1 /* 2 * Copyright (c) 2022-2024, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 #include <stdio.h> 10 11 #include <arch_helpers.h> 12 #include <bl31/bl31.h> 13 #include <bl31/ehf.h> 14 #include <bl31/interrupt_mgmt.h> 15 #include <common/debug.h> 16 #include <common/fdt_wrappers.h> 17 #include <common/runtime_svc.h> 18 #include <common/uuid.h> 19 #include <lib/el3_runtime/context_mgmt.h> 20 #include <lib/smccc.h> 21 #include <lib/utils.h> 22 #include <lib/xlat_tables/xlat_tables_v2.h> 23 #include <libfdt.h> 24 #include <plat/common/platform.h> 25 #include <services/el3_spmc_logical_sp.h> 26 #include <services/ffa_svc.h> 27 #include <services/spmc_svc.h> 28 #include <services/spmd_svc.h> 29 #include "spmc.h" 30 #include "spmc_shared_mem.h" 31 32 #include <platform_def.h> 33 34 /* FFA_MEM_PERM_* helpers */ 35 #define FFA_MEM_PERM_MASK U(7) 36 #define FFA_MEM_PERM_DATA_MASK U(3) 37 #define FFA_MEM_PERM_DATA_SHIFT U(0) 38 #define FFA_MEM_PERM_DATA_NA U(0) 39 #define FFA_MEM_PERM_DATA_RW U(1) 40 #define FFA_MEM_PERM_DATA_RES U(2) 41 #define FFA_MEM_PERM_DATA_RO U(3) 42 #define FFA_MEM_PERM_INST_EXEC (U(0) << 2) 43 #define FFA_MEM_PERM_INST_NON_EXEC (U(1) << 2) 44 45 /* Declare the maximum number of SPs and El3 LPs. */ 46 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT 47 48 /* 49 * Allocate a secure partition descriptor to describe each SP in the system that 50 * does not reside at EL3. 51 */ 52 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT]; 53 54 /* 55 * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in 56 * the system that interacts with a SP. It is used to track the Hypervisor 57 * buffer pair, version and ID for now. It could be extended to track VM 58 * properties when the SPMC supports indirect messaging. 59 */ 60 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT]; 61 62 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 63 uint32_t flags, 64 void *handle, 65 void *cookie); 66 67 /* 68 * Helper function to obtain the array storing the EL3 69 * Logical Partition descriptors. 70 */ 71 struct el3_lp_desc *get_el3_lp_array(void) 72 { 73 return (struct el3_lp_desc *) EL3_LP_DESCS_START; 74 } 75 76 /* 77 * Helper function to obtain the descriptor of the last SP to whom control was 78 * handed to on this physical cpu. Currently, we assume there is only one SP. 79 * TODO: Expand to track multiple partitions when required. 80 */ 81 struct secure_partition_desc *spmc_get_current_sp_ctx(void) 82 { 83 return &(sp_desc[ACTIVE_SP_DESC_INDEX]); 84 } 85 86 /* 87 * Helper function to obtain the execution context of an SP on the 88 * current physical cpu. 89 */ 90 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp) 91 { 92 return &(sp->ec[get_ec_index(sp)]); 93 } 94 95 /* Helper function to get pointer to SP context from its ID. */ 96 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id) 97 { 98 /* Check for Secure World Partitions. */ 99 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 100 if (sp_desc[i].sp_id == id) { 101 return &(sp_desc[i]); 102 } 103 } 104 return NULL; 105 } 106 107 /* 108 * Helper function to obtain the descriptor of the Hypervisor or OS kernel. 109 * We assume that the first descriptor is reserved for this entity. 110 */ 111 struct ns_endpoint_desc *spmc_get_hyp_ctx(void) 112 { 113 return &(ns_ep_desc[0]); 114 } 115 116 /* 117 * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor 118 * or OS kernel in the normal world or the last SP that was run. 119 */ 120 struct mailbox *spmc_get_mbox_desc(bool secure_origin) 121 { 122 /* Obtain the RX/TX buffer pair descriptor. */ 123 if (secure_origin) { 124 return &(spmc_get_current_sp_ctx()->mailbox); 125 } else { 126 return &(spmc_get_hyp_ctx()->mailbox); 127 } 128 } 129 130 /****************************************************************************** 131 * This function returns to the place where spmc_sp_synchronous_entry() was 132 * called originally. 133 ******************************************************************************/ 134 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc) 135 { 136 /* 137 * The SPM must have initiated the original request through a 138 * synchronous entry into the secure partition. Jump back to the 139 * original C runtime context with the value of rc in x0; 140 */ 141 spm_secure_partition_exit(ec->c_rt_ctx, rc); 142 143 panic(); 144 } 145 146 /******************************************************************************* 147 * Return FFA_ERROR with specified error code. 148 ******************************************************************************/ 149 uint64_t spmc_ffa_error_return(void *handle, int error_code) 150 { 151 SMC_RET8(handle, FFA_ERROR, 152 FFA_TARGET_INFO_MBZ, error_code, 153 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, 154 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 155 } 156 157 /****************************************************************************** 158 * Helper function to validate a secure partition ID to ensure it does not 159 * conflict with any other FF-A component and follows the convention to 160 * indicate it resides within the secure world. 161 ******************************************************************************/ 162 bool is_ffa_secure_id_valid(uint16_t partition_id) 163 { 164 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 165 166 /* Ensure the ID is not the invalid partition ID. */ 167 if (partition_id == INV_SP_ID) { 168 return false; 169 } 170 171 /* Ensure the ID is not the SPMD ID. */ 172 if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) { 173 return false; 174 } 175 176 /* 177 * Ensure the ID follows the convention to indicate it resides 178 * in the secure world. 179 */ 180 if (!ffa_is_secure_world_id(partition_id)) { 181 return false; 182 } 183 184 /* Ensure we don't conflict with the SPMC partition ID. */ 185 if (partition_id == FFA_SPMC_ID) { 186 return false; 187 } 188 189 /* Ensure we do not already have an SP context with this ID. */ 190 if (spmc_get_sp_ctx(partition_id)) { 191 return false; 192 } 193 194 /* Ensure we don't clash with any Logical SP's. */ 195 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 196 if (el3_lp_descs[i].sp_id == partition_id) { 197 return false; 198 } 199 } 200 201 return true; 202 } 203 204 /******************************************************************************* 205 * This function either forwards the request to the other world or returns 206 * with an ERET depending on the source of the call. 207 * We can assume that the destination is for an entity at a lower exception 208 * level as any messages destined for a logical SP resident in EL3 will have 209 * already been taken care of by the SPMC before entering this function. 210 ******************************************************************************/ 211 static uint64_t spmc_smc_return(uint32_t smc_fid, 212 bool secure_origin, 213 uint64_t x1, 214 uint64_t x2, 215 uint64_t x3, 216 uint64_t x4, 217 void *handle, 218 void *cookie, 219 uint64_t flags, 220 uint16_t dst_id) 221 { 222 /* If the destination is in the normal world always go via the SPMD. */ 223 if (ffa_is_normal_world_id(dst_id)) { 224 return spmd_smc_handler(smc_fid, x1, x2, x3, x4, 225 cookie, handle, flags); 226 } 227 /* 228 * If the caller is secure and we want to return to the secure world, 229 * ERET directly. 230 */ 231 else if (secure_origin && ffa_is_secure_world_id(dst_id)) { 232 SMC_RET5(handle, smc_fid, x1, x2, x3, x4); 233 } 234 /* If we originated in the normal world then switch contexts. */ 235 else if (!secure_origin && ffa_is_secure_world_id(dst_id)) { 236 return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, 237 x3, x4, handle); 238 } else { 239 /* Unknown State. */ 240 panic(); 241 } 242 243 /* Shouldn't be Reached. */ 244 return 0; 245 } 246 247 /******************************************************************************* 248 * FF-A ABI Handlers. 249 ******************************************************************************/ 250 251 /******************************************************************************* 252 * Helper function to validate arg2 as part of a direct message. 253 ******************************************************************************/ 254 static inline bool direct_msg_validate_arg2(uint64_t x2) 255 { 256 /* Check message type. */ 257 if (x2 & FFA_FWK_MSG_BIT) { 258 /* We have a framework message, ensure it is a known message. */ 259 if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) { 260 VERBOSE("Invalid message format 0x%lx.\n", x2); 261 return false; 262 } 263 } else { 264 /* We have a partition messages, ensure x2 is not set. */ 265 if (x2 != (uint64_t) 0) { 266 VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n", 267 x2); 268 return false; 269 } 270 } 271 return true; 272 } 273 274 /******************************************************************************* 275 * Helper function to validate the destination ID of a direct response. 276 ******************************************************************************/ 277 static bool direct_msg_validate_dst_id(uint16_t dst_id) 278 { 279 struct secure_partition_desc *sp; 280 281 /* Check if we're targeting a normal world partition. */ 282 if (ffa_is_normal_world_id(dst_id)) { 283 return true; 284 } 285 286 /* Or directed to the SPMC itself.*/ 287 if (dst_id == FFA_SPMC_ID) { 288 return true; 289 } 290 291 /* Otherwise ensure the SP exists. */ 292 sp = spmc_get_sp_ctx(dst_id); 293 if (sp != NULL) { 294 return true; 295 } 296 297 return false; 298 } 299 300 /******************************************************************************* 301 * Helper function to validate the response from a Logical Partition. 302 ******************************************************************************/ 303 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id, 304 void *handle) 305 { 306 /* Retrieve populated Direct Response Arguments. */ 307 uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1); 308 uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2); 309 uint16_t src_id = ffa_endpoint_source(x1); 310 uint16_t dst_id = ffa_endpoint_destination(x1); 311 312 if (src_id != lp_id) { 313 ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id); 314 return false; 315 } 316 317 /* 318 * Check the destination ID is valid and ensure the LP is responding to 319 * the original request. 320 */ 321 if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) { 322 ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id); 323 return false; 324 } 325 326 if (!direct_msg_validate_arg2(x2)) { 327 ERROR("Invalid EL3 LP message encoding.\n"); 328 return false; 329 } 330 return true; 331 } 332 333 /******************************************************************************* 334 * Handle direct request messages and route to the appropriate destination. 335 ******************************************************************************/ 336 static uint64_t direct_req_smc_handler(uint32_t smc_fid, 337 bool secure_origin, 338 uint64_t x1, 339 uint64_t x2, 340 uint64_t x3, 341 uint64_t x4, 342 void *cookie, 343 void *handle, 344 uint64_t flags) 345 { 346 uint16_t src_id = ffa_endpoint_source(x1); 347 uint16_t dst_id = ffa_endpoint_destination(x1); 348 struct el3_lp_desc *el3_lp_descs; 349 struct secure_partition_desc *sp; 350 unsigned int idx; 351 352 /* Check if arg2 has been populated correctly based on message type. */ 353 if (!direct_msg_validate_arg2(x2)) { 354 return spmc_ffa_error_return(handle, 355 FFA_ERROR_INVALID_PARAMETER); 356 } 357 358 /* Validate Sender is either the current SP or from the normal world. */ 359 if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) || 360 (!secure_origin && !ffa_is_normal_world_id(src_id))) { 361 ERROR("Invalid direct request source ID (0x%x).\n", src_id); 362 return spmc_ffa_error_return(handle, 363 FFA_ERROR_INVALID_PARAMETER); 364 } 365 366 el3_lp_descs = get_el3_lp_array(); 367 368 /* Check if the request is destined for a Logical Partition. */ 369 for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) { 370 if (el3_lp_descs[i].sp_id == dst_id) { 371 uint64_t ret = el3_lp_descs[i].direct_req( 372 smc_fid, secure_origin, x1, x2, 373 x3, x4, cookie, handle, flags); 374 if (!direct_msg_validate_lp_resp(src_id, dst_id, 375 handle)) { 376 panic(); 377 } 378 379 /* Message checks out. */ 380 return ret; 381 } 382 } 383 384 /* 385 * If the request was not targeted to a LSP and from the secure world 386 * then it is invalid since a SP cannot call into the Normal world and 387 * there is no other SP to call into. If there are other SPs in future 388 * then the partition runtime model would need to be validated as well. 389 */ 390 if (secure_origin) { 391 VERBOSE("Direct request not supported to the Normal World.\n"); 392 return spmc_ffa_error_return(handle, 393 FFA_ERROR_INVALID_PARAMETER); 394 } 395 396 /* Check if the SP ID is valid. */ 397 sp = spmc_get_sp_ctx(dst_id); 398 if (sp == NULL) { 399 VERBOSE("Direct request to unknown partition ID (0x%x).\n", 400 dst_id); 401 return spmc_ffa_error_return(handle, 402 FFA_ERROR_INVALID_PARAMETER); 403 } 404 405 /* Protect the runtime state of a UP S-EL0 SP with a lock. */ 406 if (sp->runtime_el == S_EL0) { 407 spin_lock(&sp->rt_state_lock); 408 } 409 410 /* 411 * Check that the target execution context is in a waiting state before 412 * forwarding the direct request to it. 413 */ 414 idx = get_ec_index(sp); 415 if (sp->ec[idx].rt_state != RT_STATE_WAITING) { 416 VERBOSE("SP context on core%u is not waiting (%u).\n", 417 idx, sp->ec[idx].rt_model); 418 419 if (sp->runtime_el == S_EL0) { 420 spin_unlock(&sp->rt_state_lock); 421 } 422 423 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 424 } 425 426 /* 427 * Everything checks out so forward the request to the SP after updating 428 * its state and runtime model. 429 */ 430 sp->ec[idx].rt_state = RT_STATE_RUNNING; 431 sp->ec[idx].rt_model = RT_MODEL_DIR_REQ; 432 sp->ec[idx].dir_req_origin_id = src_id; 433 434 if (sp->runtime_el == S_EL0) { 435 spin_unlock(&sp->rt_state_lock); 436 } 437 438 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 439 handle, cookie, flags, dst_id); 440 } 441 442 /******************************************************************************* 443 * Handle direct response messages and route to the appropriate destination. 444 ******************************************************************************/ 445 static uint64_t direct_resp_smc_handler(uint32_t smc_fid, 446 bool secure_origin, 447 uint64_t x1, 448 uint64_t x2, 449 uint64_t x3, 450 uint64_t x4, 451 void *cookie, 452 void *handle, 453 uint64_t flags) 454 { 455 uint16_t dst_id = ffa_endpoint_destination(x1); 456 struct secure_partition_desc *sp; 457 unsigned int idx; 458 459 /* Check if arg2 has been populated correctly based on message type. */ 460 if (!direct_msg_validate_arg2(x2)) { 461 return spmc_ffa_error_return(handle, 462 FFA_ERROR_INVALID_PARAMETER); 463 } 464 465 /* Check that the response did not originate from the Normal world. */ 466 if (!secure_origin) { 467 VERBOSE("Direct Response not supported from Normal World.\n"); 468 return spmc_ffa_error_return(handle, 469 FFA_ERROR_INVALID_PARAMETER); 470 } 471 472 /* 473 * Check that the response is either targeted to the Normal world or the 474 * SPMC e.g. a PM response. 475 */ 476 if (!direct_msg_validate_dst_id(dst_id)) { 477 VERBOSE("Direct response to invalid partition ID (0x%x).\n", 478 dst_id); 479 return spmc_ffa_error_return(handle, 480 FFA_ERROR_INVALID_PARAMETER); 481 } 482 483 /* Obtain the SP descriptor and update its runtime state. */ 484 sp = spmc_get_sp_ctx(ffa_endpoint_source(x1)); 485 if (sp == NULL) { 486 VERBOSE("Direct response to unknown partition ID (0x%x).\n", 487 dst_id); 488 return spmc_ffa_error_return(handle, 489 FFA_ERROR_INVALID_PARAMETER); 490 } 491 492 if (sp->runtime_el == S_EL0) { 493 spin_lock(&sp->rt_state_lock); 494 } 495 496 /* Sanity check state is being tracked correctly in the SPMC. */ 497 idx = get_ec_index(sp); 498 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 499 500 /* Ensure SP execution context was in the right runtime model. */ 501 if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) { 502 VERBOSE("SP context on core%u not handling direct req (%u).\n", 503 idx, sp->ec[idx].rt_model); 504 if (sp->runtime_el == S_EL0) { 505 spin_unlock(&sp->rt_state_lock); 506 } 507 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 508 } 509 510 if (sp->ec[idx].dir_req_origin_id != dst_id) { 511 WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n", 512 dst_id, sp->ec[idx].dir_req_origin_id, idx); 513 if (sp->runtime_el == S_EL0) { 514 spin_unlock(&sp->rt_state_lock); 515 } 516 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 517 } 518 519 /* Update the state of the SP execution context. */ 520 sp->ec[idx].rt_state = RT_STATE_WAITING; 521 522 /* Clear the ongoing direct request ID. */ 523 sp->ec[idx].dir_req_origin_id = INV_SP_ID; 524 525 if (sp->runtime_el == S_EL0) { 526 spin_unlock(&sp->rt_state_lock); 527 } 528 529 /* 530 * If the receiver is not the SPMC then forward the response to the 531 * Normal world. 532 */ 533 if (dst_id == FFA_SPMC_ID) { 534 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 535 /* Should not get here. */ 536 panic(); 537 } 538 539 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 540 handle, cookie, flags, dst_id); 541 } 542 543 /******************************************************************************* 544 * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its 545 * cycles. 546 ******************************************************************************/ 547 static uint64_t msg_wait_handler(uint32_t smc_fid, 548 bool secure_origin, 549 uint64_t x1, 550 uint64_t x2, 551 uint64_t x3, 552 uint64_t x4, 553 void *cookie, 554 void *handle, 555 uint64_t flags) 556 { 557 struct secure_partition_desc *sp; 558 unsigned int idx; 559 560 /* 561 * Check that the response did not originate from the Normal world as 562 * only the secure world can call this ABI. 563 */ 564 if (!secure_origin) { 565 VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n"); 566 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 567 } 568 569 /* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */ 570 sp = spmc_get_current_sp_ctx(); 571 if (sp == NULL) { 572 return spmc_ffa_error_return(handle, 573 FFA_ERROR_INVALID_PARAMETER); 574 } 575 576 /* 577 * Get the execution context of the SP that invoked FFA_MSG_WAIT. 578 */ 579 idx = get_ec_index(sp); 580 if (sp->runtime_el == S_EL0) { 581 spin_lock(&sp->rt_state_lock); 582 } 583 584 /* Ensure SP execution context was in the right runtime model. */ 585 if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 586 if (sp->runtime_el == S_EL0) { 587 spin_unlock(&sp->rt_state_lock); 588 } 589 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 590 } 591 592 /* Sanity check the state is being tracked correctly in the SPMC. */ 593 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 594 595 /* 596 * Perform a synchronous exit if the partition was initialising. The 597 * state is updated after the exit. 598 */ 599 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 600 if (sp->runtime_el == S_EL0) { 601 spin_unlock(&sp->rt_state_lock); 602 } 603 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 604 /* Should not get here */ 605 panic(); 606 } 607 608 /* Update the state of the SP execution context. */ 609 sp->ec[idx].rt_state = RT_STATE_WAITING; 610 611 /* Resume normal world if a secure interrupt was handled. */ 612 if (sp->ec[idx].rt_model == RT_MODEL_INTR) { 613 /* FFA_MSG_WAIT can only be called from the secure world. */ 614 unsigned int secure_state_in = SECURE; 615 unsigned int secure_state_out = NON_SECURE; 616 617 cm_el1_sysregs_context_save(secure_state_in); 618 cm_el1_sysregs_context_restore(secure_state_out); 619 cm_set_next_eret_context(secure_state_out); 620 621 if (sp->runtime_el == S_EL0) { 622 spin_unlock(&sp->rt_state_lock); 623 } 624 625 SMC_RET0(cm_get_context(secure_state_out)); 626 } 627 628 /* Protect the runtime state of a S-EL0 SP with a lock. */ 629 if (sp->runtime_el == S_EL0) { 630 spin_unlock(&sp->rt_state_lock); 631 } 632 633 /* Forward the response to the Normal world. */ 634 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 635 handle, cookie, flags, FFA_NWD_ID); 636 } 637 638 static uint64_t ffa_error_handler(uint32_t smc_fid, 639 bool secure_origin, 640 uint64_t x1, 641 uint64_t x2, 642 uint64_t x3, 643 uint64_t x4, 644 void *cookie, 645 void *handle, 646 uint64_t flags) 647 { 648 struct secure_partition_desc *sp; 649 unsigned int idx; 650 651 /* Check that the response did not originate from the Normal world. */ 652 if (!secure_origin) { 653 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 654 } 655 656 /* Get the descriptor of the SP that invoked FFA_ERROR. */ 657 sp = spmc_get_current_sp_ctx(); 658 if (sp == NULL) { 659 return spmc_ffa_error_return(handle, 660 FFA_ERROR_INVALID_PARAMETER); 661 } 662 663 /* Get the execution context of the SP that invoked FFA_ERROR. */ 664 idx = get_ec_index(sp); 665 666 /* 667 * We only expect FFA_ERROR to be received during SP initialisation 668 * otherwise this is an invalid call. 669 */ 670 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 671 ERROR("SP 0x%x failed to initialize.\n", sp->sp_id); 672 spmc_sp_synchronous_exit(&sp->ec[idx], x2); 673 /* Should not get here. */ 674 panic(); 675 } 676 677 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 678 } 679 680 static uint64_t ffa_version_handler(uint32_t smc_fid, 681 bool secure_origin, 682 uint64_t x1, 683 uint64_t x2, 684 uint64_t x3, 685 uint64_t x4, 686 void *cookie, 687 void *handle, 688 uint64_t flags) 689 { 690 uint32_t requested_version = x1 & FFA_VERSION_MASK; 691 692 if (requested_version & FFA_VERSION_BIT31_MASK) { 693 /* Invalid encoding, return an error. */ 694 SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED); 695 /* Execution stops here. */ 696 } 697 698 /* Determine the caller to store the requested version. */ 699 if (secure_origin) { 700 /* 701 * Ensure that the SP is reporting the same version as 702 * specified in its manifest. If these do not match there is 703 * something wrong with the SP. 704 * TODO: Should we abort the SP? For now assert this is not 705 * case. 706 */ 707 assert(requested_version == 708 spmc_get_current_sp_ctx()->ffa_version); 709 } else { 710 /* 711 * If this is called by the normal world, record this 712 * information in its descriptor. 713 */ 714 spmc_get_hyp_ctx()->ffa_version = requested_version; 715 } 716 717 SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR, 718 FFA_VERSION_MINOR)); 719 } 720 721 /******************************************************************************* 722 * Helper function to obtain the FF-A version of the calling partition. 723 ******************************************************************************/ 724 uint32_t get_partition_ffa_version(bool secure_origin) 725 { 726 if (secure_origin) { 727 return spmc_get_current_sp_ctx()->ffa_version; 728 } else { 729 return spmc_get_hyp_ctx()->ffa_version; 730 } 731 } 732 733 static uint64_t rxtx_map_handler(uint32_t smc_fid, 734 bool secure_origin, 735 uint64_t x1, 736 uint64_t x2, 737 uint64_t x3, 738 uint64_t x4, 739 void *cookie, 740 void *handle, 741 uint64_t flags) 742 { 743 int ret; 744 uint32_t error_code; 745 uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS; 746 struct mailbox *mbox; 747 uintptr_t tx_address = x1; 748 uintptr_t rx_address = x2; 749 uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */ 750 uint32_t buf_size = page_count * FFA_PAGE_SIZE; 751 752 /* 753 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 754 * indirect messaging with SPs. Check if the Hypervisor has invoked this 755 * ABI on behalf of a VM and reject it if this is the case. 756 */ 757 if (tx_address == 0 || rx_address == 0) { 758 WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n"); 759 return spmc_ffa_error_return(handle, 760 FFA_ERROR_INVALID_PARAMETER); 761 } 762 763 /* Ensure the specified buffers are not the same. */ 764 if (tx_address == rx_address) { 765 WARN("TX Buffer must not be the same as RX Buffer.\n"); 766 return spmc_ffa_error_return(handle, 767 FFA_ERROR_INVALID_PARAMETER); 768 } 769 770 /* Ensure the buffer size is not 0. */ 771 if (buf_size == 0U) { 772 WARN("Buffer size must not be 0\n"); 773 return spmc_ffa_error_return(handle, 774 FFA_ERROR_INVALID_PARAMETER); 775 } 776 777 /* 778 * Ensure the buffer size is a multiple of the translation granule size 779 * in TF-A. 780 */ 781 if (buf_size % PAGE_SIZE != 0U) { 782 WARN("Buffer size must be aligned to translation granule.\n"); 783 return spmc_ffa_error_return(handle, 784 FFA_ERROR_INVALID_PARAMETER); 785 } 786 787 /* Obtain the RX/TX buffer pair descriptor. */ 788 mbox = spmc_get_mbox_desc(secure_origin); 789 790 spin_lock(&mbox->lock); 791 792 /* Check if buffers have already been mapped. */ 793 if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) { 794 WARN("RX/TX Buffers already mapped (%p/%p)\n", 795 (void *) mbox->rx_buffer, (void *)mbox->tx_buffer); 796 error_code = FFA_ERROR_DENIED; 797 goto err; 798 } 799 800 /* memmap the TX buffer as read only. */ 801 ret = mmap_add_dynamic_region(tx_address, /* PA */ 802 tx_address, /* VA */ 803 buf_size, /* size */ 804 mem_atts | MT_RO_DATA); /* attrs */ 805 if (ret != 0) { 806 /* Return the correct error code. */ 807 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 808 FFA_ERROR_INVALID_PARAMETER; 809 WARN("Unable to map TX buffer: %d\n", error_code); 810 goto err; 811 } 812 813 /* memmap the RX buffer as read write. */ 814 ret = mmap_add_dynamic_region(rx_address, /* PA */ 815 rx_address, /* VA */ 816 buf_size, /* size */ 817 mem_atts | MT_RW_DATA); /* attrs */ 818 819 if (ret != 0) { 820 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 821 FFA_ERROR_INVALID_PARAMETER; 822 WARN("Unable to map RX buffer: %d\n", error_code); 823 /* Unmap the TX buffer again. */ 824 mmap_remove_dynamic_region(tx_address, buf_size); 825 goto err; 826 } 827 828 mbox->tx_buffer = (void *) tx_address; 829 mbox->rx_buffer = (void *) rx_address; 830 mbox->rxtx_page_count = page_count; 831 spin_unlock(&mbox->lock); 832 833 SMC_RET1(handle, FFA_SUCCESS_SMC32); 834 /* Execution stops here. */ 835 err: 836 spin_unlock(&mbox->lock); 837 return spmc_ffa_error_return(handle, error_code); 838 } 839 840 static uint64_t rxtx_unmap_handler(uint32_t smc_fid, 841 bool secure_origin, 842 uint64_t x1, 843 uint64_t x2, 844 uint64_t x3, 845 uint64_t x4, 846 void *cookie, 847 void *handle, 848 uint64_t flags) 849 { 850 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 851 uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 852 853 /* 854 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 855 * indirect messaging with SPs. Check if the Hypervisor has invoked this 856 * ABI on behalf of a VM and reject it if this is the case. 857 */ 858 if (x1 != 0UL) { 859 return spmc_ffa_error_return(handle, 860 FFA_ERROR_INVALID_PARAMETER); 861 } 862 863 spin_lock(&mbox->lock); 864 865 /* Check if buffers are currently mapped. */ 866 if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) { 867 spin_unlock(&mbox->lock); 868 return spmc_ffa_error_return(handle, 869 FFA_ERROR_INVALID_PARAMETER); 870 } 871 872 /* Unmap RX Buffer */ 873 if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer, 874 buf_size) != 0) { 875 WARN("Unable to unmap RX buffer!\n"); 876 } 877 878 mbox->rx_buffer = 0; 879 880 /* Unmap TX Buffer */ 881 if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer, 882 buf_size) != 0) { 883 WARN("Unable to unmap TX buffer!\n"); 884 } 885 886 mbox->tx_buffer = 0; 887 mbox->rxtx_page_count = 0; 888 889 spin_unlock(&mbox->lock); 890 SMC_RET1(handle, FFA_SUCCESS_SMC32); 891 } 892 893 /* 894 * Helper function to populate the properties field of a Partition Info Get 895 * descriptor. 896 */ 897 static uint32_t 898 partition_info_get_populate_properties(uint32_t sp_properties, 899 enum sp_execution_state sp_ec_state) 900 { 901 uint32_t properties = sp_properties; 902 uint32_t ec_state; 903 904 /* Determine the execution state of the SP. */ 905 ec_state = sp_ec_state == SP_STATE_AARCH64 ? 906 FFA_PARTITION_INFO_GET_AARCH64_STATE : 907 FFA_PARTITION_INFO_GET_AARCH32_STATE; 908 909 properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT; 910 911 return properties; 912 } 913 914 /* 915 * Collate the partition information in a v1.1 partition information 916 * descriptor format, this will be converter later if required. 917 */ 918 static int partition_info_get_handler_v1_1(uint32_t *uuid, 919 struct ffa_partition_info_v1_1 920 *partitions, 921 uint32_t max_partitions, 922 uint32_t *partition_count) 923 { 924 uint32_t index; 925 struct ffa_partition_info_v1_1 *desc; 926 bool null_uuid = is_null_uuid(uuid); 927 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 928 929 /* Deal with Logical Partitions. */ 930 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 931 if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) { 932 /* Found a matching UUID, populate appropriately. */ 933 if (*partition_count >= max_partitions) { 934 return FFA_ERROR_NO_MEMORY; 935 } 936 937 desc = &partitions[*partition_count]; 938 desc->ep_id = el3_lp_descs[index].sp_id; 939 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 940 /* LSPs must be AArch64. */ 941 desc->properties = 942 partition_info_get_populate_properties( 943 el3_lp_descs[index].properties, 944 SP_STATE_AARCH64); 945 946 if (null_uuid) { 947 copy_uuid(desc->uuid, el3_lp_descs[index].uuid); 948 } 949 (*partition_count)++; 950 } 951 } 952 953 /* Deal with physical SP's. */ 954 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 955 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 956 /* Found a matching UUID, populate appropriately. */ 957 if (*partition_count >= max_partitions) { 958 return FFA_ERROR_NO_MEMORY; 959 } 960 961 desc = &partitions[*partition_count]; 962 desc->ep_id = sp_desc[index].sp_id; 963 /* 964 * Execution context count must match No. cores for 965 * S-EL1 SPs. 966 */ 967 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 968 desc->properties = 969 partition_info_get_populate_properties( 970 sp_desc[index].properties, 971 sp_desc[index].execution_state); 972 973 if (null_uuid) { 974 copy_uuid(desc->uuid, sp_desc[index].uuid); 975 } 976 (*partition_count)++; 977 } 978 } 979 return 0; 980 } 981 982 /* 983 * Handle the case where that caller only wants the count of partitions 984 * matching a given UUID and does not want the corresponding descriptors 985 * populated. 986 */ 987 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid) 988 { 989 uint32_t index = 0; 990 uint32_t partition_count = 0; 991 bool null_uuid = is_null_uuid(uuid); 992 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 993 994 /* Deal with Logical Partitions. */ 995 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 996 if (null_uuid || 997 uuid_match(uuid, el3_lp_descs[index].uuid)) { 998 (partition_count)++; 999 } 1000 } 1001 1002 /* Deal with physical SP's. */ 1003 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 1004 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 1005 (partition_count)++; 1006 } 1007 } 1008 return partition_count; 1009 } 1010 1011 /* 1012 * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate 1013 * the corresponding descriptor format from the v1.1 descriptor array. 1014 */ 1015 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1 1016 *partitions, 1017 struct mailbox *mbox, 1018 int partition_count) 1019 { 1020 uint32_t index; 1021 uint32_t buf_size; 1022 uint32_t descriptor_size; 1023 struct ffa_partition_info_v1_0 *v1_0_partitions = 1024 (struct ffa_partition_info_v1_0 *) mbox->rx_buffer; 1025 1026 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1027 descriptor_size = partition_count * 1028 sizeof(struct ffa_partition_info_v1_0); 1029 1030 if (descriptor_size > buf_size) { 1031 return FFA_ERROR_NO_MEMORY; 1032 } 1033 1034 for (index = 0U; index < partition_count; index++) { 1035 v1_0_partitions[index].ep_id = partitions[index].ep_id; 1036 v1_0_partitions[index].execution_ctx_count = 1037 partitions[index].execution_ctx_count; 1038 /* Only report v1.0 properties. */ 1039 v1_0_partitions[index].properties = 1040 (partitions[index].properties & 1041 FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK); 1042 } 1043 return 0; 1044 } 1045 1046 /* 1047 * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and 1048 * v1.0 implementations. 1049 */ 1050 static uint64_t partition_info_get_handler(uint32_t smc_fid, 1051 bool secure_origin, 1052 uint64_t x1, 1053 uint64_t x2, 1054 uint64_t x3, 1055 uint64_t x4, 1056 void *cookie, 1057 void *handle, 1058 uint64_t flags) 1059 { 1060 int ret; 1061 uint32_t partition_count = 0; 1062 uint32_t size = 0; 1063 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1064 struct mailbox *mbox; 1065 uint64_t info_get_flags; 1066 bool count_only; 1067 uint32_t uuid[4]; 1068 1069 uuid[0] = x1; 1070 uuid[1] = x2; 1071 uuid[2] = x3; 1072 uuid[3] = x4; 1073 1074 /* Determine if the Partition descriptors should be populated. */ 1075 info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5); 1076 count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK); 1077 1078 /* Handle the case where we don't need to populate the descriptors. */ 1079 if (count_only) { 1080 partition_count = partition_info_get_handler_count_only(uuid); 1081 if (partition_count == 0) { 1082 return spmc_ffa_error_return(handle, 1083 FFA_ERROR_INVALID_PARAMETER); 1084 } 1085 } else { 1086 struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS]; 1087 1088 /* 1089 * Handle the case where the partition descriptors are required, 1090 * check we have the buffers available and populate the 1091 * appropriate structure version. 1092 */ 1093 1094 /* Obtain the v1.1 format of the descriptors. */ 1095 ret = partition_info_get_handler_v1_1(uuid, partitions, 1096 MAX_SP_LP_PARTITIONS, 1097 &partition_count); 1098 1099 /* Check if an error occurred during discovery. */ 1100 if (ret != 0) { 1101 goto err; 1102 } 1103 1104 /* If we didn't find any matches the UUID is unknown. */ 1105 if (partition_count == 0) { 1106 ret = FFA_ERROR_INVALID_PARAMETER; 1107 goto err; 1108 } 1109 1110 /* Obtain the partition mailbox RX/TX buffer pair descriptor. */ 1111 mbox = spmc_get_mbox_desc(secure_origin); 1112 1113 /* 1114 * If the caller has not bothered registering its RX/TX pair 1115 * then return an error code. 1116 */ 1117 spin_lock(&mbox->lock); 1118 if (mbox->rx_buffer == NULL) { 1119 ret = FFA_ERROR_BUSY; 1120 goto err_unlock; 1121 } 1122 1123 /* Ensure the RX buffer is currently free. */ 1124 if (mbox->state != MAILBOX_STATE_EMPTY) { 1125 ret = FFA_ERROR_BUSY; 1126 goto err_unlock; 1127 } 1128 1129 /* Zero the RX buffer before populating. */ 1130 (void)memset(mbox->rx_buffer, 0, 1131 mbox->rxtx_page_count * FFA_PAGE_SIZE); 1132 1133 /* 1134 * Depending on the FF-A version of the requesting partition 1135 * we may need to convert to a v1.0 format otherwise we can copy 1136 * directly. 1137 */ 1138 if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) { 1139 ret = partition_info_populate_v1_0(partitions, 1140 mbox, 1141 partition_count); 1142 if (ret != 0) { 1143 goto err_unlock; 1144 } 1145 } else { 1146 uint32_t buf_size = mbox->rxtx_page_count * 1147 FFA_PAGE_SIZE; 1148 1149 /* Ensure the descriptor will fit in the buffer. */ 1150 size = sizeof(struct ffa_partition_info_v1_1); 1151 if (partition_count * size > buf_size) { 1152 ret = FFA_ERROR_NO_MEMORY; 1153 goto err_unlock; 1154 } 1155 memcpy(mbox->rx_buffer, partitions, 1156 partition_count * size); 1157 } 1158 1159 mbox->state = MAILBOX_STATE_FULL; 1160 spin_unlock(&mbox->lock); 1161 } 1162 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size); 1163 1164 err_unlock: 1165 spin_unlock(&mbox->lock); 1166 err: 1167 return spmc_ffa_error_return(handle, ret); 1168 } 1169 1170 static uint64_t ffa_feature_success(void *handle, uint32_t arg2) 1171 { 1172 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2); 1173 } 1174 1175 static uint64_t ffa_features_retrieve_request(bool secure_origin, 1176 uint32_t input_properties, 1177 void *handle) 1178 { 1179 /* 1180 * If we're called by the normal world we don't support any 1181 * additional features. 1182 */ 1183 if (!secure_origin) { 1184 if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) { 1185 return spmc_ffa_error_return(handle, 1186 FFA_ERROR_NOT_SUPPORTED); 1187 } 1188 1189 } else { 1190 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1191 /* 1192 * If v1.1 the NS bit must be set otherwise it is an invalid 1193 * call. If v1.0 check and store whether the SP has requested 1194 * the use of the NS bit. 1195 */ 1196 if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) { 1197 if ((input_properties & 1198 FFA_FEATURES_RET_REQ_NS_BIT) == 0U) { 1199 return spmc_ffa_error_return(handle, 1200 FFA_ERROR_NOT_SUPPORTED); 1201 } 1202 return ffa_feature_success(handle, 1203 FFA_FEATURES_RET_REQ_NS_BIT); 1204 } else { 1205 sp->ns_bit_requested = (input_properties & 1206 FFA_FEATURES_RET_REQ_NS_BIT) != 1207 0U; 1208 } 1209 if (sp->ns_bit_requested) { 1210 return ffa_feature_success(handle, 1211 FFA_FEATURES_RET_REQ_NS_BIT); 1212 } 1213 } 1214 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1215 } 1216 1217 static uint64_t ffa_features_handler(uint32_t smc_fid, 1218 bool secure_origin, 1219 uint64_t x1, 1220 uint64_t x2, 1221 uint64_t x3, 1222 uint64_t x4, 1223 void *cookie, 1224 void *handle, 1225 uint64_t flags) 1226 { 1227 uint32_t function_id = (uint32_t) x1; 1228 uint32_t input_properties = (uint32_t) x2; 1229 1230 /* Check if a Feature ID was requested. */ 1231 if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) { 1232 /* We currently don't support any additional features. */ 1233 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1234 } 1235 1236 /* 1237 * Handle the cases where we have separate handlers due to additional 1238 * properties. 1239 */ 1240 switch (function_id) { 1241 case FFA_MEM_RETRIEVE_REQ_SMC32: 1242 case FFA_MEM_RETRIEVE_REQ_SMC64: 1243 return ffa_features_retrieve_request(secure_origin, 1244 input_properties, 1245 handle); 1246 } 1247 1248 /* 1249 * We don't currently support additional input properties for these 1250 * other ABIs therefore ensure this value is set to 0. 1251 */ 1252 if (input_properties != 0U) { 1253 return spmc_ffa_error_return(handle, 1254 FFA_ERROR_NOT_SUPPORTED); 1255 } 1256 1257 /* Report if any other FF-A ABI is supported. */ 1258 switch (function_id) { 1259 /* Supported features from both worlds. */ 1260 case FFA_ERROR: 1261 case FFA_SUCCESS_SMC32: 1262 case FFA_INTERRUPT: 1263 case FFA_SPM_ID_GET: 1264 case FFA_ID_GET: 1265 case FFA_FEATURES: 1266 case FFA_VERSION: 1267 case FFA_RX_RELEASE: 1268 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1269 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1270 case FFA_PARTITION_INFO_GET: 1271 case FFA_RXTX_MAP_SMC32: 1272 case FFA_RXTX_MAP_SMC64: 1273 case FFA_RXTX_UNMAP: 1274 case FFA_MEM_FRAG_TX: 1275 case FFA_MSG_RUN: 1276 1277 /* 1278 * We are relying on the fact that the other registers 1279 * will be set to 0 as these values align with the 1280 * currently implemented features of the SPMC. If this 1281 * changes this function must be extended to handle 1282 * reporting the additional functionality. 1283 */ 1284 1285 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1286 /* Execution stops here. */ 1287 1288 /* Supported ABIs only from the secure world. */ 1289 case FFA_SECONDARY_EP_REGISTER_SMC64: 1290 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1291 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1292 case FFA_MEM_RELINQUISH: 1293 case FFA_MSG_WAIT: 1294 case FFA_CONSOLE_LOG_SMC32: 1295 case FFA_CONSOLE_LOG_SMC64: 1296 1297 if (!secure_origin) { 1298 return spmc_ffa_error_return(handle, 1299 FFA_ERROR_NOT_SUPPORTED); 1300 } 1301 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1302 /* Execution stops here. */ 1303 1304 /* Supported features only from the normal world. */ 1305 case FFA_MEM_SHARE_SMC32: 1306 case FFA_MEM_SHARE_SMC64: 1307 case FFA_MEM_LEND_SMC32: 1308 case FFA_MEM_LEND_SMC64: 1309 case FFA_MEM_RECLAIM: 1310 case FFA_MEM_FRAG_RX: 1311 1312 if (secure_origin) { 1313 return spmc_ffa_error_return(handle, 1314 FFA_ERROR_NOT_SUPPORTED); 1315 } 1316 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1317 /* Execution stops here. */ 1318 1319 default: 1320 return spmc_ffa_error_return(handle, 1321 FFA_ERROR_NOT_SUPPORTED); 1322 } 1323 } 1324 1325 static uint64_t ffa_id_get_handler(uint32_t smc_fid, 1326 bool secure_origin, 1327 uint64_t x1, 1328 uint64_t x2, 1329 uint64_t x3, 1330 uint64_t x4, 1331 void *cookie, 1332 void *handle, 1333 uint64_t flags) 1334 { 1335 if (secure_origin) { 1336 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1337 spmc_get_current_sp_ctx()->sp_id); 1338 } else { 1339 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1340 spmc_get_hyp_ctx()->ns_ep_id); 1341 } 1342 } 1343 1344 /* 1345 * Enable an SP to query the ID assigned to the SPMC. 1346 */ 1347 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid, 1348 bool secure_origin, 1349 uint64_t x1, 1350 uint64_t x2, 1351 uint64_t x3, 1352 uint64_t x4, 1353 void *cookie, 1354 void *handle, 1355 uint64_t flags) 1356 { 1357 assert(x1 == 0UL); 1358 assert(x2 == 0UL); 1359 assert(x3 == 0UL); 1360 assert(x4 == 0UL); 1361 assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL); 1362 assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL); 1363 assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL); 1364 1365 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID); 1366 } 1367 1368 static uint64_t ffa_run_handler(uint32_t smc_fid, 1369 bool secure_origin, 1370 uint64_t x1, 1371 uint64_t x2, 1372 uint64_t x3, 1373 uint64_t x4, 1374 void *cookie, 1375 void *handle, 1376 uint64_t flags) 1377 { 1378 struct secure_partition_desc *sp; 1379 uint16_t target_id = FFA_RUN_EP_ID(x1); 1380 uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1); 1381 unsigned int idx; 1382 unsigned int *rt_state; 1383 unsigned int *rt_model; 1384 1385 /* Can only be called from the normal world. */ 1386 if (secure_origin) { 1387 ERROR("FFA_RUN can only be called from NWd.\n"); 1388 return spmc_ffa_error_return(handle, 1389 FFA_ERROR_INVALID_PARAMETER); 1390 } 1391 1392 /* Cannot run a Normal world partition. */ 1393 if (ffa_is_normal_world_id(target_id)) { 1394 ERROR("Cannot run a NWd partition (0x%x).\n", target_id); 1395 return spmc_ffa_error_return(handle, 1396 FFA_ERROR_INVALID_PARAMETER); 1397 } 1398 1399 /* Check that the target SP exists. */ 1400 sp = spmc_get_sp_ctx(target_id); 1401 ERROR("Unknown partition ID (0x%x).\n", target_id); 1402 if (sp == NULL) { 1403 return spmc_ffa_error_return(handle, 1404 FFA_ERROR_INVALID_PARAMETER); 1405 } 1406 1407 idx = get_ec_index(sp); 1408 1409 if (idx != vcpu_id) { 1410 ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id); 1411 return spmc_ffa_error_return(handle, 1412 FFA_ERROR_INVALID_PARAMETER); 1413 } 1414 if (sp->runtime_el == S_EL0) { 1415 spin_lock(&sp->rt_state_lock); 1416 } 1417 rt_state = &((sp->ec[idx]).rt_state); 1418 rt_model = &((sp->ec[idx]).rt_model); 1419 if (*rt_state == RT_STATE_RUNNING) { 1420 if (sp->runtime_el == S_EL0) { 1421 spin_unlock(&sp->rt_state_lock); 1422 } 1423 ERROR("Partition (0x%x) is already running.\n", target_id); 1424 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 1425 } 1426 1427 /* 1428 * Sanity check that if the execution context was not waiting then it 1429 * was either in the direct request or the run partition runtime model. 1430 */ 1431 if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) { 1432 assert(*rt_model == RT_MODEL_RUN || 1433 *rt_model == RT_MODEL_DIR_REQ); 1434 } 1435 1436 /* 1437 * If the context was waiting then update the partition runtime model. 1438 */ 1439 if (*rt_state == RT_STATE_WAITING) { 1440 *rt_model = RT_MODEL_RUN; 1441 } 1442 1443 /* 1444 * Forward the request to the correct SP vCPU after updating 1445 * its state. 1446 */ 1447 *rt_state = RT_STATE_RUNNING; 1448 1449 if (sp->runtime_el == S_EL0) { 1450 spin_unlock(&sp->rt_state_lock); 1451 } 1452 1453 return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0, 1454 handle, cookie, flags, target_id); 1455 } 1456 1457 static uint64_t rx_release_handler(uint32_t smc_fid, 1458 bool secure_origin, 1459 uint64_t x1, 1460 uint64_t x2, 1461 uint64_t x3, 1462 uint64_t x4, 1463 void *cookie, 1464 void *handle, 1465 uint64_t flags) 1466 { 1467 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1468 1469 spin_lock(&mbox->lock); 1470 1471 if (mbox->state != MAILBOX_STATE_FULL) { 1472 spin_unlock(&mbox->lock); 1473 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1474 } 1475 1476 mbox->state = MAILBOX_STATE_EMPTY; 1477 spin_unlock(&mbox->lock); 1478 1479 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1480 } 1481 1482 static uint64_t spmc_ffa_console_log(uint32_t smc_fid, 1483 bool secure_origin, 1484 uint64_t x1, 1485 uint64_t x2, 1486 uint64_t x3, 1487 uint64_t x4, 1488 void *cookie, 1489 void *handle, 1490 uint64_t flags) 1491 { 1492 char *chars; 1493 size_t chars_max; 1494 size_t chars_count = x1; 1495 1496 /* Does not support request from Nwd. */ 1497 if (!secure_origin) { 1498 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1499 } 1500 1501 assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64); 1502 if (smc_fid == FFA_CONSOLE_LOG_SMC32) { 1503 uint32_t registers[] = { 1504 (uint32_t)x2, 1505 (uint32_t)x3, 1506 (uint32_t)x4, 1507 (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5), 1508 (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6), 1509 (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7), 1510 }; 1511 chars_max = ARRAY_SIZE(registers) * sizeof(uint32_t); 1512 chars = (char *)registers; 1513 } else { 1514 uint64_t registers[] = { 1515 x2, 1516 x3, 1517 x4, 1518 SMC_GET_GP(handle, CTX_GPREG_X5), 1519 SMC_GET_GP(handle, CTX_GPREG_X6), 1520 SMC_GET_GP(handle, CTX_GPREG_X7), 1521 }; 1522 chars_max = ARRAY_SIZE(registers) * sizeof(uint64_t); 1523 chars = (char *)registers; 1524 } 1525 1526 if ((chars_count == 0) || (chars_count > chars_max)) { 1527 return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); 1528 } 1529 1530 for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) { 1531 putchar(chars[i]); 1532 } 1533 1534 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1535 } 1536 1537 /* 1538 * Perform initial validation on the provided secondary entry point. 1539 * For now ensure it does not lie within the BL31 Image or the SP's 1540 * RX/TX buffers as these are mapped within EL3. 1541 * TODO: perform validation for additional invalid memory regions. 1542 */ 1543 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp) 1544 { 1545 struct mailbox *mb; 1546 uintptr_t buffer_size; 1547 uintptr_t sp_rx_buffer; 1548 uintptr_t sp_tx_buffer; 1549 uintptr_t sp_rx_buffer_limit; 1550 uintptr_t sp_tx_buffer_limit; 1551 1552 mb = &sp->mailbox; 1553 buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE); 1554 sp_rx_buffer = (uintptr_t) mb->rx_buffer; 1555 sp_tx_buffer = (uintptr_t) mb->tx_buffer; 1556 sp_rx_buffer_limit = sp_rx_buffer + buffer_size; 1557 sp_tx_buffer_limit = sp_tx_buffer + buffer_size; 1558 1559 /* 1560 * Check if the entry point lies within BL31, or the 1561 * SP's RX or TX buffer. 1562 */ 1563 if ((ep >= BL31_BASE && ep < BL31_LIMIT) || 1564 (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) || 1565 (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) { 1566 return -EINVAL; 1567 } 1568 return 0; 1569 } 1570 1571 /******************************************************************************* 1572 * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to 1573 * register an entry point for initialization during a secondary cold boot. 1574 ******************************************************************************/ 1575 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid, 1576 bool secure_origin, 1577 uint64_t x1, 1578 uint64_t x2, 1579 uint64_t x3, 1580 uint64_t x4, 1581 void *cookie, 1582 void *handle, 1583 uint64_t flags) 1584 { 1585 struct secure_partition_desc *sp; 1586 struct sp_exec_ctx *sp_ctx; 1587 1588 /* This request cannot originate from the Normal world. */ 1589 if (!secure_origin) { 1590 WARN("%s: Can only be called from SWd.\n", __func__); 1591 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1592 } 1593 1594 /* Get the context of the current SP. */ 1595 sp = spmc_get_current_sp_ctx(); 1596 if (sp == NULL) { 1597 WARN("%s: Cannot find SP context.\n", __func__); 1598 return spmc_ffa_error_return(handle, 1599 FFA_ERROR_INVALID_PARAMETER); 1600 } 1601 1602 /* Only an S-EL1 SP should be invoking this ABI. */ 1603 if (sp->runtime_el != S_EL1) { 1604 WARN("%s: Can only be called for a S-EL1 SP.\n", __func__); 1605 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1606 } 1607 1608 /* Ensure the SP is in its initialization state. */ 1609 sp_ctx = spmc_get_sp_ec(sp); 1610 if (sp_ctx->rt_model != RT_MODEL_INIT) { 1611 WARN("%s: Can only be called during SP initialization.\n", 1612 __func__); 1613 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1614 } 1615 1616 /* Perform initial validation of the secondary entry point. */ 1617 if (validate_secondary_ep(x1, sp)) { 1618 WARN("%s: Invalid entry point provided (0x%lx).\n", 1619 __func__, x1); 1620 return spmc_ffa_error_return(handle, 1621 FFA_ERROR_INVALID_PARAMETER); 1622 } 1623 1624 /* 1625 * Update the secondary entrypoint in SP context. 1626 * We don't need a lock here as during partition initialization there 1627 * will only be a single core online. 1628 */ 1629 sp->secondary_ep = x1; 1630 VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep); 1631 1632 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1633 } 1634 1635 /******************************************************************************* 1636 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1637 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1638 * function converts a permission value from the FF-A format to the mmap_attr_t 1639 * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and 1640 * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are 1641 * ignored by the function xlat_change_mem_attributes_ctx(). 1642 ******************************************************************************/ 1643 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms) 1644 { 1645 unsigned int tf_attr = 0U; 1646 unsigned int access; 1647 1648 /* Deal with data access permissions first. */ 1649 access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT; 1650 1651 switch (access) { 1652 case FFA_MEM_PERM_DATA_RW: 1653 /* Return 0 if the execute is set with RW. */ 1654 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) { 1655 tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER; 1656 } 1657 break; 1658 1659 case FFA_MEM_PERM_DATA_RO: 1660 tf_attr |= MT_RO | MT_USER; 1661 /* Deal with the instruction access permissions next. */ 1662 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) { 1663 tf_attr |= MT_EXECUTE; 1664 } else { 1665 tf_attr |= MT_EXECUTE_NEVER; 1666 } 1667 break; 1668 1669 case FFA_MEM_PERM_DATA_NA: 1670 default: 1671 return tf_attr; 1672 } 1673 1674 return tf_attr; 1675 } 1676 1677 /******************************************************************************* 1678 * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP 1679 ******************************************************************************/ 1680 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid, 1681 bool secure_origin, 1682 uint64_t x1, 1683 uint64_t x2, 1684 uint64_t x3, 1685 uint64_t x4, 1686 void *cookie, 1687 void *handle, 1688 uint64_t flags) 1689 { 1690 struct secure_partition_desc *sp; 1691 unsigned int idx; 1692 uintptr_t base_va = (uintptr_t) x1; 1693 size_t size = (size_t)(x2 * PAGE_SIZE); 1694 uint32_t tf_attr; 1695 int ret; 1696 1697 /* This request cannot originate from the Normal world. */ 1698 if (!secure_origin) { 1699 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1700 } 1701 1702 if (size == 0) { 1703 return spmc_ffa_error_return(handle, 1704 FFA_ERROR_INVALID_PARAMETER); 1705 } 1706 1707 /* Get the context of the current SP. */ 1708 sp = spmc_get_current_sp_ctx(); 1709 if (sp == NULL) { 1710 return spmc_ffa_error_return(handle, 1711 FFA_ERROR_INVALID_PARAMETER); 1712 } 1713 1714 /* A S-EL1 SP has no business invoking this ABI. */ 1715 if (sp->runtime_el == S_EL1) { 1716 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1717 } 1718 1719 if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) { 1720 return spmc_ffa_error_return(handle, 1721 FFA_ERROR_INVALID_PARAMETER); 1722 } 1723 1724 /* Get the execution context of the calling SP. */ 1725 idx = get_ec_index(sp); 1726 1727 /* 1728 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1729 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1730 * and can only be initialising on this cpu. 1731 */ 1732 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1733 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1734 } 1735 1736 VERBOSE("Setting memory permissions:\n"); 1737 VERBOSE(" Start address : 0x%lx\n", base_va); 1738 VERBOSE(" Number of pages: %lu (%zu bytes)\n", x2, size); 1739 VERBOSE(" Attributes : 0x%x\n", (uint32_t)x3); 1740 1741 /* Convert inbound permissions to TF-A permission attributes */ 1742 tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3); 1743 if (tf_attr == 0U) { 1744 return spmc_ffa_error_return(handle, 1745 FFA_ERROR_INVALID_PARAMETER); 1746 } 1747 1748 /* Request the change in permissions */ 1749 ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle, 1750 base_va, size, tf_attr); 1751 if (ret != 0) { 1752 return spmc_ffa_error_return(handle, 1753 FFA_ERROR_INVALID_PARAMETER); 1754 } 1755 1756 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1757 } 1758 1759 /******************************************************************************* 1760 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1761 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1762 * function converts a permission value from the mmap_attr_t format to the FF-A 1763 * format. 1764 ******************************************************************************/ 1765 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr) 1766 { 1767 unsigned int perms = 0U; 1768 unsigned int data_access; 1769 1770 if ((attr & MT_USER) == 0) { 1771 /* No access from EL0. */ 1772 data_access = FFA_MEM_PERM_DATA_NA; 1773 } else { 1774 if ((attr & MT_RW) != 0) { 1775 data_access = FFA_MEM_PERM_DATA_RW; 1776 } else { 1777 data_access = FFA_MEM_PERM_DATA_RO; 1778 } 1779 } 1780 1781 perms |= (data_access & FFA_MEM_PERM_DATA_MASK) 1782 << FFA_MEM_PERM_DATA_SHIFT; 1783 1784 if ((attr & MT_EXECUTE_NEVER) != 0U) { 1785 perms |= FFA_MEM_PERM_INST_NON_EXEC; 1786 } 1787 1788 return perms; 1789 } 1790 1791 /******************************************************************************* 1792 * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP 1793 ******************************************************************************/ 1794 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid, 1795 bool secure_origin, 1796 uint64_t x1, 1797 uint64_t x2, 1798 uint64_t x3, 1799 uint64_t x4, 1800 void *cookie, 1801 void *handle, 1802 uint64_t flags) 1803 { 1804 struct secure_partition_desc *sp; 1805 unsigned int idx; 1806 uintptr_t base_va = (uintptr_t)x1; 1807 uint32_t tf_attr = 0; 1808 int ret; 1809 1810 /* This request cannot originate from the Normal world. */ 1811 if (!secure_origin) { 1812 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1813 } 1814 1815 /* Get the context of the current SP. */ 1816 sp = spmc_get_current_sp_ctx(); 1817 if (sp == NULL) { 1818 return spmc_ffa_error_return(handle, 1819 FFA_ERROR_INVALID_PARAMETER); 1820 } 1821 1822 /* A S-EL1 SP has no business invoking this ABI. */ 1823 if (sp->runtime_el == S_EL1) { 1824 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1825 } 1826 1827 /* Get the execution context of the calling SP. */ 1828 idx = get_ec_index(sp); 1829 1830 /* 1831 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1832 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1833 * and can only be initialising on this cpu. 1834 */ 1835 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1836 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1837 } 1838 1839 /* Request the permissions */ 1840 ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr); 1841 if (ret != 0) { 1842 return spmc_ffa_error_return(handle, 1843 FFA_ERROR_INVALID_PARAMETER); 1844 } 1845 1846 /* Convert TF-A permission to FF-A permissions attributes. */ 1847 x2 = mmap_perm_to_ffa_perm(tf_attr); 1848 1849 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2); 1850 } 1851 1852 /******************************************************************************* 1853 * This function will parse the Secure Partition Manifest. From manifest, it 1854 * will fetch details for preparing Secure partition image context and secure 1855 * partition image boot arguments if any. 1856 ******************************************************************************/ 1857 static int sp_manifest_parse(void *sp_manifest, int offset, 1858 struct secure_partition_desc *sp, 1859 entry_point_info_t *ep_info, 1860 int32_t *boot_info_reg) 1861 { 1862 int32_t ret, node; 1863 uint32_t config_32; 1864 1865 /* 1866 * Look for the mandatory fields that are expected to be present in 1867 * the SP manifests. 1868 */ 1869 node = fdt_path_offset(sp_manifest, "/"); 1870 if (node < 0) { 1871 ERROR("Did not find root node.\n"); 1872 return node; 1873 } 1874 1875 ret = fdt_read_uint32_array(sp_manifest, node, "uuid", 1876 ARRAY_SIZE(sp->uuid), sp->uuid); 1877 if (ret != 0) { 1878 ERROR("Missing Secure Partition UUID.\n"); 1879 return ret; 1880 } 1881 1882 ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32); 1883 if (ret != 0) { 1884 ERROR("Missing SP Exception Level information.\n"); 1885 return ret; 1886 } 1887 1888 sp->runtime_el = config_32; 1889 1890 ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32); 1891 if (ret != 0) { 1892 ERROR("Missing Secure Partition FF-A Version.\n"); 1893 return ret; 1894 } 1895 1896 sp->ffa_version = config_32; 1897 1898 ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32); 1899 if (ret != 0) { 1900 ERROR("Missing Secure Partition Execution State.\n"); 1901 return ret; 1902 } 1903 1904 sp->execution_state = config_32; 1905 1906 ret = fdt_read_uint32(sp_manifest, node, 1907 "messaging-method", &config_32); 1908 if (ret != 0) { 1909 ERROR("Missing Secure Partition messaging method.\n"); 1910 return ret; 1911 } 1912 1913 /* Validate this entry, we currently only support direct messaging. */ 1914 if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV | 1915 FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) { 1916 WARN("Invalid Secure Partition messaging method (0x%x)\n", 1917 config_32); 1918 return -EINVAL; 1919 } 1920 1921 sp->properties = config_32; 1922 1923 ret = fdt_read_uint32(sp_manifest, node, 1924 "execution-ctx-count", &config_32); 1925 1926 if (ret != 0) { 1927 ERROR("Missing SP Execution Context Count.\n"); 1928 return ret; 1929 } 1930 1931 /* 1932 * Ensure this field is set correctly in the manifest however 1933 * since this is currently a hardcoded value for S-EL1 partitions 1934 * we don't need to save it here, just validate. 1935 */ 1936 if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) { 1937 ERROR("SP Execution Context Count (%u) must be %u.\n", 1938 config_32, PLATFORM_CORE_COUNT); 1939 return -EINVAL; 1940 } 1941 1942 /* 1943 * Look for the optional fields that are expected to be present in 1944 * an SP manifest. 1945 */ 1946 ret = fdt_read_uint32(sp_manifest, node, "id", &config_32); 1947 if (ret != 0) { 1948 WARN("Missing Secure Partition ID.\n"); 1949 } else { 1950 if (!is_ffa_secure_id_valid(config_32)) { 1951 ERROR("Invalid Secure Partition ID (0x%x).\n", 1952 config_32); 1953 return -EINVAL; 1954 } 1955 sp->sp_id = config_32; 1956 } 1957 1958 ret = fdt_read_uint32(sp_manifest, node, 1959 "power-management-messages", &config_32); 1960 if (ret != 0) { 1961 WARN("Missing Power Management Messages entry.\n"); 1962 } else { 1963 if ((sp->runtime_el == S_EL0) && (config_32 != 0)) { 1964 ERROR("Power messages not supported for S-EL0 SP\n"); 1965 return -EINVAL; 1966 } 1967 1968 /* 1969 * Ensure only the currently supported power messages have 1970 * been requested. 1971 */ 1972 if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF | 1973 FFA_PM_MSG_SUB_CPU_SUSPEND | 1974 FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) { 1975 ERROR("Requested unsupported PM messages (%x)\n", 1976 config_32); 1977 return -EINVAL; 1978 } 1979 sp->pwr_mgmt_msgs = config_32; 1980 } 1981 1982 ret = fdt_read_uint32(sp_manifest, node, 1983 "gp-register-num", &config_32); 1984 if (ret != 0) { 1985 WARN("Missing boot information register.\n"); 1986 } else { 1987 /* Check if a register number between 0-3 is specified. */ 1988 if (config_32 < 4) { 1989 *boot_info_reg = config_32; 1990 } else { 1991 WARN("Incorrect boot information register (%u).\n", 1992 config_32); 1993 } 1994 } 1995 1996 return 0; 1997 } 1998 1999 /******************************************************************************* 2000 * This function gets the Secure Partition Manifest base and maps the manifest 2001 * region. 2002 * Currently only one Secure Partition manifest is considered which is used to 2003 * prepare the context for the single Secure Partition. 2004 ******************************************************************************/ 2005 static int find_and_prepare_sp_context(void) 2006 { 2007 void *sp_manifest; 2008 uintptr_t manifest_base; 2009 uintptr_t manifest_base_align; 2010 entry_point_info_t *next_image_ep_info; 2011 int32_t ret, boot_info_reg = -1; 2012 struct secure_partition_desc *sp; 2013 2014 next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 2015 if (next_image_ep_info == NULL) { 2016 WARN("No Secure Partition image provided by BL2.\n"); 2017 return -ENOENT; 2018 } 2019 2020 sp_manifest = (void *)next_image_ep_info->args.arg0; 2021 if (sp_manifest == NULL) { 2022 WARN("Secure Partition manifest absent.\n"); 2023 return -ENOENT; 2024 } 2025 2026 manifest_base = (uintptr_t)sp_manifest; 2027 manifest_base_align = page_align(manifest_base, DOWN); 2028 2029 /* 2030 * Map the secure partition manifest region in the EL3 translation 2031 * regime. 2032 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base 2033 * alignment the region of 1 PAGE_SIZE from manifest align base may 2034 * not completely accommodate the secure partition manifest region. 2035 */ 2036 ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align, 2037 manifest_base_align, 2038 PAGE_SIZE * 2, 2039 MT_RO_DATA); 2040 if (ret != 0) { 2041 ERROR("Error while mapping SP manifest (%d).\n", ret); 2042 return ret; 2043 } 2044 2045 ret = fdt_node_offset_by_compatible(sp_manifest, -1, 2046 "arm,ffa-manifest-1.0"); 2047 if (ret < 0) { 2048 ERROR("Error happened in SP manifest reading.\n"); 2049 return -EINVAL; 2050 } 2051 2052 /* 2053 * Store the size of the manifest so that it can be used later to pass 2054 * the manifest as boot information later. 2055 */ 2056 next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest); 2057 INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base, 2058 next_image_ep_info->args.arg1); 2059 2060 /* 2061 * Select an SP descriptor for initialising the partition's execution 2062 * context on the primary CPU. 2063 */ 2064 sp = spmc_get_current_sp_ctx(); 2065 2066 #if SPMC_AT_EL3_SEL0_SP 2067 /* Assign translation tables context. */ 2068 sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context(); 2069 2070 #endif /* SPMC_AT_EL3_SEL0_SP */ 2071 /* Initialize entry point information for the SP */ 2072 SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1, 2073 SECURE | EP_ST_ENABLE); 2074 2075 /* Parse the SP manifest. */ 2076 ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info, 2077 &boot_info_reg); 2078 if (ret != 0) { 2079 ERROR("Error in Secure Partition manifest parsing.\n"); 2080 return ret; 2081 } 2082 2083 /* Check that the runtime EL in the manifest was correct. */ 2084 if (sp->runtime_el != S_EL0 && sp->runtime_el != S_EL1) { 2085 ERROR("Unexpected runtime EL: %d\n", sp->runtime_el); 2086 return -EINVAL; 2087 } 2088 2089 /* Perform any common initialisation. */ 2090 spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg); 2091 2092 /* Perform any initialisation specific to S-EL1 SPs. */ 2093 if (sp->runtime_el == S_EL1) { 2094 spmc_el1_sp_setup(sp, next_image_ep_info); 2095 } 2096 2097 #if SPMC_AT_EL3_SEL0_SP 2098 /* Setup spsr in endpoint info for common context management routine. */ 2099 if (sp->runtime_el == S_EL0) { 2100 spmc_el0_sp_spsr_setup(next_image_ep_info); 2101 } 2102 #endif /* SPMC_AT_EL3_SEL0_SP */ 2103 2104 /* Initialize the SP context with the required ep info. */ 2105 spmc_sp_common_ep_commit(sp, next_image_ep_info); 2106 2107 #if SPMC_AT_EL3_SEL0_SP 2108 /* 2109 * Perform any initialisation specific to S-EL0 not set by common 2110 * context management routine. 2111 */ 2112 if (sp->runtime_el == S_EL0) { 2113 spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest); 2114 } 2115 #endif /* SPMC_AT_EL3_SEL0_SP */ 2116 return 0; 2117 } 2118 2119 /******************************************************************************* 2120 * This function takes an SP context pointer and performs a synchronous entry 2121 * into it. 2122 ******************************************************************************/ 2123 static int32_t logical_sp_init(void) 2124 { 2125 int32_t rc = 0; 2126 struct el3_lp_desc *el3_lp_descs; 2127 2128 /* Perform initial validation of the Logical Partitions. */ 2129 rc = el3_sp_desc_validate(); 2130 if (rc != 0) { 2131 ERROR("Logical Partition validation failed!\n"); 2132 return rc; 2133 } 2134 2135 el3_lp_descs = get_el3_lp_array(); 2136 2137 INFO("Logical Secure Partition init start.\n"); 2138 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 2139 rc = el3_lp_descs[i].init(); 2140 if (rc != 0) { 2141 ERROR("Logical SP (0x%x) Failed to Initialize\n", 2142 el3_lp_descs[i].sp_id); 2143 return rc; 2144 } 2145 VERBOSE("Logical SP (0x%x) Initialized\n", 2146 el3_lp_descs[i].sp_id); 2147 } 2148 2149 INFO("Logical Secure Partition init completed.\n"); 2150 2151 return rc; 2152 } 2153 2154 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec) 2155 { 2156 uint64_t rc; 2157 2158 assert(ec != NULL); 2159 2160 /* Assign the context of the SP to this CPU */ 2161 cm_set_context(&(ec->cpu_ctx), SECURE); 2162 2163 /* Restore the context assigned above */ 2164 cm_el1_sysregs_context_restore(SECURE); 2165 cm_set_next_eret_context(SECURE); 2166 2167 /* Invalidate TLBs at EL1. */ 2168 tlbivmalle1(); 2169 dsbish(); 2170 2171 /* Enter Secure Partition */ 2172 rc = spm_secure_partition_enter(&ec->c_rt_ctx); 2173 2174 /* Save secure state */ 2175 cm_el1_sysregs_context_save(SECURE); 2176 2177 return rc; 2178 } 2179 2180 /******************************************************************************* 2181 * SPMC Helper Functions. 2182 ******************************************************************************/ 2183 static int32_t sp_init(void) 2184 { 2185 uint64_t rc; 2186 struct secure_partition_desc *sp; 2187 struct sp_exec_ctx *ec; 2188 2189 sp = spmc_get_current_sp_ctx(); 2190 ec = spmc_get_sp_ec(sp); 2191 ec->rt_model = RT_MODEL_INIT; 2192 ec->rt_state = RT_STATE_RUNNING; 2193 2194 INFO("Secure Partition (0x%x) init start.\n", sp->sp_id); 2195 2196 rc = spmc_sp_synchronous_entry(ec); 2197 if (rc != 0) { 2198 /* Indicate SP init was not successful. */ 2199 ERROR("SP (0x%x) failed to initialize (%lu).\n", 2200 sp->sp_id, rc); 2201 return 0; 2202 } 2203 2204 ec->rt_state = RT_STATE_WAITING; 2205 INFO("Secure Partition initialized.\n"); 2206 2207 return 1; 2208 } 2209 2210 static void initalize_sp_descs(void) 2211 { 2212 struct secure_partition_desc *sp; 2213 2214 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 2215 sp = &sp_desc[i]; 2216 sp->sp_id = INV_SP_ID; 2217 sp->mailbox.rx_buffer = NULL; 2218 sp->mailbox.tx_buffer = NULL; 2219 sp->mailbox.state = MAILBOX_STATE_EMPTY; 2220 sp->secondary_ep = 0; 2221 } 2222 } 2223 2224 static void initalize_ns_ep_descs(void) 2225 { 2226 struct ns_endpoint_desc *ns_ep; 2227 2228 for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) { 2229 ns_ep = &ns_ep_desc[i]; 2230 /* 2231 * Clashes with the Hypervisor ID but will not be a 2232 * problem in practice. 2233 */ 2234 ns_ep->ns_ep_id = 0; 2235 ns_ep->ffa_version = 0; 2236 ns_ep->mailbox.rx_buffer = NULL; 2237 ns_ep->mailbox.tx_buffer = NULL; 2238 ns_ep->mailbox.state = MAILBOX_STATE_EMPTY; 2239 } 2240 } 2241 2242 /******************************************************************************* 2243 * Initialize SPMC attributes for the SPMD. 2244 ******************************************************************************/ 2245 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs) 2246 { 2247 spmc_attrs->major_version = FFA_VERSION_MAJOR; 2248 spmc_attrs->minor_version = FFA_VERSION_MINOR; 2249 spmc_attrs->exec_state = MODE_RW_64; 2250 spmc_attrs->spmc_id = FFA_SPMC_ID; 2251 } 2252 2253 /******************************************************************************* 2254 * Initialize contexts of all Secure Partitions. 2255 ******************************************************************************/ 2256 int32_t spmc_setup(void) 2257 { 2258 int32_t ret; 2259 uint32_t flags; 2260 2261 /* Initialize endpoint descriptors */ 2262 initalize_sp_descs(); 2263 initalize_ns_ep_descs(); 2264 2265 /* 2266 * Retrieve the information of the datastore for tracking shared memory 2267 * requests allocated by platform code and zero the region if available. 2268 */ 2269 ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data, 2270 &spmc_shmem_obj_state.data_size); 2271 if (ret != 0) { 2272 ERROR("Failed to obtain memory descriptor backing store!\n"); 2273 return ret; 2274 } 2275 memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size); 2276 2277 /* Setup logical SPs. */ 2278 ret = logical_sp_init(); 2279 if (ret != 0) { 2280 ERROR("Failed to initialize Logical Partitions.\n"); 2281 return ret; 2282 } 2283 2284 /* Perform physical SP setup. */ 2285 2286 /* Disable MMU at EL1 (initialized by BL2) */ 2287 disable_mmu_icache_el1(); 2288 2289 /* Initialize context of the SP */ 2290 INFO("Secure Partition context setup start.\n"); 2291 2292 ret = find_and_prepare_sp_context(); 2293 if (ret != 0) { 2294 ERROR("Error in SP finding and context preparation.\n"); 2295 return ret; 2296 } 2297 2298 /* Register power management hooks with PSCI */ 2299 psci_register_spd_pm_hook(&spmc_pm); 2300 2301 /* 2302 * Register an interrupt handler for S-EL1 interrupts 2303 * when generated during code executing in the 2304 * non-secure state. 2305 */ 2306 flags = 0; 2307 set_interrupt_rm_flag(flags, NON_SECURE); 2308 ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, 2309 spmc_sp_interrupt_handler, 2310 flags); 2311 if (ret != 0) { 2312 ERROR("Failed to register interrupt handler! (%d)\n", ret); 2313 panic(); 2314 } 2315 2316 /* Register init function for deferred init. */ 2317 bl31_register_bl32_init(&sp_init); 2318 2319 INFO("Secure Partition setup done.\n"); 2320 2321 return 0; 2322 } 2323 2324 /******************************************************************************* 2325 * Secure Partition Manager SMC handler. 2326 ******************************************************************************/ 2327 uint64_t spmc_smc_handler(uint32_t smc_fid, 2328 bool secure_origin, 2329 uint64_t x1, 2330 uint64_t x2, 2331 uint64_t x3, 2332 uint64_t x4, 2333 void *cookie, 2334 void *handle, 2335 uint64_t flags) 2336 { 2337 switch (smc_fid) { 2338 2339 case FFA_VERSION: 2340 return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3, 2341 x4, cookie, handle, flags); 2342 2343 case FFA_SPM_ID_GET: 2344 return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2, 2345 x3, x4, cookie, handle, flags); 2346 2347 case FFA_ID_GET: 2348 return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3, 2349 x4, cookie, handle, flags); 2350 2351 case FFA_FEATURES: 2352 return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3, 2353 x4, cookie, handle, flags); 2354 2355 case FFA_SECONDARY_EP_REGISTER_SMC64: 2356 return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1, 2357 x2, x3, x4, cookie, handle, 2358 flags); 2359 2360 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 2361 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 2362 return direct_req_smc_handler(smc_fid, secure_origin, x1, x2, 2363 x3, x4, cookie, handle, flags); 2364 2365 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 2366 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 2367 return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2, 2368 x3, x4, cookie, handle, flags); 2369 2370 case FFA_RXTX_MAP_SMC32: 2371 case FFA_RXTX_MAP_SMC64: 2372 return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2373 cookie, handle, flags); 2374 2375 case FFA_RXTX_UNMAP: 2376 return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3, 2377 x4, cookie, handle, flags); 2378 2379 case FFA_PARTITION_INFO_GET: 2380 return partition_info_get_handler(smc_fid, secure_origin, x1, 2381 x2, x3, x4, cookie, handle, 2382 flags); 2383 2384 case FFA_RX_RELEASE: 2385 return rx_release_handler(smc_fid, secure_origin, x1, x2, x3, 2386 x4, cookie, handle, flags); 2387 2388 case FFA_MSG_WAIT: 2389 return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2390 cookie, handle, flags); 2391 2392 case FFA_ERROR: 2393 return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2394 cookie, handle, flags); 2395 2396 case FFA_MSG_RUN: 2397 return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2398 cookie, handle, flags); 2399 2400 case FFA_MEM_SHARE_SMC32: 2401 case FFA_MEM_SHARE_SMC64: 2402 case FFA_MEM_LEND_SMC32: 2403 case FFA_MEM_LEND_SMC64: 2404 return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4, 2405 cookie, handle, flags); 2406 2407 case FFA_MEM_FRAG_TX: 2408 return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3, 2409 x4, cookie, handle, flags); 2410 2411 case FFA_MEM_FRAG_RX: 2412 return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3, 2413 x4, cookie, handle, flags); 2414 2415 case FFA_MEM_RETRIEVE_REQ_SMC32: 2416 case FFA_MEM_RETRIEVE_REQ_SMC64: 2417 return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2, 2418 x3, x4, cookie, handle, flags); 2419 2420 case FFA_MEM_RELINQUISH: 2421 return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2, 2422 x3, x4, cookie, handle, flags); 2423 2424 case FFA_MEM_RECLAIM: 2425 return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3, 2426 x4, cookie, handle, flags); 2427 case FFA_CONSOLE_LOG_SMC32: 2428 case FFA_CONSOLE_LOG_SMC64: 2429 return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3, 2430 x4, cookie, handle, flags); 2431 2432 case FFA_MEM_PERM_GET: 2433 return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2, 2434 x3, x4, cookie, handle, flags); 2435 2436 case FFA_MEM_PERM_SET: 2437 return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2, 2438 x3, x4, cookie, handle, flags); 2439 2440 default: 2441 WARN("Unsupported FF-A call 0x%08x.\n", smc_fid); 2442 break; 2443 } 2444 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 2445 } 2446 2447 /******************************************************************************* 2448 * This function is the handler registered for S-EL1 interrupts by the SPMC. It 2449 * validates the interrupt and upon success arranges entry into the SP for 2450 * handling the interrupt. 2451 ******************************************************************************/ 2452 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 2453 uint32_t flags, 2454 void *handle, 2455 void *cookie) 2456 { 2457 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 2458 struct sp_exec_ctx *ec; 2459 uint32_t linear_id = plat_my_core_pos(); 2460 2461 /* Sanity check for a NULL pointer dereference. */ 2462 assert(sp != NULL); 2463 2464 /* Check the security state when the exception was generated. */ 2465 assert(get_interrupt_src_ss(flags) == NON_SECURE); 2466 2467 /* Panic if not an S-EL1 Partition. */ 2468 if (sp->runtime_el != S_EL1) { 2469 ERROR("Interrupt received for a non S-EL1 SP on core%u.\n", 2470 linear_id); 2471 panic(); 2472 } 2473 2474 /* Obtain a reference to the SP execution context. */ 2475 ec = spmc_get_sp_ec(sp); 2476 2477 /* Ensure that the execution context is in waiting state else panic. */ 2478 if (ec->rt_state != RT_STATE_WAITING) { 2479 ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n", 2480 linear_id, RT_STATE_WAITING, ec->rt_state); 2481 panic(); 2482 } 2483 2484 /* Update the runtime model and state of the partition. */ 2485 ec->rt_model = RT_MODEL_INTR; 2486 ec->rt_state = RT_STATE_RUNNING; 2487 2488 VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id); 2489 2490 /* 2491 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not 2492 * populated as the SP can determine this by itself. 2493 */ 2494 return spmd_smc_switch_state(FFA_INTERRUPT, false, 2495 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2496 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2497 handle); 2498 } 2499