flag; 1108 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1109 1110 if (address != 0U || page_count != 0U) { 1111 WARN("%s: custom memory region for message not supported.\n", 1112 __func__); 1113 return spmc_ffa_error_return(handle, 1114 FFA_ERROR_INVALID_PARAMETER); 1115 } 1116 1117 if (secure_origin) { 1118 WARN("%s: unsupported share direction.\n", __func__); 1119 return spmc_ffa_error_return(handle, 1120 FFA_ERROR_INVALID_PARAMETER); 1121 } 1122 1123 /* 1124 * Check if the descriptor is smaller than the v1.0 descriptor. The 1125 * descriptor cannot be smaller than this structure. 1126 */ 1127 if (fragment_length < sizeof(struct ffa_mtd_v1_0)) { 1128 WARN("%s: bad first fragment size %u < %zu\n", 1129 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0)); 1130 return spmc_ffa_error_return(handle, 1131 FFA_ERROR_INVALID_PARAMETER); 1132 } 1133 1134 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) { 1135 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY; 1136 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) { 1137 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY; 1138 } else { 1139 WARN("%s: invalid memory management operation.\n", __func__); 1140 return spmc_ffa_error_return(handle, 1141 FFA_ERROR_INVALID_PARAMETER); 1142 } 1143 1144 spin_lock(&spmc_shmem_obj_state.lock); 1145 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length); 1146 if (obj == NULL) { 1147 ret = FFA_ERROR_NO_MEMORY; 1148 goto err_unlock; 1149 } 1150 1151 spin_lock(&mbox->lock); 1152 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag, 1153 ffa_version, handle); 1154 spin_unlock(&mbox->lock); 1155 1156 spin_unlock(&spmc_shmem_obj_state.lock); 1157 return ret; 1158 1159 err_unlock: 1160 spin_unlock(&spmc_shmem_obj_state.lock); 1161 return spmc_ffa_error_return(handle, ret); 1162 } 1163 1164 /** 1165 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation. 1166 * @client: Client state. 1167 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX. 1168 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX. 1169 * @fragment_length: Length of fragments transmitted. 1170 * @sender_id: Vmid of sender in bits [31:16] 1171 * @smc_handle: Handle passed to smc call. Used to return 1172 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS. 1173 * 1174 * Return: @smc_handle on success, error code on failure. 1175 */ 1176 long spmc_ffa_mem_frag_tx(uint32_t smc_fid, 1177 bool secure_origin, 1178 uint64_t handle_low, 1179 uint64_t handle_high, 1180 uint32_t fragment_length, 1181 uint32_t sender_id, 1182 void *cookie, 1183 void *handle, 1184 uint64_t flags) 1185 { 1186 long ret; 1187 uint32_t desc_sender_id; 1188 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1189 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1190 1191 struct spmc_shmem_obj *obj; 1192 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1193 1194 spin_lock(&spmc_shmem_obj_state.lock); 1195 1196 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1197 if (obj == NULL) { 1198 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1199 __func__, mem_handle); 1200 ret = FFA_ERROR_INVALID_PARAMETER; 1201 goto err_unlock; 1202 } 1203 1204 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1205 if (sender_id != desc_sender_id) { 1206 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1207 sender_id, desc_sender_id); 1208 ret = FFA_ERROR_INVALID_PARAMETER; 1209 goto err_unlock; 1210 } 1211 1212 if (obj->desc_filled == obj->desc_size) { 1213 WARN("%s: object desc already filled, %zu\n", __func__, 1214 obj->desc_filled); 1215 ret = FFA_ERROR_INVALID_PARAMETER; 1216 goto err_unlock; 1217 } 1218 1219 spin_lock(&mbox->lock); 1220 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version, 1221 handle); 1222 spin_unlock(&mbox->lock); 1223 1224 spin_unlock(&spmc_shmem_obj_state.lock); 1225 return ret; 1226 1227 err_unlock: 1228 spin_unlock(&spmc_shmem_obj_state.lock); 1229 return spmc_ffa_error_return(handle, ret); 1230 } 1231 1232 /** 1233 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor 1234 * if the caller implements a version greater 1235 * than FF-A 1.0 or if they have requested 1236 * the functionality. 1237 * TODO: We are assuming that the caller is 1238 * an SP. To support retrieval from the 1239 * normal world this function will need to be 1240 * expanded accordingly. 1241 * @resp: Descriptor populated in callers RX buffer. 1242 * @sp_ctx: Context of the calling SP. 1243 */ 1244 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp, 1245 struct secure_partition_desc *sp_ctx) 1246 { 1247 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) || 1248 sp_ctx->ns_bit_requested) { 1249 /* 1250 * Currently memory senders must reside in the normal 1251 * world, and we do not have the functionlaity to change 1252 * the state of memory dynamically. Therefore we can always set 1253 * the NS bit to 1. 1254 */ 1255 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT; 1256 } 1257 } 1258 1259 /** 1260 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation. 1261 * @smc_fid: FID of SMC 1262 * @total_length: Total length of retrieve request descriptor if this is 1263 * the first call. Otherwise (unsupported) must be 0. 1264 * @fragment_length: Length of fragment of retrieve request descriptor passed 1265 * in this call. Only @fragment_length == @length is 1266 * supported by this implementation. 1267 * @address: Not supported, must be 0. 1268 * @page_count: Not supported, must be 0. 1269 * @smc_handle: Handle passed to smc call. Used to return 1270 * FFA_MEM_RETRIEVE_RESP. 1271 * 1272 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call. 1273 * Used by secure os to retrieve memory already shared by non-secure os. 1274 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message, 1275 * the client must call FFA_MEM_FRAG_RX until the full response has been 1276 * received. 1277 * 1278 * Return: @handle on success, error code on failure. 1279 */ 1280 long 1281 spmc_ffa_mem_retrieve_req(uint32_t smc_fid, 1282 bool secure_origin, 1283 uint32_t total_length, 1284 uint32_t fragment_length, 1285 uint64_t address, 1286 uint32_t page_count, 1287 void *cookie, 1288 void *handle, 1289 uint64_t flags) 1290 { 1291 int ret; 1292 size_t buf_size; 1293 size_t copy_size = 0; 1294 size_t min_desc_size; 1295 size_t out_desc_size = 0; 1296 1297 /* 1298 * Currently we are only accessing fields that are the same in both the 1299 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly 1300 * here. We only need validate against the appropriate struct size. 1301 */ 1302 struct ffa_mtd *resp; 1303 const struct ffa_mtd *req; 1304 struct spmc_shmem_obj *obj = NULL; 1305 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1306 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1307 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1308 1309 if (!secure_origin) { 1310 WARN("%s: unsupported retrieve req direction.\n", __func__); 1311 return spmc_ffa_error_return(handle, 1312 FFA_ERROR_INVALID_PARAMETER); 1313 } 1314 1315 if (address != 0U || page_count != 0U) { 1316 WARN("%s: custom memory region not supported.\n", __func__); 1317 return spmc_ffa_error_return(handle, 1318 FFA_ERROR_INVALID_PARAMETER); 1319 } 1320 1321 spin_lock(&mbox->lock); 1322 1323 req = mbox->tx_buffer; 1324 resp = mbox->rx_buffer; 1325 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1326 1327 if (mbox->rxtx_page_count == 0U) { 1328 WARN("%s: buffer pair not registered.\n", __func__); 1329 ret = FFA_ERROR_INVALID_PARAMETER; 1330 goto err_unlock_mailbox; 1331 } 1332 1333 if (mbox->state != MAILBOX_STATE_EMPTY) { 1334 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state); 1335 ret = FFA_ERROR_DENIED; 1336 goto err_unlock_mailbox; 1337 } 1338 1339 if (fragment_length != total_length) { 1340 WARN("%s: fragmented retrieve request not supported.\n", 1341 __func__); 1342 ret = FFA_ERROR_INVALID_PARAMETER; 1343 goto err_unlock_mailbox; 1344 } 1345 1346 if (req->emad_count == 0U) { 1347 WARN("%s: unsupported attribute desc count %u.\n", 1348 __func__, obj->desc.emad_count); 1349 ret = FFA_ERROR_INVALID_PARAMETER; 1350 goto err_unlock_mailbox; 1351 } 1352 1353 /* Determine the appropriate minimum descriptor size. */ 1354 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1355 min_desc_size = sizeof(struct ffa_mtd_v1_0); 1356 } else { 1357 min_desc_size = sizeof(struct ffa_mtd); 1358 } 1359 if (total_length < min_desc_size) { 1360 WARN("%s: invalid length %u < %zu\n", __func__, total_length, 1361 min_desc_size); 1362 ret = FFA_ERROR_INVALID_PARAMETER; 1363 goto err_unlock_mailbox; 1364 } 1365 1366 spin_lock(&spmc_shmem_obj_state.lock); 1367 1368 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1369 if (obj == NULL) { 1370 ret = FFA_ERROR_INVALID_PARAMETER; 1371 goto err_unlock_all; 1372 } 1373 1374 if (obj->desc_filled != obj->desc_size) { 1375 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1376 __func__, obj->desc_filled, obj->desc_size); 1377 ret = FFA_ERROR_INVALID_PARAMETER; 1378 goto err_unlock_all; 1379 } 1380 1381 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) { 1382 WARN("%s: wrong sender id 0x%x != 0x%x\n", 1383 __func__, req->sender_id, obj->desc.sender_id); 1384 ret = FFA_ERROR_INVALID_PARAMETER; 1385 goto err_unlock_all; 1386 } 1387 1388 if (req->emad_count != 0U && req->tag != obj->desc.tag) { 1389 WARN("%s: wrong tag 0x%lx != 0x%lx\n", 1390 __func__, req->tag, obj->desc.tag); 1391 ret = FFA_ERROR_INVALID_PARAMETER; 1392 goto err_unlock_all; 1393 } 1394 1395 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) { 1396 WARN("%s: mistmatch of endpoint counts %u != %u\n", 1397 __func__, req->emad_count, obj->desc.emad_count); 1398 ret = FFA_ERROR_INVALID_PARAMETER; 1399 goto err_unlock_all; 1400 } 1401 1402 /* Ensure the NS bit is set to 0 in the request. */ 1403 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) { 1404 WARN("%s: NS mem attributes flags MBZ.\n", __func__); 1405 ret = FFA_ERROR_INVALID_PARAMETER; 1406 goto err_unlock_all; 1407 } 1408 1409 if (req->flags != 0U) { 1410 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) != 1411 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) { 1412 /* 1413 * If the retrieve request specifies the memory 1414 * transaction ensure it matches what we expect. 1415 */ 1416 WARN("%s: wrong mem transaction flags %x != %x\n", 1417 __func__, req->flags, obj->desc.flags); 1418 ret = FFA_ERROR_INVALID_PARAMETER; 1419 goto err_unlock_all; 1420 } 1421 1422 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY && 1423 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) { 1424 /* 1425 * Current implementation does not support donate and 1426 * it supports no other flags. 1427 */ 1428 WARN("%s: invalid flags 0x%x\n", __func__, req->flags); 1429 ret = FFA_ERROR_INVALID_PARAMETER; 1430 goto err_unlock_all; 1431 } 1432 } 1433 1434 /* Validate the caller is a valid participant. */ 1435 if (!spmc_shmem_obj_validate_id(&obj->desc, sp_ctx->sp_id)) { 1436 WARN("%s: Invalid endpoint ID (0x%x).\n", 1437 __func__, sp_ctx->sp_id); 1438 ret = FFA_ERROR_INVALID_PARAMETER; 1439 goto err_unlock_all; 1440 } 1441 1442 /* Validate that the provided emad offset and structure is valid.*/ 1443 for (size_t i = 0; i < req->emad_count; i++) { 1444 size_t emad_size; 1445 struct ffa_emad_v1_0 *emad; 1446 1447 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1448 &emad_size); 1449 if (emad == NULL) { 1450 WARN("%s: invalid emad structure.\n", __func__); 1451 ret = FFA_ERROR_INVALID_PARAMETER; 1452 goto err_unlock_all; 1453 } 1454 1455 if ((uintptr_t) emad >= (uintptr_t) 1456 ((uint8_t *) req + total_length)) { 1457 WARN("Invalid emad access.\n"); 1458 ret = FFA_ERROR_INVALID_PARAMETER; 1459 goto err_unlock_all; 1460 } 1461 } 1462 1463 /* 1464 * Validate all the endpoints match in the case of multiple 1465 * borrowers. We don't mandate that the order of the borrowers 1466 * must match in the descriptors therefore check to see if the 1467 * endpoints match in any order. 1468 */ 1469 for (size_t i = 0; i < req->emad_count; i++) { 1470 bool found = false; 1471 size_t emad_size; 1472 struct ffa_emad_v1_0 *emad; 1473 struct ffa_emad_v1_0 *other_emad; 1474 1475 emad = spmc_shmem_obj_get_emad(req, i, ffa_version, 1476 &emad_size); 1477 if (emad == NULL) { 1478 ret = FFA_ERROR_INVALID_PARAMETER; 1479 goto err_unlock_all; 1480 } 1481 1482 for (size_t j = 0; j < obj->desc.emad_count; j++) { 1483 other_emad = spmc_shmem_obj_get_emad( 1484 &obj->desc, j, MAKE_FFA_VERSION(1, 1), 1485 &emad_size); 1486 1487 if (other_emad == NULL) { 1488 ret = FFA_ERROR_INVALID_PARAMETER; 1489 goto err_unlock_all; 1490 } 1491 1492 if (req->emad_count && 1493 emad->mapd.endpoint_id == 1494 other_emad->mapd.endpoint_id) { 1495 found = true; 1496 break; 1497 } 1498 } 1499 1500 if (!found) { 1501 WARN("%s: invalid receiver id (0x%x).\n", 1502 __func__, emad->mapd.endpoint_id); 1503 ret = FFA_ERROR_INVALID_PARAMETER; 1504 goto err_unlock_all; 1505 } 1506 } 1507 1508 mbox->state = MAILBOX_STATE_FULL; 1509 1510 if (req->emad_count != 0U) { 1511 obj->in_use++; 1512 } 1513 1514 /* 1515 * If the caller is v1.0 convert the descriptor, otherwise copy 1516 * directly. 1517 */ 1518 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1519 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0, 1520 ©_size, 1521 &out_desc_size); 1522 if (ret != 0U) { 1523 ERROR("%s: Failed to process descriptor.\n", __func__); 1524 goto err_unlock_all; 1525 } 1526 } else { 1527 copy_size = MIN(obj->desc_size, buf_size); 1528 out_desc_size = obj->desc_size; 1529 1530 memcpy(resp, &obj->desc, copy_size); 1531 } 1532 1533 /* Set the NS bit in the response if applicable. */ 1534 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx); 1535 1536 spin_unlock(&spmc_shmem_obj_state.lock); 1537 spin_unlock(&mbox->lock); 1538 1539 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size, 1540 copy_size, 0, 0, 0, 0, 0); 1541 1542 err_unlock_all: 1543 spin_unlock(&spmc_shmem_obj_state.lock); 1544 err_unlock_mailbox: 1545 spin_unlock(&mbox->lock); 1546 return spmc_ffa_error_return(handle, ret); 1547 } 1548 1549 /** 1550 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation. 1551 * @client: Client state. 1552 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0]. 1553 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32]. 1554 * @fragment_offset: Byte offset in descriptor to resume at. 1555 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a 1556 * hypervisor. 0 otherwise. 1557 * @smc_handle: Handle passed to smc call. Used to return 1558 * FFA_MEM_FRAG_TX. 1559 * 1560 * Return: @smc_handle on success, error code on failure. 1561 */ 1562 long spmc_ffa_mem_frag_rx(uint32_t smc_fid, 1563 bool secure_origin, 1564 uint32_t handle_low, 1565 uint32_t handle_high, 1566 uint32_t fragment_offset, 1567 uint32_t sender_id, 1568 void *cookie, 1569 void *handle, 1570 uint64_t flags) 1571 { 1572 int ret; 1573 void *src; 1574 size_t buf_size; 1575 size_t copy_size; 1576 size_t full_copy_size; 1577 uint32_t desc_sender_id; 1578 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1579 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1580 struct spmc_shmem_obj *obj; 1581 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1582 1583 if (!secure_origin) { 1584 WARN("%s: can only be called from swld.\n", 1585 __func__); 1586 return spmc_ffa_error_return(handle, 1587 FFA_ERROR_INVALID_PARAMETER); 1588 } 1589 1590 spin_lock(&spmc_shmem_obj_state.lock); 1591 1592 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1593 if (obj == NULL) { 1594 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n", 1595 __func__, mem_handle); 1596 ret = FFA_ERROR_INVALID_PARAMETER; 1597 goto err_unlock_shmem; 1598 } 1599 1600 desc_sender_id = (uint32_t)obj->desc.sender_id << 16; 1601 if (sender_id != 0U && sender_id != desc_sender_id) { 1602 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__, 1603 sender_id, desc_sender_id); 1604 ret = FFA_ERROR_INVALID_PARAMETER; 1605 goto err_unlock_shmem; 1606 } 1607 1608 if (fragment_offset >= obj->desc_size) { 1609 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n", 1610 __func__, fragment_offset, obj->desc_size); 1611 ret = FFA_ERROR_INVALID_PARAMETER; 1612 goto err_unlock_shmem; 1613 } 1614 1615 spin_lock(&mbox->lock); 1616 1617 if (mbox->rxtx_page_count == 0U) { 1618 WARN("%s: buffer pair not registered.\n", __func__); 1619 ret = FFA_ERROR_INVALID_PARAMETER; 1620 goto err_unlock_all; 1621 } 1622 1623 if (mbox->state != MAILBOX_STATE_EMPTY) { 1624 WARN("%s: RX Buffer is full!\n", __func__); 1625 ret = FFA_ERROR_DENIED; 1626 goto err_unlock_all; 1627 } 1628 1629 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1630 1631 mbox->state = MAILBOX_STATE_FULL; 1632 1633 /* 1634 * If the caller is v1.0 convert the descriptor, otherwise copy 1635 * directly. 1636 */ 1637 if (ffa_version == MAKE_FFA_VERSION(1, 0)) { 1638 size_t out_desc_size; 1639 1640 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj, 1641 buf_size, 1642 fragment_offset, 1643 ©_size, 1644 &out_desc_size); 1645 if (ret != 0U) { 1646 ERROR("%s: Failed to process descriptor.\n", __func__); 1647 goto err_unlock_all; 1648 } 1649 } else { 1650 full_copy_size = obj->desc_size - fragment_offset; 1651 copy_size = MIN(full_copy_size, buf_size); 1652 1653 src = &obj->desc; 1654 1655 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size); 1656 } 1657 1658 spin_unlock(&mbox->lock); 1659 spin_unlock(&spmc_shmem_obj_state.lock); 1660 1661 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high, 1662 copy_size, sender_id, 0, 0, 0); 1663 1664 err_unlock_all: 1665 spin_unlock(&mbox->lock); 1666 err_unlock_shmem: 1667 spin_unlock(&spmc_shmem_obj_state.lock); 1668 return spmc_ffa_error_return(handle, ret); 1669 } 1670 1671 /** 1672 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation. 1673 * @client: Client state. 1674 * 1675 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call. 1676 * Used by secure os release previously shared memory to non-secure os. 1677 * 1678 * The handle to release must be in the client's (secure os's) transmit buffer. 1679 * 1680 * Return: 0 on success, error code on failure. 1681 */ 1682 int spmc_ffa_mem_relinquish(uint32_t smc_fid, 1683 bool secure_origin, 1684 uint32_t handle_low, 1685 uint32_t handle_high, 1686 uint32_t fragment_offset, 1687 uint32_t sender_id, 1688 void *cookie, 1689 void *handle, 1690 uint64_t flags) 1691 { 1692 int ret; 1693 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1694 struct spmc_shmem_obj *obj; 1695 const struct ffa_mem_relinquish_descriptor *req; 1696 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx(); 1697 1698 if (!secure_origin) { 1699 WARN("%s: unsupported relinquish direction.\n", __func__); 1700 return spmc_ffa_error_return(handle, 1701 FFA_ERROR_INVALID_PARAMETER); 1702 } 1703 1704 spin_lock(&mbox->lock); 1705 1706 if (mbox->rxtx_page_count == 0U) { 1707 WARN("%s: buffer pair not registered.\n", __func__); 1708 ret = FFA_ERROR_INVALID_PARAMETER; 1709 goto err_unlock_mailbox; 1710 } 1711 1712 req = mbox->tx_buffer; 1713 1714 if (req->flags != 0U) { 1715 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags); 1716 ret = FFA_ERROR_INVALID_PARAMETER; 1717 goto err_unlock_mailbox; 1718 } 1719 1720 if (req->endpoint_count == 0) { 1721 WARN("%s: endpoint count cannot be 0.\n", __func__); 1722 ret = FFA_ERROR_INVALID_PARAMETER; 1723 goto err_unlock_mailbox; 1724 } 1725 1726 spin_lock(&spmc_shmem_obj_state.lock); 1727 1728 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle); 1729 if (obj == NULL) { 1730 ret = FFA_ERROR_INVALID_PARAMETER; 1731 goto err_unlock_all; 1732 } 1733 1734 /* 1735 * Validate the endpoint ID was populated correctly. We don't currently 1736 * support proxy endpoints so the endpoint count should always be 1. 1737 */ 1738 if (req->endpoint_count != 1U) { 1739 WARN("%s: unsupported endpoint count %u != 1\n", __func__, 1740 req->endpoint_count); 1741 ret = FFA_ERROR_INVALID_PARAMETER; 1742 goto err_unlock_all; 1743 } 1744 1745 /* Validate provided endpoint ID matches the partition ID. */ 1746 if (req->endpoint_array[0] != sp_ctx->sp_id) { 1747 WARN("%s: invalid endpoint ID %u != %u\n", __func__, 1748 req->endpoint_array[0], sp_ctx->sp_id); 1749 ret = FFA_ERROR_INVALID_PARAMETER; 1750 goto err_unlock_all; 1751 } 1752 1753 /* Validate the caller is a valid participant. */ 1754 if (!spmc_shmem_obj_validate_id(&obj->desc, sp_ctx->sp_id)) { 1755 WARN("%s: Invalid endpoint ID (0x%x).\n", 1756 __func__, req->endpoint_array[0]); 1757 ret = FFA_ERROR_INVALID_PARAMETER; 1758 goto err_unlock_all; 1759 } 1760 1761 if (obj->in_use == 0U) { 1762 ret = FFA_ERROR_INVALID_PARAMETER; 1763 goto err_unlock_all; 1764 } 1765 obj->in_use--; 1766 1767 spin_unlock(&spmc_shmem_obj_state.lock); 1768 spin_unlock(&mbox->lock); 1769 1770 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1771 1772 err_unlock_all: 1773 spin_unlock(&spmc_shmem_obj_state.lock); 1774 err_unlock_mailbox: 1775 spin_unlock(&mbox->lock); 1776 return spmc_ffa_error_return(handle, ret); 1777 } 1778 1779 /** 1780 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation. 1781 * @client: Client state. 1782 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0]. 1783 * @handle_high: Unique handle of shared memory object to reclaim. 1784 * Bit[63:32]. 1785 * @flags: Unsupported, ignored. 1786 * 1787 * Implements a subset of the FF-A FFA_MEM_RECLAIM call. 1788 * Used by non-secure os reclaim memory previously shared with secure os. 1789 * 1790 * Return: 0 on success, error code on failure. 1791 */ 1792 int spmc_ffa_mem_reclaim(uint32_t smc_fid, 1793 bool secure_origin, 1794 uint32_t handle_low, 1795 uint32_t handle_high, 1796 uint32_t mem_flags, 1797 uint64_t x4, 1798 void *cookie, 1799 void *handle, 1800 uint64_t flags) 1801 { 1802 int ret; 1803 struct spmc_shmem_obj *obj; 1804 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32); 1805 1806 if (secure_origin) { 1807 WARN("%s: unsupported reclaim direction.\n", __func__); 1808 return spmc_ffa_error_return(handle, 1809 FFA_ERROR_INVALID_PARAMETER); 1810 } 1811 1812 if (mem_flags != 0U) { 1813 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags); 1814 return spmc_ffa_error_return(handle, 1815 FFA_ERROR_INVALID_PARAMETER); 1816 } 1817 1818 spin_lock(&spmc_shmem_obj_state.lock); 1819 1820 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle); 1821 if (obj == NULL) { 1822 ret = FFA_ERROR_INVALID_PARAMETER; 1823 goto err_unlock; 1824 } 1825 if (obj->in_use != 0U) { 1826 ret = FFA_ERROR_DENIED; 1827 goto err_unlock; 1828 } 1829 1830 if (obj->desc_filled != obj->desc_size) { 1831 WARN("%s: incomplete object desc filled %zu < size %zu\n", 1832 __func__, obj->desc_filled, obj->desc_size); 1833 ret = FFA_ERROR_INVALID_PARAMETER; 1834 goto err_unlock; 1835 } 1836 1837 /* Allow for platform specific operations to be performed. */ 1838 ret = plat_spmc_shmem_reclaim(&obj->desc); 1839 if (ret != 0) { 1840 goto err_unlock; 1841 } 1842 1843 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj); 1844 spin_unlock(&spmc_shmem_obj_state.lock); 1845 1846 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1847 1848 err_unlock: 1849 spin_unlock(&spmc_shmem_obj_state.lock); 1850 return spmc_ffa_error_return(handle, ret); 1851 } 1852