xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_shared_mem.c (revision 05d22c3045e2e972c2262b9ccd6c82cb7545bf83)
1 /*
2  * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9 
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18 
19 #include <platform_def.h>
20 
21 /**
22  * struct spmc_shmem_obj - Shared memory object.
23  * @desc_size:      Size of @desc.
24  * @desc_filled:    Size of @desc already received.
25  * @in_use:         Number of clients that have called ffa_mem_retrieve_req
26  *                  without a matching ffa_mem_relinquish call.
27  * @desc:           FF-A memory region descriptor passed in ffa_mem_share.
28  */
29 struct spmc_shmem_obj {
30 	size_t desc_size;
31 	size_t desc_filled;
32 	size_t in_use;
33 	struct ffa_mtd desc;
34 };
35 
36 /*
37  * Declare our data structure to store the metadata of memory share requests.
38  * The main datastore is allocated on a per platform basis to ensure enough
39  * storage can be made available.
40  * The address of the data store will be populated by the SPMC during its
41  * initialization.
42  */
43 
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 	/* Set start value for handle so top 32 bits are needed quickly. */
46 	.next_handle = 0xffffffc0U,
47 };
48 
49 /**
50  * spmc_shmem_obj_size - Convert from descriptor size to object size.
51  * @desc_size:  Size of struct ffa_memory_region_descriptor object.
52  *
53  * Return: Size of struct spmc_shmem_obj object.
54  */
55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 	return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59 
60 /**
61  * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62  * @state:      Global state.
63  * @desc_size:  Size of struct ffa_memory_region_descriptor object that
64  *              allocated object will hold.
65  *
66  * Return: Pointer to newly allocated object, or %NULL if there not enough space
67  *         left. The returned pointer is only valid while @state is locked, to
68  *         used it again after unlocking @state, spmc_shmem_obj_lookup must be
69  *         called.
70  */
71 static struct spmc_shmem_obj *
72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 	struct spmc_shmem_obj *obj;
75 	size_t free = state->data_size - state->allocated;
76 	size_t obj_size;
77 
78 	if (state->data == NULL) {
79 		ERROR("Missing shmem datastore!\n");
80 		return NULL;
81 	}
82 
83 	/* Ensure that descriptor size is aligned */
84 	if (!is_aligned(desc_size, 16)) {
85 		WARN("%s(0x%zx) desc_size not 16-byte aligned\n",
86 		     __func__, desc_size);
87 		return NULL;
88 	}
89 
90 	obj_size = spmc_shmem_obj_size(desc_size);
91 
92 	/* Ensure the obj size has not overflowed. */
93 	if (obj_size < desc_size) {
94 		WARN("%s(0x%zx) desc_size overflow\n",
95 		     __func__, desc_size);
96 		return NULL;
97 	}
98 
99 	if (obj_size > free) {
100 		WARN("%s(0x%zx) failed, free 0x%zx\n",
101 		     __func__, desc_size, free);
102 		return NULL;
103 	}
104 	obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
105 	obj->desc = (struct ffa_mtd) {0};
106 	obj->desc_size = desc_size;
107 	obj->desc_filled = 0;
108 	obj->in_use = 0;
109 	state->allocated += obj_size;
110 	return obj;
111 }
112 
113 /**
114  * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
115  * @state:      Global state.
116  * @obj:        Object to free.
117  *
118  * Release memory used by @obj. Other objects may move, so on return all
119  * pointers to struct spmc_shmem_obj object should be considered invalid, not
120  * just @obj.
121  *
122  * The current implementation always compacts the remaining objects to simplify
123  * the allocator and to avoid fragmentation.
124  */
125 
126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
127 				  struct spmc_shmem_obj *obj)
128 {
129 	size_t free_size = spmc_shmem_obj_size(obj->desc_size);
130 	uint8_t *shift_dest = (uint8_t *)obj;
131 	uint8_t *shift_src = shift_dest + free_size;
132 	size_t shift_size = state->allocated - (shift_src - state->data);
133 
134 	if (shift_size != 0U) {
135 		memmove(shift_dest, shift_src, shift_size);
136 	}
137 	state->allocated -= free_size;
138 }
139 
140 /**
141  * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
142  * @state:      Global state.
143  * @handle:     Unique handle of object to return.
144  *
145  * Return: struct spmc_shmem_obj_state object with handle matching @handle.
146  *         %NULL, if not object in @state->data has a matching handle.
147  */
148 static struct spmc_shmem_obj *
149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
150 {
151 	uint8_t *curr = state->data;
152 
153 	while (curr - state->data < state->allocated) {
154 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
155 
156 		if (obj->desc.handle == handle) {
157 			return obj;
158 		}
159 		curr += spmc_shmem_obj_size(obj->desc_size);
160 	}
161 	return NULL;
162 }
163 
164 /**
165  * spmc_shmem_obj_get_next - Get the next memory object from an offset.
166  * @offset:     Offset used to track which objects have previously been
167  *              returned.
168  *
169  * Return: the next struct spmc_shmem_obj_state object from the provided
170  *	   offset.
171  *	   %NULL, if there are no more objects.
172  */
173 static struct spmc_shmem_obj *
174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
175 {
176 	uint8_t *curr = state->data + *offset;
177 
178 	if (curr - state->data < state->allocated) {
179 		struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
180 
181 		*offset += spmc_shmem_obj_size(obj->desc_size);
182 
183 		return obj;
184 	}
185 	return NULL;
186 }
187 
188 /*******************************************************************************
189  * FF-A memory descriptor helper functions.
190  ******************************************************************************/
191 /**
192  * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
193  *                           clients FF-A version.
194  * @desc:         The memory transaction descriptor.
195  * @index:        The index of the emad element to be accessed.
196  * @ffa_version:  FF-A version of the provided structure.
197  * @emad_size:    Will be populated with the size of the returned emad
198  *                descriptor.
199  * Return: A pointer to the requested emad structure.
200  */
201 static void *
202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
203 			uint32_t ffa_version, size_t *emad_size)
204 {
205 	uint8_t *emad;
206 
207 	assert(index < desc->emad_count);
208 
209 	/*
210 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
211 	 * format, otherwise assume it is a v1.1 format.
212 	 */
213 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
214 		emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
215 		*emad_size = sizeof(struct ffa_emad_v1_0);
216 	} else {
217 		assert(is_aligned(desc->emad_offset, 16));
218 		emad = ((uint8_t *) desc + desc->emad_offset);
219 		*emad_size = desc->emad_size;
220 	}
221 
222 	assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
223 	return (emad + (*emad_size * index));
224 }
225 
226 /**
227  * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
228  *				 FF-A version of the descriptor.
229  * @obj:    Object containing ffa_memory_region_descriptor.
230  *
231  * Return: struct ffa_comp_mrd object corresponding to the composite memory
232  *	   region descriptor.
233  */
234 static struct ffa_comp_mrd *
235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
236 {
237 	size_t emad_size;
238 	/*
239 	 * The comp_mrd_offset field of the emad descriptor remains consistent
240 	 * between FF-A versions therefore we can use the v1.0 descriptor here
241 	 * in all cases.
242 	 */
243 	struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
244 							     ffa_version,
245 							     &emad_size);
246 
247 	/* Ensure the composite descriptor offset is aligned. */
248 	if (!is_aligned(emad->comp_mrd_offset, 8)) {
249 		WARN("Unaligned composite memory region descriptor offset.\n");
250 		return NULL;
251 	}
252 
253 	return (struct ffa_comp_mrd *)
254 	       ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
255 }
256 
257 /**
258  * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
259  *				a given memory transaction.
260  * @sp_id:      Partition ID to validate.
261  * @obj:        The shared memory object containing the descriptor
262  *              of the memory transaction.
263  * Return: true if ID is valid, else false.
264  */
265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
266 {
267 	bool found = false;
268 	struct ffa_mtd *desc = &obj->desc;
269 	size_t desc_size = obj->desc_size;
270 
271 	/* Validate the partition is a valid participant. */
272 	for (unsigned int i = 0U; i < desc->emad_count; i++) {
273 		size_t emad_size;
274 		struct ffa_emad_v1_0 *emad;
275 
276 		emad = spmc_shmem_obj_get_emad(desc, i,
277 					       MAKE_FFA_VERSION(1, 1),
278 					       &emad_size);
279 		/*
280 		 * Validate the calculated emad address resides within the
281 		 * descriptor.
282 		 */
283 		if ((emad == NULL) || (uintptr_t) emad >=
284 		    (uintptr_t)((uint8_t *) desc + desc_size)) {
285 			VERBOSE("Invalid emad.\n");
286 			break;
287 		}
288 		if (sp_id == emad->mapd.endpoint_id) {
289 			found = true;
290 			break;
291 		}
292 	}
293 	return found;
294 }
295 
296 /*
297  * Compare two memory regions to determine if any range overlaps with another
298  * ongoing memory transaction.
299  */
300 static bool
301 overlapping_memory_regions(struct ffa_comp_mrd *region1,
302 			   struct ffa_comp_mrd *region2)
303 {
304 	uint64_t region1_start;
305 	uint64_t region1_size;
306 	uint64_t region1_end;
307 	uint64_t region2_start;
308 	uint64_t region2_size;
309 	uint64_t region2_end;
310 
311 	assert(region1 != NULL);
312 	assert(region2 != NULL);
313 
314 	if (region1 == region2) {
315 		return true;
316 	}
317 
318 	/*
319 	 * Check each memory region in the request against existing
320 	 * transactions.
321 	 */
322 	for (size_t i = 0; i < region1->address_range_count; i++) {
323 
324 		region1_start = region1->address_range_array[i].address;
325 		region1_size =
326 			region1->address_range_array[i].page_count *
327 			PAGE_SIZE_4KB;
328 		region1_end = region1_start + region1_size;
329 
330 		for (size_t j = 0; j < region2->address_range_count; j++) {
331 
332 			region2_start = region2->address_range_array[j].address;
333 			region2_size =
334 				region2->address_range_array[j].page_count *
335 				PAGE_SIZE_4KB;
336 			region2_end = region2_start + region2_size;
337 
338 			/* Check if regions are not overlapping. */
339 			if (!((region2_end <= region1_start) ||
340 			      (region1_end <= region2_start))) {
341 				WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
342 				     region1_start, region1_end,
343 				     region2_start, region2_end);
344 				return true;
345 			}
346 		}
347 	}
348 	return false;
349 }
350 
351 /*******************************************************************************
352  * FF-A v1.0 Memory Descriptor Conversion Helpers.
353  ******************************************************************************/
354 /**
355  * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
356  *                                     converted descriptor.
357  * @orig:       The original v1.0 memory transaction descriptor.
358  * @desc_size:  The size of the original v1.0 memory transaction descriptor.
359  *
360  * Return: the size required to store the descriptor store in the v1.1 format.
361  */
362 static uint64_t
363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
364 {
365 	uint64_t size = 0;
366 	struct ffa_comp_mrd *mrd;
367 	struct ffa_emad_v1_0 *emad_array = orig->emad;
368 
369 	/* Get the size of the v1.1 descriptor. */
370 	size += sizeof(struct ffa_mtd);
371 
372 	/* Add the size of the emad descriptors. */
373 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
374 
375 	/* Add the size of the composite mrds. */
376 	size += sizeof(struct ffa_comp_mrd);
377 
378 	/* Add the size of the constituent mrds. */
379 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
380 	      emad_array[0].comp_mrd_offset);
381 
382 	/* Add the size of the memory region descriptors. */
383 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
384 
385 	return size;
386 }
387 
388 /**
389  * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
390  *                                     converted descriptor.
391  * @orig:       The original v1.1 memory transaction descriptor.
392  * @desc_size:  The size of the original v1.1 memory transaction descriptor.
393  *
394  * Return: the size required to store the descriptor store in the v1.0 format.
395  */
396 static size_t
397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
398 {
399 	size_t size = 0;
400 	struct ffa_comp_mrd *mrd;
401 	struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
402 					   ((uint8_t *) orig +
403 					    orig->emad_offset);
404 
405 	/* Get the size of the v1.0 descriptor. */
406 	size += sizeof(struct ffa_mtd_v1_0);
407 
408 	/* Add the size of the v1.0 emad descriptors. */
409 	size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
410 
411 	/* Add the size of the composite mrds. */
412 	size += sizeof(struct ffa_comp_mrd);
413 
414 	/* Add the size of the constituent mrds. */
415 	mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
416 	      emad_array[0].comp_mrd_offset);
417 
418 	/* Check the calculated address is within the memory descriptor. */
419 	if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
420 	    (uintptr_t)((uint8_t *) orig + desc_size)) {
421 		return 0;
422 	}
423 	size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
424 
425 	return size;
426 }
427 
428 /**
429  * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
430  * @out_obj:	The shared memory object to populate the converted descriptor.
431  * @orig:	The shared memory object containing the v1.0 descriptor.
432  *
433  * Return: true if the conversion is successful else false.
434  */
435 static bool
436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
437 				     struct spmc_shmem_obj *orig)
438 {
439 	struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
440 	struct ffa_mtd *out = &out_obj->desc;
441 	struct ffa_emad_v1_0 *emad_array_in;
442 	struct ffa_emad_v1_0 *emad_array_out;
443 	struct ffa_comp_mrd *mrd_in;
444 	struct ffa_comp_mrd *mrd_out;
445 
446 	size_t mrd_in_offset;
447 	size_t mrd_out_offset;
448 	size_t mrd_size = 0;
449 
450 	/* Populate the new descriptor format from the v1.0 struct. */
451 	out->sender_id = mtd_orig->sender_id;
452 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
453 	out->flags = mtd_orig->flags;
454 	out->handle = mtd_orig->handle;
455 	out->tag = mtd_orig->tag;
456 	out->emad_count = mtd_orig->emad_count;
457 	out->emad_size = sizeof(struct ffa_emad_v1_0);
458 
459 	/*
460 	 * We will locate the emad descriptors directly after the ffa_mtd
461 	 * struct. This will be 8-byte aligned.
462 	 */
463 	out->emad_offset = sizeof(struct ffa_mtd);
464 
465 	emad_array_in = mtd_orig->emad;
466 	emad_array_out = (struct ffa_emad_v1_0 *)
467 			 ((uint8_t *) out + out->emad_offset);
468 
469 	/* Copy across the emad structs. */
470 	for (unsigned int i = 0U; i < out->emad_count; i++) {
471 		/* Bound check for emad array. */
472 		if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
473 		    ((uint8_t *) mtd_orig + orig->desc_size)) {
474 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
475 			return false;
476 		}
477 		memcpy(&emad_array_out[i], &emad_array_in[i],
478 		       sizeof(struct ffa_emad_v1_0));
479 	}
480 
481 	/* Place the mrd descriptors after the end of the emad descriptors.*/
482 	mrd_in_offset = emad_array_in->comp_mrd_offset;
483 	mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
484 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
485 
486 	/* Add the size of the composite memory region descriptor. */
487 	mrd_size += sizeof(struct ffa_comp_mrd);
488 
489 	/* Find the mrd descriptor. */
490 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
491 
492 	/* Add the size of the constituent memory region descriptors. */
493 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
494 
495 	/*
496 	 * Update the offset in the emads by the delta between the input and
497 	 * output addresses.
498 	 */
499 	for (unsigned int i = 0U; i < out->emad_count; i++) {
500 		emad_array_out[i].comp_mrd_offset =
501 			emad_array_in[i].comp_mrd_offset +
502 			(mrd_out_offset - mrd_in_offset);
503 	}
504 
505 	/* Verify that we stay within bound of the memory descriptors. */
506 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
507 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
508 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
509 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
510 		ERROR("%s: Invalid mrd structure.\n", __func__);
511 		return false;
512 	}
513 
514 	/* Copy the mrd descriptors directly. */
515 	memcpy(mrd_out, mrd_in, mrd_size);
516 
517 	return true;
518 }
519 
520 /**
521  * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
522  *                                v1.0 memory object.
523  * @out_obj:    The shared memory object to populate the v1.0 descriptor.
524  * @orig:       The shared memory object containing the v1.1 descriptor.
525  *
526  * Return: true if the conversion is successful else false.
527  */
528 static bool
529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
530 			     struct spmc_shmem_obj *orig)
531 {
532 	struct ffa_mtd *mtd_orig = &orig->desc;
533 	struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
534 	struct ffa_emad_v1_0 *emad_in;
535 	struct ffa_emad_v1_0 *emad_array_in;
536 	struct ffa_emad_v1_0 *emad_array_out;
537 	struct ffa_comp_mrd *mrd_in;
538 	struct ffa_comp_mrd *mrd_out;
539 
540 	size_t mrd_in_offset;
541 	size_t mrd_out_offset;
542 	size_t emad_out_array_size;
543 	size_t mrd_size = 0;
544 	size_t orig_desc_size = orig->desc_size;
545 
546 	/* Populate the v1.0 descriptor format from the v1.1 struct. */
547 	out->sender_id = mtd_orig->sender_id;
548 	out->memory_region_attributes = mtd_orig->memory_region_attributes;
549 	out->flags = mtd_orig->flags;
550 	out->handle = mtd_orig->handle;
551 	out->tag = mtd_orig->tag;
552 	out->emad_count = mtd_orig->emad_count;
553 
554 	/* Determine the location of the emad array in both descriptors. */
555 	emad_array_in = (struct ffa_emad_v1_0 *)
556 			((uint8_t *) mtd_orig + mtd_orig->emad_offset);
557 	emad_array_out = out->emad;
558 
559 	/* Copy across the emad structs. */
560 	emad_in = emad_array_in;
561 	for (unsigned int i = 0U; i < out->emad_count; i++) {
562 		/* Bound check for emad array. */
563 		if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
564 				((uint8_t *) mtd_orig + orig_desc_size)) {
565 			VERBOSE("%s: Invalid mtd structure.\n", __func__);
566 			return false;
567 		}
568 		memcpy(&emad_array_out[i], emad_in,
569 		       sizeof(struct ffa_emad_v1_0));
570 
571 		emad_in +=  mtd_orig->emad_size;
572 	}
573 
574 	/* Place the mrd descriptors after the end of the emad descriptors. */
575 	emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
576 
577 	mrd_out_offset =  (uint8_t *) out->emad - (uint8_t *) out +
578 			  emad_out_array_size;
579 
580 	mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
581 
582 	mrd_in_offset = mtd_orig->emad_offset +
583 			(mtd_orig->emad_size * mtd_orig->emad_count);
584 
585 	/* Add the size of the composite memory region descriptor. */
586 	mrd_size += sizeof(struct ffa_comp_mrd);
587 
588 	/* Find the mrd descriptor. */
589 	mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
590 
591 	/* Add the size of the constituent memory region descriptors. */
592 	mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
593 
594 	/*
595 	 * Update the offset in the emads by the delta between the input and
596 	 * output addresses.
597 	 */
598 	emad_in = emad_array_in;
599 
600 	for (unsigned int i = 0U; i < out->emad_count; i++) {
601 		emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
602 						    (mrd_out_offset -
603 						     mrd_in_offset);
604 		emad_in +=  mtd_orig->emad_size;
605 	}
606 
607 	/* Verify that we stay within bound of the memory descriptors. */
608 	if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
609 	     (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
610 	    ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
611 	     (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
612 		ERROR("%s: Invalid mrd structure.\n", __func__);
613 		return false;
614 	}
615 
616 	/* Copy the mrd descriptors directly. */
617 	memcpy(mrd_out, mrd_in, mrd_size);
618 
619 	return true;
620 }
621 
622 /**
623  * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
624  *                                     the v1.0 format and populates the
625  *                                     provided buffer.
626  * @dst:	    Buffer to populate v1.0 ffa_memory_region_descriptor.
627  * @orig_obj:	    Object containing v1.1 ffa_memory_region_descriptor.
628  * @buf_size:	    Size of the buffer to populate.
629  * @offset:	    The offset of the converted descriptor to copy.
630  * @copy_size:	    Will be populated with the number of bytes copied.
631  * @out_desc_size:  Will be populated with the total size of the v1.0
632  *                  descriptor.
633  *
634  * Return: 0 if conversion and population succeeded.
635  * Note: This function invalidates the reference to @orig therefore
636  * `spmc_shmem_obj_lookup` must be called if further usage is required.
637  */
638 static uint32_t
639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
640 				 size_t buf_size, size_t offset,
641 				 size_t *copy_size, size_t *v1_0_desc_size)
642 {
643 		struct spmc_shmem_obj *v1_0_obj;
644 
645 		/* Calculate the size that the v1.0 descriptor will require. */
646 		*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
647 					&orig_obj->desc, orig_obj->desc_size);
648 
649 		if (*v1_0_desc_size == 0) {
650 			ERROR("%s: cannot determine size of descriptor.\n",
651 			      __func__);
652 			return FFA_ERROR_INVALID_PARAMETER;
653 		}
654 
655 		/* Get a new obj to store the v1.0 descriptor. */
656 		v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
657 						*v1_0_desc_size);
658 
659 		if (!v1_0_obj) {
660 			return FFA_ERROR_NO_MEMORY;
661 		}
662 
663 		/* Perform the conversion from v1.1 to v1.0. */
664 		if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
665 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
666 			return FFA_ERROR_INVALID_PARAMETER;
667 		}
668 
669 		*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
670 		memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
671 
672 		/*
673 		 * We're finished with the v1.0 descriptor for now so free it.
674 		 * Note that this will invalidate any references to the v1.1
675 		 * descriptor.
676 		 */
677 		spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
678 
679 		return 0;
680 }
681 
682 static bool compatible_version(uint32_t ffa_version, uint16_t major,
683 			       uint16_t minor)
684 {
685 	bool bit31_set = ffa_version & FFA_VERSION_BIT31_MASK;
686 	uint16_t majv = (ffa_version >> FFA_VERSION_MAJOR_SHIFT) &
687 			FFA_VERSION_MAJOR_MASK;
688 	uint16_t minv = (ffa_version >> FFA_VERSION_MINOR_SHIFT) &
689 			FFA_VERSION_MINOR_MASK;
690 
691 	return !bit31_set && majv == major && minv >= minor;
692 }
693 
694 static int
695 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
696 			size_t fragment_length, size_t total_length)
697 {
698 	unsigned long long emad_end;
699 	unsigned long long emad_size;
700 	unsigned long long emad_offset;
701 	unsigned int min_desc_size;
702 
703 	/* Determine the appropriate minimum descriptor size. */
704 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
705 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
706 	} else if (compatible_version(ffa_version, 1, 1)) {
707 		min_desc_size = sizeof(struct ffa_mtd);
708 	} else {
709 		return FFA_ERROR_INVALID_PARAMETER;
710 	}
711 	if (fragment_length < min_desc_size) {
712 		WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
713 		     min_desc_size);
714 		return FFA_ERROR_INVALID_PARAMETER;
715 	}
716 
717 	if (desc->emad_count == 0U) {
718 		WARN("%s: unsupported attribute desc count %u.\n",
719 		     __func__, desc->emad_count);
720 		return FFA_ERROR_INVALID_PARAMETER;
721 	}
722 
723 	/*
724 	 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
725 	 * format, otherwise assume it is a v1.1 format.
726 	 */
727 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
728 		emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
729 	} else {
730 		if (!is_aligned(desc->emad_offset, 16)) {
731 			WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
732 			     __func__, desc->emad_offset);
733 			return FFA_ERROR_INVALID_PARAMETER;
734 		}
735 		if (desc->emad_offset < sizeof(struct ffa_mtd)) {
736 			WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
737 			     __func__, desc->emad_offset,
738 			     sizeof(struct ffa_mtd));
739 			return FFA_ERROR_INVALID_PARAMETER;
740 		}
741 		emad_offset = desc->emad_offset;
742 		if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
743 			WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
744 			     desc->emad_size, sizeof(struct ffa_emad_v1_0));
745 			return FFA_ERROR_INVALID_PARAMETER;
746 		}
747 		if (!is_aligned(desc->emad_size, 16)) {
748 			WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
749 			     __func__, desc->emad_size);
750 			return FFA_ERROR_INVALID_PARAMETER;
751 		}
752 		emad_size = desc->emad_size;
753 	}
754 
755 	/*
756 	 * Overflow is impossible: the arithmetic happens in at least 64-bit
757 	 * precision, but all of the operands are bounded by UINT32_MAX, and
758 	 *   ((2^32 - 1) * (2^32 - 1) + (2^32 - 1) + (2^32 - 1))
759 	 * = ((2^32 - 1) * ((2^32 - 1) + 1 + 1))
760 	 * = ((2^32 - 1) * (2^32 + 1))
761 	 * = (2^64 - 1).
762 	 */
763 	CASSERT(sizeof(desc->emad_count) == 4, assert_emad_count_max_too_large);
764 	emad_end = (desc->emad_count * (unsigned long long)emad_size) +
765 		   (unsigned long long)sizeof(struct ffa_comp_mrd) +
766 		   (unsigned long long)emad_offset;
767 
768 	if (emad_end > total_length) {
769 		WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
770 		     __func__, emad_end, total_length);
771 		return FFA_ERROR_INVALID_PARAMETER;
772 	}
773 
774 	return 0;
775 }
776 
777 static inline const struct ffa_emad_v1_0 *
778 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset)
779 {
780 	return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset);
781 }
782 
783 /**
784  * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
785  * @obj:	  Object containing ffa_memory_region_descriptor.
786  * @ffa_version:  FF-A version of the provided descriptor.
787  *
788  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if
789  * constituent_memory_region_descriptor offset or count is invalid.
790  */
791 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
792 				uint32_t ffa_version)
793 {
794 	unsigned long long total_page_count;
795 	const struct ffa_emad_v1_0 *first_emad;
796 	const struct ffa_emad_v1_0 *end_emad;
797 	size_t emad_size;
798 	uint32_t comp_mrd_offset;
799 	size_t header_emad_size;
800 	size_t size;
801 	size_t count;
802 	size_t expected_size;
803 	const struct ffa_comp_mrd *comp;
804 
805 	if (obj->desc_filled != obj->desc_size) {
806 		ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
807 		      __func__, obj->desc_filled, obj->desc_size);
808 		panic();
809 	}
810 
811 	if (spmc_validate_mtd_start(&obj->desc, ffa_version,
812 				    obj->desc_filled, obj->desc_size)) {
813 		ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
814 		      __func__);
815 		panic();
816 	}
817 
818 	first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
819 					     ffa_version, &emad_size);
820 	end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size);
821 	comp_mrd_offset = first_emad->comp_mrd_offset;
822 
823 	/* Loop through the endpoint descriptors, validating each of them. */
824 	for (const struct ffa_emad_v1_0 *emad = first_emad; emad < end_emad;) {
825 		ffa_endpoint_id16_t ep_id;
826 
827 		/*
828 		 * If a partition ID resides in the secure world validate that
829 		 * the partition ID is for a known partition. Ignore any
830 		 * partition ID belonging to the normal world as it is assumed
831 		 * the Hypervisor will have validated these.
832 		 */
833 		ep_id = emad->mapd.endpoint_id;
834 		if (ffa_is_secure_world_id(ep_id)) {
835 			if (spmc_get_sp_ctx(ep_id) == NULL) {
836 				WARN("%s: Invalid receiver id 0x%x\n",
837 				     __func__, ep_id);
838 				return FFA_ERROR_INVALID_PARAMETER;
839 			}
840 		}
841 
842 		/*
843 		 * The offset provided to the composite memory region descriptor
844 		 * should be consistent across endpoint descriptors.
845 		 */
846 		if (comp_mrd_offset != emad->comp_mrd_offset) {
847 			ERROR("%s: mismatching offsets provided, %u != %u\n",
848 			       __func__, emad->comp_mrd_offset, comp_mrd_offset);
849 			return FFA_ERROR_INVALID_PARAMETER;
850 		}
851 
852 		/* Advance to the next endpoint descriptor */
853 		emad = emad_advance(emad, emad_size);
854 
855 		/*
856 		 * Ensure neither this emad nor any subsequent emads have
857 		 * the same partition ID as the previous emad.
858 		 */
859 		for (const struct ffa_emad_v1_0 *other_emad = emad;
860 		     other_emad < end_emad;
861 		     other_emad = emad_advance(other_emad, emad_size)) {
862 			if (ep_id == other_emad->mapd.endpoint_id) {
863 				WARN("%s: Duplicated endpoint id 0x%x\n",
864 				     __func__, emad->mapd.endpoint_id);
865 				return FFA_ERROR_INVALID_PARAMETER;
866 			}
867 		}
868 	}
869 
870 	header_emad_size = (size_t)((const uint8_t *)end_emad -
871 				    (const uint8_t *)&obj->desc);
872 
873 	/*
874 	 * Check that the composite descriptor
875 	 * is after the endpoint descriptors.
876 	 */
877 	if (comp_mrd_offset < header_emad_size) {
878 		WARN("%s: invalid object, offset %u < header + emad %zu\n",
879 		     __func__, comp_mrd_offset, header_emad_size);
880 		return FFA_ERROR_INVALID_PARAMETER;
881 	}
882 
883 	/* Ensure the composite descriptor offset is aligned. */
884 	if (!is_aligned(comp_mrd_offset, 16)) {
885 		WARN("%s: invalid object, unaligned composite memory "
886 		     "region descriptor offset %u.\n",
887 		     __func__, comp_mrd_offset);
888 		return FFA_ERROR_INVALID_PARAMETER;
889 	}
890 
891 	size = obj->desc_size;
892 
893 	/* Check that the composite descriptor is in bounds. */
894 	if (comp_mrd_offset > size) {
895 		WARN("%s: invalid object, offset %u > total size %zu\n",
896 		     __func__, comp_mrd_offset, obj->desc_size);
897 		return FFA_ERROR_INVALID_PARAMETER;
898 	}
899 	size -= comp_mrd_offset;
900 
901 	/* Check that there is enough space for the composite descriptor. */
902 	if (size < sizeof(struct ffa_comp_mrd)) {
903 		WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
904 		     __func__, comp_mrd_offset, obj->desc_size);
905 		return FFA_ERROR_INVALID_PARAMETER;
906 	}
907 	size -= sizeof(*comp);
908 
909 	count = size / sizeof(struct ffa_cons_mrd);
910 
911 	comp = (const struct ffa_comp_mrd *)
912 	       ((const uint8_t *)(&obj->desc) + comp_mrd_offset);
913 
914 	if (comp->address_range_count != count) {
915 		WARN("%s: invalid object, desc count %u != %zu\n",
916 		     __func__, comp->address_range_count, count);
917 		return FFA_ERROR_INVALID_PARAMETER;
918 	}
919 
920 	/* Ensure that the expected and actual sizes are equal. */
921 	expected_size = comp_mrd_offset + sizeof(*comp) +
922 		count * sizeof(struct ffa_cons_mrd);
923 
924 	if (expected_size != obj->desc_size) {
925 		WARN("%s: invalid object, computed size %zu != size %zu\n",
926 		       __func__, expected_size, obj->desc_size);
927 		return FFA_ERROR_INVALID_PARAMETER;
928 	}
929 
930 	total_page_count = 0;
931 
932 	/*
933 	 * comp->address_range_count is 32-bit, so 'count' must fit in a
934 	 * uint32_t at this point.
935 	 */
936 	for (size_t i = 0; i < count; i++) {
937 		const struct ffa_cons_mrd *mrd = comp->address_range_array + i;
938 
939 		if (!is_aligned(mrd->address, PAGE_SIZE)) {
940 			WARN("%s: invalid object, address in region descriptor "
941 			     "%zu not 4K aligned (got 0x%016llx)",
942 			     __func__, i, (unsigned long long)mrd->address);
943 		}
944 
945 		/*
946 		 * No overflow possible: total_page_count can hold at
947 		 * least 2^64 - 1, but will be have at most 2^32 - 1.
948 		 * values added to it, each of which cannot exceed 2^32 - 1.
949 		 */
950 		total_page_count += mrd->page_count;
951 	}
952 
953 	if (comp->total_page_count != total_page_count) {
954 		WARN("%s: invalid object, desc total_page_count %u != %llu\n",
955 		     __func__, comp->total_page_count, total_page_count);
956 		return FFA_ERROR_INVALID_PARAMETER;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  * spmc_shmem_check_state_obj - Check if the descriptor describes memory
964  *				regions that are currently involved with an
965  *				existing memory transactions. This implies that
966  *				the memory is not in a valid state for lending.
967  * @obj:    Object containing ffa_memory_region_descriptor.
968  *
969  * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory
970  * state.
971  */
972 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
973 				      uint32_t ffa_version)
974 {
975 	size_t obj_offset = 0;
976 	struct spmc_shmem_obj *inflight_obj;
977 
978 	struct ffa_comp_mrd *other_mrd;
979 	struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
980 								  ffa_version);
981 
982 	if (requested_mrd == NULL) {
983 		return FFA_ERROR_INVALID_PARAMETER;
984 	}
985 
986 	inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
987 					       &obj_offset);
988 
989 	while (inflight_obj != NULL) {
990 		/*
991 		 * Don't compare the transaction to itself or to partially
992 		 * transmitted descriptors.
993 		 */
994 		if ((obj->desc.handle != inflight_obj->desc.handle) &&
995 		    (obj->desc_size == obj->desc_filled)) {
996 			other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
997 							  FFA_VERSION_COMPILED);
998 			if (other_mrd == NULL) {
999 				return FFA_ERROR_INVALID_PARAMETER;
1000 			}
1001 			if (overlapping_memory_regions(requested_mrd,
1002 						       other_mrd)) {
1003 				return FFA_ERROR_INVALID_PARAMETER;
1004 			}
1005 		}
1006 
1007 		inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
1008 						       &obj_offset);
1009 	}
1010 	return 0;
1011 }
1012 
1013 static long spmc_ffa_fill_desc(struct mailbox *mbox,
1014 			       struct spmc_shmem_obj *obj,
1015 			       uint32_t fragment_length,
1016 			       ffa_mtd_flag32_t mtd_flag,
1017 			       uint32_t ffa_version,
1018 			       void *smc_handle)
1019 {
1020 	int ret;
1021 	uint32_t handle_low;
1022 	uint32_t handle_high;
1023 
1024 	if (mbox->rxtx_page_count == 0U) {
1025 		WARN("%s: buffer pair not registered.\n", __func__);
1026 		ret = FFA_ERROR_INVALID_PARAMETER;
1027 		goto err_arg;
1028 	}
1029 
1030 	CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count);
1031 	if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) {
1032 		WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__,
1033 		     fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB);
1034 		ret = FFA_ERROR_INVALID_PARAMETER;
1035 		goto err_arg;
1036 	}
1037 
1038 	if (fragment_length > obj->desc_size - obj->desc_filled) {
1039 		WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
1040 		     fragment_length, obj->desc_size - obj->desc_filled);
1041 		ret = FFA_ERROR_INVALID_PARAMETER;
1042 		goto err_arg;
1043 	}
1044 
1045 	memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1046 	       (uint8_t *) mbox->tx_buffer, fragment_length);
1047 
1048 	/* Ensure that the sender ID resides in the normal world. */
1049 	if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1050 		WARN("%s: Invalid sender ID 0x%x.\n",
1051 		     __func__, obj->desc.sender_id);
1052 		ret = FFA_ERROR_DENIED;
1053 		goto err_arg;
1054 	}
1055 
1056 	/* Ensure the NS bit is set to 0. */
1057 	if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1058 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1059 		ret = FFA_ERROR_INVALID_PARAMETER;
1060 		goto err_arg;
1061 	}
1062 
1063 	/*
1064 	 * We don't currently support any optional flags so ensure none are
1065 	 * requested.
1066 	 */
1067 	if (obj->desc.flags != 0U && mtd_flag != 0U &&
1068 	    (obj->desc.flags != mtd_flag)) {
1069 		WARN("%s: invalid memory transaction flags %u != %u\n",
1070 		     __func__, obj->desc.flags, mtd_flag);
1071 		ret = FFA_ERROR_INVALID_PARAMETER;
1072 		goto err_arg;
1073 	}
1074 
1075 	if (obj->desc_filled == 0U) {
1076 		/* First fragment, descriptor header has been copied */
1077 		ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1078 					      fragment_length, obj->desc_size);
1079 		if (ret != 0) {
1080 			goto err_bad_desc;
1081 		}
1082 
1083 		obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1084 		obj->desc.flags |= mtd_flag;
1085 	}
1086 
1087 	obj->desc_filled += fragment_length;
1088 
1089 	handle_low = (uint32_t)obj->desc.handle;
1090 	handle_high = obj->desc.handle >> 32;
1091 
1092 	if (obj->desc_filled != obj->desc_size) {
1093 		SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1094 			 handle_high, obj->desc_filled,
1095 			 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1096 	}
1097 
1098 	/* The full descriptor has been received, perform any final checks. */
1099 
1100 	ret = spmc_shmem_check_obj(obj, ffa_version);
1101 	if (ret != 0) {
1102 		goto err_bad_desc;
1103 	}
1104 
1105 	ret = spmc_shmem_check_state_obj(obj, ffa_version);
1106 	if (ret) {
1107 		ERROR("%s: invalid memory region descriptor.\n", __func__);
1108 		goto err_bad_desc;
1109 	}
1110 
1111 	/*
1112 	 * Everything checks out, if the sender was using FF-A v1.0, convert
1113 	 * the descriptor format to use the v1.1 structures.
1114 	 */
1115 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1116 		struct spmc_shmem_obj *v1_1_obj;
1117 		uint64_t mem_handle;
1118 
1119 		/* Calculate the size that the v1.1 descriptor will required. */
1120 		uint64_t v1_1_desc_size =
1121 		    spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1122 						      obj->desc_size);
1123 
1124 		if (v1_1_desc_size > UINT32_MAX) {
1125 			ret = FFA_ERROR_NO_MEMORY;
1126 			goto err_arg;
1127 		}
1128 
1129 		/* Get a new obj to store the v1.1 descriptor. */
1130 		v1_1_obj =
1131 		    spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size);
1132 
1133 		if (!v1_1_obj) {
1134 			ret = FFA_ERROR_NO_MEMORY;
1135 			goto err_arg;
1136 		}
1137 
1138 		/* Perform the conversion from v1.0 to v1.1. */
1139 		v1_1_obj->desc_size = (uint32_t)v1_1_desc_size;
1140 		v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size;
1141 		if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1142 			ERROR("%s: Could not convert mtd!\n", __func__);
1143 			spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1144 			goto err_arg;
1145 		}
1146 
1147 		/*
1148 		 * We're finished with the v1.0 descriptor so free it
1149 		 * and continue our checks with the new v1.1 descriptor.
1150 		 */
1151 		mem_handle = obj->desc.handle;
1152 		spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1153 		obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1154 		if (obj == NULL) {
1155 			ERROR("%s: Failed to find converted descriptor.\n",
1156 			     __func__);
1157 			ret = FFA_ERROR_INVALID_PARAMETER;
1158 			return spmc_ffa_error_return(smc_handle, ret);
1159 		}
1160 	}
1161 
1162 	/* Allow for platform specific operations to be performed. */
1163 	ret = plat_spmc_shmem_begin(&obj->desc);
1164 	if (ret != 0) {
1165 		goto err_arg;
1166 	}
1167 
1168 	SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1169 		 0, 0, 0);
1170 
1171 err_bad_desc:
1172 err_arg:
1173 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1174 	return spmc_ffa_error_return(smc_handle, ret);
1175 }
1176 
1177 /**
1178  * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1179  * @client:             Client state.
1180  * @total_length:       Total length of shared memory descriptor.
1181  * @fragment_length:    Length of fragment of shared memory descriptor passed in
1182  *                      this call.
1183  * @address:            Not supported, must be 0.
1184  * @page_count:         Not supported, must be 0.
1185  * @smc_handle:         Handle passed to smc call. Used to return
1186  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1187  *
1188  * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1189  * to share or lend memory from non-secure os to secure os (with no stream
1190  * endpoints).
1191  *
1192  * Return: 0 on success, error code on failure.
1193  */
1194 long spmc_ffa_mem_send(uint32_t smc_fid,
1195 			bool secure_origin,
1196 			uint64_t total_length,
1197 			uint32_t fragment_length,
1198 			uint64_t address,
1199 			uint32_t page_count,
1200 			void *cookie,
1201 			void *handle,
1202 			uint64_t flags)
1203 
1204 {
1205 	long ret;
1206 	struct spmc_shmem_obj *obj;
1207 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1208 	ffa_mtd_flag32_t mtd_flag;
1209 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1210 	size_t min_desc_size;
1211 
1212 	if (address != 0U || page_count != 0U) {
1213 		WARN("%s: custom memory region for message not supported.\n",
1214 		     __func__);
1215 		return spmc_ffa_error_return(handle,
1216 					     FFA_ERROR_INVALID_PARAMETER);
1217 	}
1218 
1219 	if (secure_origin) {
1220 		WARN("%s: unsupported share direction.\n", __func__);
1221 		return spmc_ffa_error_return(handle,
1222 					     FFA_ERROR_INVALID_PARAMETER);
1223 	}
1224 
1225 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1226 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1227 	} else if (compatible_version(ffa_version, 1, 1)) {
1228 		min_desc_size = sizeof(struct ffa_mtd);
1229 	} else {
1230 		WARN("%s: bad FF-A version.\n", __func__);
1231 		return spmc_ffa_error_return(handle,
1232 					     FFA_ERROR_INVALID_PARAMETER);
1233 	}
1234 
1235 	/* Check if the descriptor is too small for the FF-A version. */
1236 	if (fragment_length < min_desc_size) {
1237 		WARN("%s: bad first fragment size %u < %zu\n",
1238 		     __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1239 		return spmc_ffa_error_return(handle,
1240 					     FFA_ERROR_INVALID_PARAMETER);
1241 	}
1242 
1243 	if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1244 		mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1245 	} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1246 		mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1247 	} else {
1248 		WARN("%s: invalid memory management operation.\n", __func__);
1249 		return spmc_ffa_error_return(handle,
1250 					     FFA_ERROR_INVALID_PARAMETER);
1251 	}
1252 
1253 	spin_lock(&spmc_shmem_obj_state.lock);
1254 	obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1255 	if (obj == NULL) {
1256 		ret = FFA_ERROR_NO_MEMORY;
1257 		goto err_unlock;
1258 	}
1259 
1260 	spin_lock(&mbox->lock);
1261 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1262 				 ffa_version, handle);
1263 	spin_unlock(&mbox->lock);
1264 
1265 	spin_unlock(&spmc_shmem_obj_state.lock);
1266 	return ret;
1267 
1268 err_unlock:
1269 	spin_unlock(&spmc_shmem_obj_state.lock);
1270 	return spmc_ffa_error_return(handle, ret);
1271 }
1272 
1273 /**
1274  * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1275  * @client:             Client state.
1276  * @handle_low:         Handle_low value returned from FFA_MEM_FRAG_RX.
1277  * @handle_high:        Handle_high value returned from FFA_MEM_FRAG_RX.
1278  * @fragment_length:    Length of fragments transmitted.
1279  * @sender_id:          Vmid of sender in bits [31:16]
1280  * @smc_handle:         Handle passed to smc call. Used to return
1281  *                      FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1282  *
1283  * Return: @smc_handle on success, error code on failure.
1284  */
1285 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1286 			  bool secure_origin,
1287 			  uint64_t handle_low,
1288 			  uint64_t handle_high,
1289 			  uint32_t fragment_length,
1290 			  uint32_t sender_id,
1291 			  void *cookie,
1292 			  void *handle,
1293 			  uint64_t flags)
1294 {
1295 	long ret;
1296 	uint32_t desc_sender_id;
1297 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1298 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1299 
1300 	struct spmc_shmem_obj *obj;
1301 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1302 
1303 	spin_lock(&spmc_shmem_obj_state.lock);
1304 
1305 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1306 	if (obj == NULL) {
1307 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1308 		     __func__, mem_handle);
1309 		ret = FFA_ERROR_INVALID_PARAMETER;
1310 		goto err_unlock;
1311 	}
1312 
1313 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1314 	if (sender_id != desc_sender_id) {
1315 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1316 		     sender_id, desc_sender_id);
1317 		ret = FFA_ERROR_INVALID_PARAMETER;
1318 		goto err_unlock;
1319 	}
1320 
1321 	if (obj->desc_filled == obj->desc_size) {
1322 		WARN("%s: object desc already filled, %zu\n", __func__,
1323 		     obj->desc_filled);
1324 		ret = FFA_ERROR_INVALID_PARAMETER;
1325 		goto err_unlock;
1326 	}
1327 
1328 	spin_lock(&mbox->lock);
1329 	ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1330 				 handle);
1331 	spin_unlock(&mbox->lock);
1332 
1333 	spin_unlock(&spmc_shmem_obj_state.lock);
1334 	return ret;
1335 
1336 err_unlock:
1337 	spin_unlock(&spmc_shmem_obj_state.lock);
1338 	return spmc_ffa_error_return(handle, ret);
1339 }
1340 
1341 /**
1342  * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1343  *				      if the caller implements a version greater
1344  *				      than FF-A 1.0 or if they have requested
1345  *				      the functionality.
1346  *				      TODO: We are assuming that the caller is
1347  *				      an SP. To support retrieval from the
1348  *				      normal world this function will need to be
1349  *				      expanded accordingly.
1350  * @resp:       Descriptor populated in callers RX buffer.
1351  * @sp_ctx:     Context of the calling SP.
1352  */
1353 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1354 			 struct secure_partition_desc *sp_ctx)
1355 {
1356 	if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1357 	    sp_ctx->ns_bit_requested) {
1358 		/*
1359 		 * Currently memory senders must reside in the normal
1360 		 * world, and we do not have the functionlaity to change
1361 		 * the state of memory dynamically. Therefore we can always set
1362 		 * the NS bit to 1.
1363 		 */
1364 		resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1365 	}
1366 }
1367 
1368 /**
1369  * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1370  * @smc_fid:            FID of SMC
1371  * @total_length:       Total length of retrieve request descriptor if this is
1372  *                      the first call. Otherwise (unsupported) must be 0.
1373  * @fragment_length:    Length of fragment of retrieve request descriptor passed
1374  *                      in this call. Only @fragment_length == @length is
1375  *                      supported by this implementation.
1376  * @address:            Not supported, must be 0.
1377  * @page_count:         Not supported, must be 0.
1378  * @smc_handle:         Handle passed to smc call. Used to return
1379  *                      FFA_MEM_RETRIEVE_RESP.
1380  *
1381  * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1382  * Used by secure os to retrieve memory already shared by non-secure os.
1383  * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1384  * the client must call FFA_MEM_FRAG_RX until the full response has been
1385  * received.
1386  *
1387  * Return: @handle on success, error code on failure.
1388  */
1389 long
1390 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1391 			  bool secure_origin,
1392 			  uint32_t total_length,
1393 			  uint32_t fragment_length,
1394 			  uint64_t address,
1395 			  uint32_t page_count,
1396 			  void *cookie,
1397 			  void *handle,
1398 			  uint64_t flags)
1399 {
1400 	int ret;
1401 	size_t buf_size;
1402 	size_t copy_size = 0;
1403 	size_t min_desc_size;
1404 	size_t out_desc_size = 0;
1405 
1406 	/*
1407 	 * Currently we are only accessing fields that are the same in both the
1408 	 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1409 	 * here. We only need validate against the appropriate struct size.
1410 	 */
1411 	struct ffa_mtd *resp;
1412 	const struct ffa_mtd *req;
1413 	struct spmc_shmem_obj *obj = NULL;
1414 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1415 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1416 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1417 
1418 	if (!secure_origin) {
1419 		WARN("%s: unsupported retrieve req direction.\n", __func__);
1420 		return spmc_ffa_error_return(handle,
1421 					     FFA_ERROR_INVALID_PARAMETER);
1422 	}
1423 
1424 	if (address != 0U || page_count != 0U) {
1425 		WARN("%s: custom memory region not supported.\n", __func__);
1426 		return spmc_ffa_error_return(handle,
1427 					     FFA_ERROR_INVALID_PARAMETER);
1428 	}
1429 
1430 	spin_lock(&mbox->lock);
1431 
1432 	req = mbox->tx_buffer;
1433 	resp = mbox->rx_buffer;
1434 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1435 
1436 	if (mbox->rxtx_page_count == 0U) {
1437 		WARN("%s: buffer pair not registered.\n", __func__);
1438 		ret = FFA_ERROR_INVALID_PARAMETER;
1439 		goto err_unlock_mailbox;
1440 	}
1441 
1442 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1443 		WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1444 		ret = FFA_ERROR_DENIED;
1445 		goto err_unlock_mailbox;
1446 	}
1447 
1448 	if (fragment_length != total_length) {
1449 		WARN("%s: fragmented retrieve request not supported.\n",
1450 		     __func__);
1451 		ret = FFA_ERROR_INVALID_PARAMETER;
1452 		goto err_unlock_mailbox;
1453 	}
1454 
1455 	if (req->emad_count == 0U) {
1456 		WARN("%s: unsupported attribute desc count %u.\n",
1457 		     __func__, obj->desc.emad_count);
1458 		ret = FFA_ERROR_INVALID_PARAMETER;
1459 		goto err_unlock_mailbox;
1460 	}
1461 
1462 	/* Determine the appropriate minimum descriptor size. */
1463 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1464 		min_desc_size = sizeof(struct ffa_mtd_v1_0);
1465 	} else {
1466 		min_desc_size = sizeof(struct ffa_mtd);
1467 	}
1468 	if (total_length < min_desc_size) {
1469 		WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1470 		     min_desc_size);
1471 		ret = FFA_ERROR_INVALID_PARAMETER;
1472 		goto err_unlock_mailbox;
1473 	}
1474 
1475 	spin_lock(&spmc_shmem_obj_state.lock);
1476 
1477 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1478 	if (obj == NULL) {
1479 		ret = FFA_ERROR_INVALID_PARAMETER;
1480 		goto err_unlock_all;
1481 	}
1482 
1483 	if (obj->desc_filled != obj->desc_size) {
1484 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1485 		     __func__, obj->desc_filled, obj->desc_size);
1486 		ret = FFA_ERROR_INVALID_PARAMETER;
1487 		goto err_unlock_all;
1488 	}
1489 
1490 	if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1491 		WARN("%s: wrong sender id 0x%x != 0x%x\n",
1492 		     __func__, req->sender_id, obj->desc.sender_id);
1493 		ret = FFA_ERROR_INVALID_PARAMETER;
1494 		goto err_unlock_all;
1495 	}
1496 
1497 	if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1498 		WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1499 		     __func__, req->tag, obj->desc.tag);
1500 		ret = FFA_ERROR_INVALID_PARAMETER;
1501 		goto err_unlock_all;
1502 	}
1503 
1504 	if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1505 		WARN("%s: mistmatch of endpoint counts %u != %u\n",
1506 		     __func__, req->emad_count, obj->desc.emad_count);
1507 		ret = FFA_ERROR_INVALID_PARAMETER;
1508 		goto err_unlock_all;
1509 	}
1510 
1511 	/* Ensure the NS bit is set to 0 in the request. */
1512 	if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1513 		WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1514 		ret = FFA_ERROR_INVALID_PARAMETER;
1515 		goto err_unlock_all;
1516 	}
1517 
1518 	if (req->flags != 0U) {
1519 		if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1520 		    (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1521 			/*
1522 			 * If the retrieve request specifies the memory
1523 			 * transaction ensure it matches what we expect.
1524 			 */
1525 			WARN("%s: wrong mem transaction flags %x != %x\n",
1526 			__func__, req->flags, obj->desc.flags);
1527 			ret = FFA_ERROR_INVALID_PARAMETER;
1528 			goto err_unlock_all;
1529 		}
1530 
1531 		if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1532 		    req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1533 			/*
1534 			 * Current implementation does not support donate and
1535 			 * it supports no other flags.
1536 			 */
1537 			WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1538 			ret = FFA_ERROR_INVALID_PARAMETER;
1539 			goto err_unlock_all;
1540 		}
1541 	}
1542 
1543 	/* Validate the caller is a valid participant. */
1544 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1545 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1546 			__func__, sp_ctx->sp_id);
1547 		ret = FFA_ERROR_INVALID_PARAMETER;
1548 		goto err_unlock_all;
1549 	}
1550 
1551 	/* Validate that the provided emad offset and structure is valid.*/
1552 	for (size_t i = 0; i < req->emad_count; i++) {
1553 		size_t emad_size;
1554 		struct ffa_emad_v1_0 *emad;
1555 
1556 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1557 					       &emad_size);
1558 
1559 		if ((uintptr_t) emad >= (uintptr_t)
1560 					((uint8_t *) req + total_length)) {
1561 			WARN("Invalid emad access.\n");
1562 			ret = FFA_ERROR_INVALID_PARAMETER;
1563 			goto err_unlock_all;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * Validate all the endpoints match in the case of multiple
1569 	 * borrowers. We don't mandate that the order of the borrowers
1570 	 * must match in the descriptors therefore check to see if the
1571 	 * endpoints match in any order.
1572 	 */
1573 	for (size_t i = 0; i < req->emad_count; i++) {
1574 		bool found = false;
1575 		size_t emad_size;
1576 		struct ffa_emad_v1_0 *emad;
1577 		struct ffa_emad_v1_0 *other_emad;
1578 
1579 		emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1580 					       &emad_size);
1581 
1582 		for (size_t j = 0; j < obj->desc.emad_count; j++) {
1583 			other_emad = spmc_shmem_obj_get_emad(
1584 					&obj->desc, j, MAKE_FFA_VERSION(1, 1),
1585 					&emad_size);
1586 
1587 			if (req->emad_count &&
1588 			    emad->mapd.endpoint_id ==
1589 			    other_emad->mapd.endpoint_id) {
1590 				found = true;
1591 				break;
1592 			}
1593 		}
1594 
1595 		if (!found) {
1596 			WARN("%s: invalid receiver id (0x%x).\n",
1597 			     __func__, emad->mapd.endpoint_id);
1598 			ret = FFA_ERROR_INVALID_PARAMETER;
1599 			goto err_unlock_all;
1600 		}
1601 	}
1602 
1603 	mbox->state = MAILBOX_STATE_FULL;
1604 
1605 	if (req->emad_count != 0U) {
1606 		obj->in_use++;
1607 	}
1608 
1609 	/*
1610 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1611 	 * directly.
1612 	 */
1613 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1614 		ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1615 							&copy_size,
1616 							&out_desc_size);
1617 		if (ret != 0U) {
1618 			ERROR("%s: Failed to process descriptor.\n", __func__);
1619 			goto err_unlock_all;
1620 		}
1621 	} else {
1622 		copy_size = MIN(obj->desc_size, buf_size);
1623 		out_desc_size = obj->desc_size;
1624 
1625 		memcpy(resp, &obj->desc, copy_size);
1626 	}
1627 
1628 	/* Set the NS bit in the response if applicable. */
1629 	spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1630 
1631 	spin_unlock(&spmc_shmem_obj_state.lock);
1632 	spin_unlock(&mbox->lock);
1633 
1634 	SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1635 		 copy_size, 0, 0, 0, 0, 0);
1636 
1637 err_unlock_all:
1638 	spin_unlock(&spmc_shmem_obj_state.lock);
1639 err_unlock_mailbox:
1640 	spin_unlock(&mbox->lock);
1641 	return spmc_ffa_error_return(handle, ret);
1642 }
1643 
1644 /**
1645  * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1646  * @client:             Client state.
1647  * @handle_low:         Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1648  * @handle_high:        Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1649  * @fragment_offset:    Byte offset in descriptor to resume at.
1650  * @sender_id:          Bit[31:16]: Endpoint id of sender if client is a
1651  *                      hypervisor. 0 otherwise.
1652  * @smc_handle:         Handle passed to smc call. Used to return
1653  *                      FFA_MEM_FRAG_TX.
1654  *
1655  * Return: @smc_handle on success, error code on failure.
1656  */
1657 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1658 			  bool secure_origin,
1659 			  uint32_t handle_low,
1660 			  uint32_t handle_high,
1661 			  uint32_t fragment_offset,
1662 			  uint32_t sender_id,
1663 			  void *cookie,
1664 			  void *handle,
1665 			  uint64_t flags)
1666 {
1667 	int ret;
1668 	void *src;
1669 	size_t buf_size;
1670 	size_t copy_size;
1671 	size_t full_copy_size;
1672 	uint32_t desc_sender_id;
1673 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1674 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1675 	struct spmc_shmem_obj *obj;
1676 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1677 
1678 	if (!secure_origin) {
1679 		WARN("%s: can only be called from swld.\n",
1680 		     __func__);
1681 		return spmc_ffa_error_return(handle,
1682 					     FFA_ERROR_INVALID_PARAMETER);
1683 	}
1684 
1685 	spin_lock(&spmc_shmem_obj_state.lock);
1686 
1687 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1688 	if (obj == NULL) {
1689 		WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1690 		     __func__, mem_handle);
1691 		ret = FFA_ERROR_INVALID_PARAMETER;
1692 		goto err_unlock_shmem;
1693 	}
1694 
1695 	desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1696 	if (sender_id != 0U && sender_id != desc_sender_id) {
1697 		WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1698 		     sender_id, desc_sender_id);
1699 		ret = FFA_ERROR_INVALID_PARAMETER;
1700 		goto err_unlock_shmem;
1701 	}
1702 
1703 	if (fragment_offset >= obj->desc_size) {
1704 		WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1705 		     __func__, fragment_offset, obj->desc_size);
1706 		ret = FFA_ERROR_INVALID_PARAMETER;
1707 		goto err_unlock_shmem;
1708 	}
1709 
1710 	spin_lock(&mbox->lock);
1711 
1712 	if (mbox->rxtx_page_count == 0U) {
1713 		WARN("%s: buffer pair not registered.\n", __func__);
1714 		ret = FFA_ERROR_INVALID_PARAMETER;
1715 		goto err_unlock_all;
1716 	}
1717 
1718 	if (mbox->state != MAILBOX_STATE_EMPTY) {
1719 		WARN("%s: RX Buffer is full!\n", __func__);
1720 		ret = FFA_ERROR_DENIED;
1721 		goto err_unlock_all;
1722 	}
1723 
1724 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1725 
1726 	mbox->state = MAILBOX_STATE_FULL;
1727 
1728 	/*
1729 	 * If the caller is v1.0 convert the descriptor, otherwise copy
1730 	 * directly.
1731 	 */
1732 	if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1733 		size_t out_desc_size;
1734 
1735 		ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1736 							buf_size,
1737 							fragment_offset,
1738 							&copy_size,
1739 							&out_desc_size);
1740 		if (ret != 0U) {
1741 			ERROR("%s: Failed to process descriptor.\n", __func__);
1742 			goto err_unlock_all;
1743 		}
1744 	} else {
1745 		full_copy_size = obj->desc_size - fragment_offset;
1746 		copy_size = MIN(full_copy_size, buf_size);
1747 
1748 		src = &obj->desc;
1749 
1750 		memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1751 	}
1752 
1753 	spin_unlock(&mbox->lock);
1754 	spin_unlock(&spmc_shmem_obj_state.lock);
1755 
1756 	SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1757 		 copy_size, sender_id, 0, 0, 0);
1758 
1759 err_unlock_all:
1760 	spin_unlock(&mbox->lock);
1761 err_unlock_shmem:
1762 	spin_unlock(&spmc_shmem_obj_state.lock);
1763 	return spmc_ffa_error_return(handle, ret);
1764 }
1765 
1766 /**
1767  * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1768  * @client:             Client state.
1769  *
1770  * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1771  * Used by secure os release previously shared memory to non-secure os.
1772  *
1773  * The handle to release must be in the client's (secure os's) transmit buffer.
1774  *
1775  * Return: 0 on success, error code on failure.
1776  */
1777 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1778 			    bool secure_origin,
1779 			    uint32_t handle_low,
1780 			    uint32_t handle_high,
1781 			    uint32_t fragment_offset,
1782 			    uint32_t sender_id,
1783 			    void *cookie,
1784 			    void *handle,
1785 			    uint64_t flags)
1786 {
1787 	int ret;
1788 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1789 	struct spmc_shmem_obj *obj;
1790 	const struct ffa_mem_relinquish_descriptor *req;
1791 	struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1792 
1793 	if (!secure_origin) {
1794 		WARN("%s: unsupported relinquish direction.\n", __func__);
1795 		return spmc_ffa_error_return(handle,
1796 					     FFA_ERROR_INVALID_PARAMETER);
1797 	}
1798 
1799 	spin_lock(&mbox->lock);
1800 
1801 	if (mbox->rxtx_page_count == 0U) {
1802 		WARN("%s: buffer pair not registered.\n", __func__);
1803 		ret = FFA_ERROR_INVALID_PARAMETER;
1804 		goto err_unlock_mailbox;
1805 	}
1806 
1807 	req = mbox->tx_buffer;
1808 
1809 	if (req->flags != 0U) {
1810 		WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1811 		ret = FFA_ERROR_INVALID_PARAMETER;
1812 		goto err_unlock_mailbox;
1813 	}
1814 
1815 	if (req->endpoint_count == 0) {
1816 		WARN("%s: endpoint count cannot be 0.\n", __func__);
1817 		ret = FFA_ERROR_INVALID_PARAMETER;
1818 		goto err_unlock_mailbox;
1819 	}
1820 
1821 	spin_lock(&spmc_shmem_obj_state.lock);
1822 
1823 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1824 	if (obj == NULL) {
1825 		ret = FFA_ERROR_INVALID_PARAMETER;
1826 		goto err_unlock_all;
1827 	}
1828 
1829 	/*
1830 	 * Validate the endpoint ID was populated correctly. We don't currently
1831 	 * support proxy endpoints so the endpoint count should always be 1.
1832 	 */
1833 	if (req->endpoint_count != 1U) {
1834 		WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1835 		     req->endpoint_count);
1836 		ret = FFA_ERROR_INVALID_PARAMETER;
1837 		goto err_unlock_all;
1838 	}
1839 
1840 	/* Validate provided endpoint ID matches the partition ID. */
1841 	if (req->endpoint_array[0] != sp_ctx->sp_id) {
1842 		WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1843 		     req->endpoint_array[0], sp_ctx->sp_id);
1844 		ret = FFA_ERROR_INVALID_PARAMETER;
1845 		goto err_unlock_all;
1846 	}
1847 
1848 	/* Validate the caller is a valid participant. */
1849 	if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1850 		WARN("%s: Invalid endpoint ID (0x%x).\n",
1851 			__func__, req->endpoint_array[0]);
1852 		ret = FFA_ERROR_INVALID_PARAMETER;
1853 		goto err_unlock_all;
1854 	}
1855 
1856 	if (obj->in_use == 0U) {
1857 		ret = FFA_ERROR_INVALID_PARAMETER;
1858 		goto err_unlock_all;
1859 	}
1860 	obj->in_use--;
1861 
1862 	spin_unlock(&spmc_shmem_obj_state.lock);
1863 	spin_unlock(&mbox->lock);
1864 
1865 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1866 
1867 err_unlock_all:
1868 	spin_unlock(&spmc_shmem_obj_state.lock);
1869 err_unlock_mailbox:
1870 	spin_unlock(&mbox->lock);
1871 	return spmc_ffa_error_return(handle, ret);
1872 }
1873 
1874 /**
1875  * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1876  * @client:         Client state.
1877  * @handle_low:     Unique handle of shared memory object to reclaim. Bit[31:0].
1878  * @handle_high:    Unique handle of shared memory object to reclaim.
1879  *                  Bit[63:32].
1880  * @flags:          Unsupported, ignored.
1881  *
1882  * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1883  * Used by non-secure os reclaim memory previously shared with secure os.
1884  *
1885  * Return: 0 on success, error code on failure.
1886  */
1887 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1888 			 bool secure_origin,
1889 			 uint32_t handle_low,
1890 			 uint32_t handle_high,
1891 			 uint32_t mem_flags,
1892 			 uint64_t x4,
1893 			 void *cookie,
1894 			 void *handle,
1895 			 uint64_t flags)
1896 {
1897 	int ret;
1898 	struct spmc_shmem_obj *obj;
1899 	uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1900 
1901 	if (secure_origin) {
1902 		WARN("%s: unsupported reclaim direction.\n", __func__);
1903 		return spmc_ffa_error_return(handle,
1904 					     FFA_ERROR_INVALID_PARAMETER);
1905 	}
1906 
1907 	if (mem_flags != 0U) {
1908 		WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1909 		return spmc_ffa_error_return(handle,
1910 					     FFA_ERROR_INVALID_PARAMETER);
1911 	}
1912 
1913 	spin_lock(&spmc_shmem_obj_state.lock);
1914 
1915 	obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1916 	if (obj == NULL) {
1917 		ret = FFA_ERROR_INVALID_PARAMETER;
1918 		goto err_unlock;
1919 	}
1920 	if (obj->in_use != 0U) {
1921 		ret = FFA_ERROR_DENIED;
1922 		goto err_unlock;
1923 	}
1924 
1925 	if (obj->desc_filled != obj->desc_size) {
1926 		WARN("%s: incomplete object desc filled %zu < size %zu\n",
1927 		     __func__, obj->desc_filled, obj->desc_size);
1928 		ret = FFA_ERROR_INVALID_PARAMETER;
1929 		goto err_unlock;
1930 	}
1931 
1932 	/* Allow for platform specific operations to be performed. */
1933 	ret = plat_spmc_shmem_reclaim(&obj->desc);
1934 	if (ret != 0) {
1935 		goto err_unlock;
1936 	}
1937 
1938 	spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1939 	spin_unlock(&spmc_shmem_obj_state.lock);
1940 
1941 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1942 
1943 err_unlock:
1944 	spin_unlock(&spmc_shmem_obj_state.lock);
1945 	return spmc_ffa_error_return(handle, ret);
1946 }
1947