1 /* 2 * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 10 #include <arch_helpers.h> 11 #include <bl31/bl31.h> 12 #include <bl31/ehf.h> 13 #include <bl31/interrupt_mgmt.h> 14 #include <common/debug.h> 15 #include <common/fdt_wrappers.h> 16 #include <common/runtime_svc.h> 17 #include <common/uuid.h> 18 #include <lib/el3_runtime/context_mgmt.h> 19 #include <lib/smccc.h> 20 #include <lib/utils.h> 21 #include <lib/xlat_tables/xlat_tables_v2.h> 22 #include <libfdt.h> 23 #include <plat/common/platform.h> 24 #include <services/el3_spmc_logical_sp.h> 25 #include <services/ffa_svc.h> 26 #include <services/spmc_svc.h> 27 #include <services/spmd_svc.h> 28 #include "spmc.h" 29 #include "spmc_shared_mem.h" 30 31 #include <platform_def.h> 32 33 /* Declare the maximum number of SPs and El3 LPs. */ 34 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT 35 36 /* 37 * Allocate a secure partition descriptor to describe each SP in the system that 38 * does not reside at EL3. 39 */ 40 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT]; 41 42 /* 43 * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in 44 * the system that interacts with a SP. It is used to track the Hypervisor 45 * buffer pair, version and ID for now. It could be extended to track VM 46 * properties when the SPMC supports indirect messaging. 47 */ 48 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT]; 49 50 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 51 uint32_t flags, 52 void *handle, 53 void *cookie); 54 55 /* 56 * Helper function to obtain the array storing the EL3 57 * Logical Partition descriptors. 58 */ 59 struct el3_lp_desc *get_el3_lp_array(void) 60 { 61 return (struct el3_lp_desc *) EL3_LP_DESCS_START; 62 } 63 64 /* 65 * Helper function to obtain the descriptor of the last SP to whom control was 66 * handed to on this physical cpu. Currently, we assume there is only one SP. 67 * TODO: Expand to track multiple partitions when required. 68 */ 69 struct secure_partition_desc *spmc_get_current_sp_ctx(void) 70 { 71 return &(sp_desc[ACTIVE_SP_DESC_INDEX]); 72 } 73 74 /* 75 * Helper function to obtain the execution context of an SP on the 76 * current physical cpu. 77 */ 78 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp) 79 { 80 return &(sp->ec[get_ec_index(sp)]); 81 } 82 83 /* Helper function to get pointer to SP context from its ID. */ 84 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id) 85 { 86 /* Check for Secure World Partitions. */ 87 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 88 if (sp_desc[i].sp_id == id) { 89 return &(sp_desc[i]); 90 } 91 } 92 return NULL; 93 } 94 95 /* 96 * Helper function to obtain the descriptor of the Hypervisor or OS kernel. 97 * We assume that the first descriptor is reserved for this entity. 98 */ 99 struct ns_endpoint_desc *spmc_get_hyp_ctx(void) 100 { 101 return &(ns_ep_desc[0]); 102 } 103 104 /* 105 * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor 106 * or OS kernel in the normal world or the last SP that was run. 107 */ 108 struct mailbox *spmc_get_mbox_desc(bool secure_origin) 109 { 110 /* Obtain the RX/TX buffer pair descriptor. */ 111 if (secure_origin) { 112 return &(spmc_get_current_sp_ctx()->mailbox); 113 } else { 114 return &(spmc_get_hyp_ctx()->mailbox); 115 } 116 } 117 118 /****************************************************************************** 119 * This function returns to the place where spmc_sp_synchronous_entry() was 120 * called originally. 121 ******************************************************************************/ 122 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc) 123 { 124 /* 125 * The SPM must have initiated the original request through a 126 * synchronous entry into the secure partition. Jump back to the 127 * original C runtime context with the value of rc in x0; 128 */ 129 spm_secure_partition_exit(ec->c_rt_ctx, rc); 130 131 panic(); 132 } 133 134 /******************************************************************************* 135 * Return FFA_ERROR with specified error code. 136 ******************************************************************************/ 137 uint64_t spmc_ffa_error_return(void *handle, int error_code) 138 { 139 SMC_RET8(handle, FFA_ERROR, 140 FFA_TARGET_INFO_MBZ, error_code, 141 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, 142 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 143 } 144 145 /****************************************************************************** 146 * Helper function to validate a secure partition ID to ensure it does not 147 * conflict with any other FF-A component and follows the convention to 148 * indicate it resides within the secure world. 149 ******************************************************************************/ 150 bool is_ffa_secure_id_valid(uint16_t partition_id) 151 { 152 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 153 154 /* Ensure the ID is not the invalid partition ID. */ 155 if (partition_id == INV_SP_ID) { 156 return false; 157 } 158 159 /* Ensure the ID is not the SPMD ID. */ 160 if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) { 161 return false; 162 } 163 164 /* 165 * Ensure the ID follows the convention to indicate it resides 166 * in the secure world. 167 */ 168 if (!ffa_is_secure_world_id(partition_id)) { 169 return false; 170 } 171 172 /* Ensure we don't conflict with the SPMC partition ID. */ 173 if (partition_id == FFA_SPMC_ID) { 174 return false; 175 } 176 177 /* Ensure we do not already have an SP context with this ID. */ 178 if (spmc_get_sp_ctx(partition_id)) { 179 return false; 180 } 181 182 /* Ensure we don't clash with any Logical SP's. */ 183 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 184 if (el3_lp_descs[i].sp_id == partition_id) { 185 return false; 186 } 187 } 188 189 return true; 190 } 191 192 /******************************************************************************* 193 * This function either forwards the request to the other world or returns 194 * with an ERET depending on the source of the call. 195 * We can assume that the destination is for an entity at a lower exception 196 * level as any messages destined for a logical SP resident in EL3 will have 197 * already been taken care of by the SPMC before entering this function. 198 ******************************************************************************/ 199 static uint64_t spmc_smc_return(uint32_t smc_fid, 200 bool secure_origin, 201 uint64_t x1, 202 uint64_t x2, 203 uint64_t x3, 204 uint64_t x4, 205 void *handle, 206 void *cookie, 207 uint64_t flags, 208 uint16_t dst_id) 209 { 210 /* If the destination is in the normal world always go via the SPMD. */ 211 if (ffa_is_normal_world_id(dst_id)) { 212 return spmd_smc_handler(smc_fid, x1, x2, x3, x4, 213 cookie, handle, flags); 214 } 215 /* 216 * If the caller is secure and we want to return to the secure world, 217 * ERET directly. 218 */ 219 else if (secure_origin && ffa_is_secure_world_id(dst_id)) { 220 SMC_RET5(handle, smc_fid, x1, x2, x3, x4); 221 } 222 /* If we originated in the normal world then switch contexts. */ 223 else if (!secure_origin && ffa_is_secure_world_id(dst_id)) { 224 return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, 225 x3, x4, handle); 226 } else { 227 /* Unknown State. */ 228 panic(); 229 } 230 231 /* Shouldn't be Reached. */ 232 return 0; 233 } 234 235 /******************************************************************************* 236 * FF-A ABI Handlers. 237 ******************************************************************************/ 238 239 /******************************************************************************* 240 * Helper function to validate arg2 as part of a direct message. 241 ******************************************************************************/ 242 static inline bool direct_msg_validate_arg2(uint64_t x2) 243 { 244 /* Check message type. */ 245 if (x2 & FFA_FWK_MSG_BIT) { 246 /* We have a framework message, ensure it is a known message. */ 247 if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) { 248 VERBOSE("Invalid message format 0x%lx.\n", x2); 249 return false; 250 } 251 } else { 252 /* We have a partition messages, ensure x2 is not set. */ 253 if (x2 != (uint64_t) 0) { 254 VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n", 255 x2); 256 return false; 257 } 258 } 259 return true; 260 } 261 262 /******************************************************************************* 263 * Handle direct request messages and route to the appropriate destination. 264 ******************************************************************************/ 265 static uint64_t direct_req_smc_handler(uint32_t smc_fid, 266 bool secure_origin, 267 uint64_t x1, 268 uint64_t x2, 269 uint64_t x3, 270 uint64_t x4, 271 void *cookie, 272 void *handle, 273 uint64_t flags) 274 { 275 uint16_t dst_id = ffa_endpoint_destination(x1); 276 struct el3_lp_desc *el3_lp_descs; 277 struct secure_partition_desc *sp; 278 unsigned int idx; 279 280 /* Check if arg2 has been populated correctly based on message type. */ 281 if (!direct_msg_validate_arg2(x2)) { 282 return spmc_ffa_error_return(handle, 283 FFA_ERROR_INVALID_PARAMETER); 284 } 285 286 el3_lp_descs = get_el3_lp_array(); 287 288 /* Check if the request is destined for a Logical Partition. */ 289 for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) { 290 if (el3_lp_descs[i].sp_id == dst_id) { 291 return el3_lp_descs[i].direct_req( 292 smc_fid, secure_origin, x1, x2, x3, x4, 293 cookie, handle, flags); 294 } 295 } 296 297 /* 298 * If the request was not targeted to a LSP and from the secure world 299 * then it is invalid since a SP cannot call into the Normal world and 300 * there is no other SP to call into. If there are other SPs in future 301 * then the partition runtime model would need to be validated as well. 302 */ 303 if (secure_origin) { 304 VERBOSE("Direct request not supported to the Normal World.\n"); 305 return spmc_ffa_error_return(handle, 306 FFA_ERROR_INVALID_PARAMETER); 307 } 308 309 /* Check if the SP ID is valid. */ 310 sp = spmc_get_sp_ctx(dst_id); 311 if (sp == NULL) { 312 VERBOSE("Direct request to unknown partition ID (0x%x).\n", 313 dst_id); 314 return spmc_ffa_error_return(handle, 315 FFA_ERROR_INVALID_PARAMETER); 316 } 317 318 /* 319 * Check that the target execution context is in a waiting state before 320 * forwarding the direct request to it. 321 */ 322 idx = get_ec_index(sp); 323 if (sp->ec[idx].rt_state != RT_STATE_WAITING) { 324 VERBOSE("SP context on core%u is not waiting (%u).\n", 325 idx, sp->ec[idx].rt_model); 326 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 327 } 328 329 /* 330 * Everything checks out so forward the request to the SP after updating 331 * its state and runtime model. 332 */ 333 sp->ec[idx].rt_state = RT_STATE_RUNNING; 334 sp->ec[idx].rt_model = RT_MODEL_DIR_REQ; 335 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 336 handle, cookie, flags, dst_id); 337 } 338 339 /******************************************************************************* 340 * Handle direct response messages and route to the appropriate destination. 341 ******************************************************************************/ 342 static uint64_t direct_resp_smc_handler(uint32_t smc_fid, 343 bool secure_origin, 344 uint64_t x1, 345 uint64_t x2, 346 uint64_t x3, 347 uint64_t x4, 348 void *cookie, 349 void *handle, 350 uint64_t flags) 351 { 352 uint16_t dst_id = ffa_endpoint_destination(x1); 353 struct secure_partition_desc *sp; 354 unsigned int idx; 355 356 /* Check if arg2 has been populated correctly based on message type. */ 357 if (!direct_msg_validate_arg2(x2)) { 358 return spmc_ffa_error_return(handle, 359 FFA_ERROR_INVALID_PARAMETER); 360 } 361 362 /* Check that the response did not originate from the Normal world. */ 363 if (!secure_origin) { 364 VERBOSE("Direct Response not supported from Normal World.\n"); 365 return spmc_ffa_error_return(handle, 366 FFA_ERROR_INVALID_PARAMETER); 367 } 368 369 /* 370 * Check that the response is either targeted to the Normal world or the 371 * SPMC e.g. a PM response. 372 */ 373 if ((dst_id != FFA_SPMC_ID) && ffa_is_secure_world_id(dst_id)) { 374 VERBOSE("Direct response to invalid partition ID (0x%x).\n", 375 dst_id); 376 return spmc_ffa_error_return(handle, 377 FFA_ERROR_INVALID_PARAMETER); 378 } 379 380 /* Obtain the SP descriptor and update its runtime state. */ 381 sp = spmc_get_sp_ctx(ffa_endpoint_source(x1)); 382 if (sp == NULL) { 383 VERBOSE("Direct response to unknown partition ID (0x%x).\n", 384 dst_id); 385 return spmc_ffa_error_return(handle, 386 FFA_ERROR_INVALID_PARAMETER); 387 } 388 389 /* Sanity check state is being tracked correctly in the SPMC. */ 390 idx = get_ec_index(sp); 391 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 392 393 /* Ensure SP execution context was in the right runtime model. */ 394 if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) { 395 VERBOSE("SP context on core%u not handling direct req (%u).\n", 396 idx, sp->ec[idx].rt_model); 397 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 398 } 399 400 /* Update the state of the SP execution context. */ 401 sp->ec[idx].rt_state = RT_STATE_WAITING; 402 403 /* 404 * If the receiver is not the SPMC then forward the response to the 405 * Normal world. 406 */ 407 if (dst_id == FFA_SPMC_ID) { 408 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 409 /* Should not get here. */ 410 panic(); 411 } 412 413 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 414 handle, cookie, flags, dst_id); 415 } 416 417 /******************************************************************************* 418 * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its 419 * cycles. 420 ******************************************************************************/ 421 static uint64_t msg_wait_handler(uint32_t smc_fid, 422 bool secure_origin, 423 uint64_t x1, 424 uint64_t x2, 425 uint64_t x3, 426 uint64_t x4, 427 void *cookie, 428 void *handle, 429 uint64_t flags) 430 { 431 struct secure_partition_desc *sp; 432 unsigned int idx; 433 434 /* 435 * Check that the response did not originate from the Normal world as 436 * only the secure world can call this ABI. 437 */ 438 if (!secure_origin) { 439 VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n"); 440 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 441 } 442 443 /* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */ 444 sp = spmc_get_current_sp_ctx(); 445 if (sp == NULL) { 446 return spmc_ffa_error_return(handle, 447 FFA_ERROR_INVALID_PARAMETER); 448 } 449 450 /* 451 * Get the execution context of the SP that invoked FFA_MSG_WAIT. 452 */ 453 idx = get_ec_index(sp); 454 455 /* Ensure SP execution context was in the right runtime model. */ 456 if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 457 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 458 } 459 460 /* Sanity check the state is being tracked correctly in the SPMC. */ 461 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 462 463 /* 464 * Perform a synchronous exit if the partition was initialising. The 465 * state is updated after the exit. 466 */ 467 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 468 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 469 /* Should not get here */ 470 panic(); 471 } 472 473 /* Update the state of the SP execution context. */ 474 sp->ec[idx].rt_state = RT_STATE_WAITING; 475 476 /* Resume normal world if a secure interrupt was handled. */ 477 if (sp->ec[idx].rt_model == RT_MODEL_INTR) { 478 /* FFA_MSG_WAIT can only be called from the secure world. */ 479 unsigned int secure_state_in = SECURE; 480 unsigned int secure_state_out = NON_SECURE; 481 482 cm_el1_sysregs_context_save(secure_state_in); 483 cm_el1_sysregs_context_restore(secure_state_out); 484 cm_set_next_eret_context(secure_state_out); 485 SMC_RET0(cm_get_context(secure_state_out)); 486 } 487 488 /* Forward the response to the Normal world. */ 489 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 490 handle, cookie, flags, FFA_NWD_ID); 491 } 492 493 static uint64_t ffa_error_handler(uint32_t smc_fid, 494 bool secure_origin, 495 uint64_t x1, 496 uint64_t x2, 497 uint64_t x3, 498 uint64_t x4, 499 void *cookie, 500 void *handle, 501 uint64_t flags) 502 { 503 struct secure_partition_desc *sp; 504 unsigned int idx; 505 506 /* Check that the response did not originate from the Normal world. */ 507 if (!secure_origin) { 508 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 509 } 510 511 /* Get the descriptor of the SP that invoked FFA_ERROR. */ 512 sp = spmc_get_current_sp_ctx(); 513 if (sp == NULL) { 514 return spmc_ffa_error_return(handle, 515 FFA_ERROR_INVALID_PARAMETER); 516 } 517 518 /* Get the execution context of the SP that invoked FFA_ERROR. */ 519 idx = get_ec_index(sp); 520 521 /* 522 * We only expect FFA_ERROR to be received during SP initialisation 523 * otherwise this is an invalid call. 524 */ 525 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 526 ERROR("SP 0x%x failed to initialize.\n", sp->sp_id); 527 spmc_sp_synchronous_exit(&sp->ec[idx], x2); 528 /* Should not get here. */ 529 panic(); 530 } 531 532 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 533 } 534 535 static uint64_t ffa_version_handler(uint32_t smc_fid, 536 bool secure_origin, 537 uint64_t x1, 538 uint64_t x2, 539 uint64_t x3, 540 uint64_t x4, 541 void *cookie, 542 void *handle, 543 uint64_t flags) 544 { 545 uint32_t requested_version = x1 & FFA_VERSION_MASK; 546 547 if (requested_version & FFA_VERSION_BIT31_MASK) { 548 /* Invalid encoding, return an error. */ 549 SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED); 550 /* Execution stops here. */ 551 } 552 553 /* Determine the caller to store the requested version. */ 554 if (secure_origin) { 555 /* 556 * Ensure that the SP is reporting the same version as 557 * specified in its manifest. If these do not match there is 558 * something wrong with the SP. 559 * TODO: Should we abort the SP? For now assert this is not 560 * case. 561 */ 562 assert(requested_version == 563 spmc_get_current_sp_ctx()->ffa_version); 564 } else { 565 /* 566 * If this is called by the normal world, record this 567 * information in its descriptor. 568 */ 569 spmc_get_hyp_ctx()->ffa_version = requested_version; 570 } 571 572 SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR, 573 FFA_VERSION_MINOR)); 574 } 575 576 /******************************************************************************* 577 * Helper function to obtain the FF-A version of the calling partition. 578 ******************************************************************************/ 579 uint32_t get_partition_ffa_version(bool secure_origin) 580 { 581 if (secure_origin) { 582 return spmc_get_current_sp_ctx()->ffa_version; 583 } else { 584 return spmc_get_hyp_ctx()->ffa_version; 585 } 586 } 587 588 static uint64_t rxtx_map_handler(uint32_t smc_fid, 589 bool secure_origin, 590 uint64_t x1, 591 uint64_t x2, 592 uint64_t x3, 593 uint64_t x4, 594 void *cookie, 595 void *handle, 596 uint64_t flags) 597 { 598 int ret; 599 uint32_t error_code; 600 uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS; 601 struct mailbox *mbox; 602 uintptr_t tx_address = x1; 603 uintptr_t rx_address = x2; 604 uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */ 605 uint32_t buf_size = page_count * FFA_PAGE_SIZE; 606 607 /* 608 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 609 * indirect messaging with SPs. Check if the Hypervisor has invoked this 610 * ABI on behalf of a VM and reject it if this is the case. 611 */ 612 if (tx_address == 0 || rx_address == 0) { 613 WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n"); 614 return spmc_ffa_error_return(handle, 615 FFA_ERROR_INVALID_PARAMETER); 616 } 617 618 /* Ensure the specified buffers are not the same. */ 619 if (tx_address == rx_address) { 620 WARN("TX Buffer must not be the same as RX Buffer.\n"); 621 return spmc_ffa_error_return(handle, 622 FFA_ERROR_INVALID_PARAMETER); 623 } 624 625 /* Ensure the buffer size is not 0. */ 626 if (buf_size == 0U) { 627 WARN("Buffer size must not be 0\n"); 628 return spmc_ffa_error_return(handle, 629 FFA_ERROR_INVALID_PARAMETER); 630 } 631 632 /* 633 * Ensure the buffer size is a multiple of the translation granule size 634 * in TF-A. 635 */ 636 if (buf_size % PAGE_SIZE != 0U) { 637 WARN("Buffer size must be aligned to translation granule.\n"); 638 return spmc_ffa_error_return(handle, 639 FFA_ERROR_INVALID_PARAMETER); 640 } 641 642 /* Obtain the RX/TX buffer pair descriptor. */ 643 mbox = spmc_get_mbox_desc(secure_origin); 644 645 spin_lock(&mbox->lock); 646 647 /* Check if buffers have already been mapped. */ 648 if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) { 649 WARN("RX/TX Buffers already mapped (%p/%p)\n", 650 (void *) mbox->rx_buffer, (void *)mbox->tx_buffer); 651 error_code = FFA_ERROR_DENIED; 652 goto err; 653 } 654 655 /* memmap the TX buffer as read only. */ 656 ret = mmap_add_dynamic_region(tx_address, /* PA */ 657 tx_address, /* VA */ 658 buf_size, /* size */ 659 mem_atts | MT_RO_DATA); /* attrs */ 660 if (ret != 0) { 661 /* Return the correct error code. */ 662 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 663 FFA_ERROR_INVALID_PARAMETER; 664 WARN("Unable to map TX buffer: %d\n", error_code); 665 goto err; 666 } 667 668 /* memmap the RX buffer as read write. */ 669 ret = mmap_add_dynamic_region(rx_address, /* PA */ 670 rx_address, /* VA */ 671 buf_size, /* size */ 672 mem_atts | MT_RW_DATA); /* attrs */ 673 674 if (ret != 0) { 675 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 676 FFA_ERROR_INVALID_PARAMETER; 677 WARN("Unable to map RX buffer: %d\n", error_code); 678 /* Unmap the TX buffer again. */ 679 mmap_remove_dynamic_region(tx_address, buf_size); 680 goto err; 681 } 682 683 mbox->tx_buffer = (void *) tx_address; 684 mbox->rx_buffer = (void *) rx_address; 685 mbox->rxtx_page_count = page_count; 686 spin_unlock(&mbox->lock); 687 688 SMC_RET1(handle, FFA_SUCCESS_SMC32); 689 /* Execution stops here. */ 690 err: 691 spin_unlock(&mbox->lock); 692 return spmc_ffa_error_return(handle, error_code); 693 } 694 695 static uint64_t rxtx_unmap_handler(uint32_t smc_fid, 696 bool secure_origin, 697 uint64_t x1, 698 uint64_t x2, 699 uint64_t x3, 700 uint64_t x4, 701 void *cookie, 702 void *handle, 703 uint64_t flags) 704 { 705 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 706 uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 707 708 /* 709 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 710 * indirect messaging with SPs. Check if the Hypervisor has invoked this 711 * ABI on behalf of a VM and reject it if this is the case. 712 */ 713 if (x1 != 0UL) { 714 return spmc_ffa_error_return(handle, 715 FFA_ERROR_INVALID_PARAMETER); 716 } 717 718 spin_lock(&mbox->lock); 719 720 /* Check if buffers are currently mapped. */ 721 if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) { 722 spin_unlock(&mbox->lock); 723 return spmc_ffa_error_return(handle, 724 FFA_ERROR_INVALID_PARAMETER); 725 } 726 727 /* Unmap RX Buffer */ 728 if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer, 729 buf_size) != 0) { 730 WARN("Unable to unmap RX buffer!\n"); 731 } 732 733 mbox->rx_buffer = 0; 734 735 /* Unmap TX Buffer */ 736 if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer, 737 buf_size) != 0) { 738 WARN("Unable to unmap TX buffer!\n"); 739 } 740 741 mbox->tx_buffer = 0; 742 mbox->rxtx_page_count = 0; 743 744 spin_unlock(&mbox->lock); 745 SMC_RET1(handle, FFA_SUCCESS_SMC32); 746 } 747 748 /* 749 * Helper function to populate the properties field of a Partition Info Get 750 * descriptor. 751 */ 752 static uint32_t 753 partition_info_get_populate_properties(uint32_t sp_properties, 754 enum sp_execution_state sp_ec_state) 755 { 756 uint32_t properties = sp_properties; 757 uint32_t ec_state; 758 759 /* Determine the execution state of the SP. */ 760 ec_state = sp_ec_state == SP_STATE_AARCH64 ? 761 FFA_PARTITION_INFO_GET_AARCH64_STATE : 762 FFA_PARTITION_INFO_GET_AARCH32_STATE; 763 764 properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT; 765 766 return properties; 767 } 768 769 /* 770 * Collate the partition information in a v1.1 partition information 771 * descriptor format, this will be converter later if required. 772 */ 773 static int partition_info_get_handler_v1_1(uint32_t *uuid, 774 struct ffa_partition_info_v1_1 775 *partitions, 776 uint32_t max_partitions, 777 uint32_t *partition_count) 778 { 779 uint32_t index; 780 struct ffa_partition_info_v1_1 *desc; 781 bool null_uuid = is_null_uuid(uuid); 782 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 783 784 /* Deal with Logical Partitions. */ 785 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 786 if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) { 787 /* Found a matching UUID, populate appropriately. */ 788 if (*partition_count >= max_partitions) { 789 return FFA_ERROR_NO_MEMORY; 790 } 791 792 desc = &partitions[*partition_count]; 793 desc->ep_id = el3_lp_descs[index].sp_id; 794 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 795 /* LSPs must be AArch64. */ 796 desc->properties = 797 partition_info_get_populate_properties( 798 el3_lp_descs[index].properties, 799 SP_STATE_AARCH64); 800 801 if (null_uuid) { 802 copy_uuid(desc->uuid, el3_lp_descs[index].uuid); 803 } 804 (*partition_count)++; 805 } 806 } 807 808 /* Deal with physical SP's. */ 809 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 810 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 811 /* Found a matching UUID, populate appropriately. */ 812 if (*partition_count >= max_partitions) { 813 return FFA_ERROR_NO_MEMORY; 814 } 815 816 desc = &partitions[*partition_count]; 817 desc->ep_id = sp_desc[index].sp_id; 818 /* 819 * Execution context count must match No. cores for 820 * S-EL1 SPs. 821 */ 822 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 823 desc->properties = 824 partition_info_get_populate_properties( 825 sp_desc[index].properties, 826 sp_desc[index].execution_state); 827 828 if (null_uuid) { 829 copy_uuid(desc->uuid, sp_desc[index].uuid); 830 } 831 (*partition_count)++; 832 } 833 } 834 return 0; 835 } 836 837 /* 838 * Handle the case where that caller only wants the count of partitions 839 * matching a given UUID and does not want the corresponding descriptors 840 * populated. 841 */ 842 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid) 843 { 844 uint32_t index = 0; 845 uint32_t partition_count = 0; 846 bool null_uuid = is_null_uuid(uuid); 847 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 848 849 /* Deal with Logical Partitions. */ 850 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 851 if (null_uuid || 852 uuid_match(uuid, el3_lp_descs[index].uuid)) { 853 (partition_count)++; 854 } 855 } 856 857 /* Deal with physical SP's. */ 858 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 859 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 860 (partition_count)++; 861 } 862 } 863 return partition_count; 864 } 865 866 /* 867 * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate 868 * the corresponding descriptor format from the v1.1 descriptor array. 869 */ 870 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1 871 *partitions, 872 struct mailbox *mbox, 873 int partition_count) 874 { 875 uint32_t index; 876 uint32_t buf_size; 877 uint32_t descriptor_size; 878 struct ffa_partition_info_v1_0 *v1_0_partitions = 879 (struct ffa_partition_info_v1_0 *) mbox->rx_buffer; 880 881 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 882 descriptor_size = partition_count * 883 sizeof(struct ffa_partition_info_v1_0); 884 885 if (descriptor_size > buf_size) { 886 return FFA_ERROR_NO_MEMORY; 887 } 888 889 for (index = 0U; index < partition_count; index++) { 890 v1_0_partitions[index].ep_id = partitions[index].ep_id; 891 v1_0_partitions[index].execution_ctx_count = 892 partitions[index].execution_ctx_count; 893 /* Only report v1.0 properties. */ 894 v1_0_partitions[index].properties = 895 (partitions[index].properties & 896 FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK); 897 } 898 return 0; 899 } 900 901 /* 902 * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and 903 * v1.0 implementations. 904 */ 905 static uint64_t partition_info_get_handler(uint32_t smc_fid, 906 bool secure_origin, 907 uint64_t x1, 908 uint64_t x2, 909 uint64_t x3, 910 uint64_t x4, 911 void *cookie, 912 void *handle, 913 uint64_t flags) 914 { 915 int ret; 916 uint32_t partition_count = 0; 917 uint32_t size = 0; 918 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 919 struct mailbox *mbox; 920 uint64_t info_get_flags; 921 bool count_only; 922 uint32_t uuid[4]; 923 924 uuid[0] = x1; 925 uuid[1] = x2; 926 uuid[2] = x3; 927 uuid[3] = x4; 928 929 /* Determine if the Partition descriptors should be populated. */ 930 info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5); 931 count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK); 932 933 /* Handle the case where we don't need to populate the descriptors. */ 934 if (count_only) { 935 partition_count = partition_info_get_handler_count_only(uuid); 936 if (partition_count == 0) { 937 return spmc_ffa_error_return(handle, 938 FFA_ERROR_INVALID_PARAMETER); 939 } 940 } else { 941 struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS]; 942 943 /* 944 * Handle the case where the partition descriptors are required, 945 * check we have the buffers available and populate the 946 * appropriate structure version. 947 */ 948 949 /* Obtain the v1.1 format of the descriptors. */ 950 ret = partition_info_get_handler_v1_1(uuid, partitions, 951 MAX_SP_LP_PARTITIONS, 952 &partition_count); 953 954 /* Check if an error occurred during discovery. */ 955 if (ret != 0) { 956 goto err; 957 } 958 959 /* If we didn't find any matches the UUID is unknown. */ 960 if (partition_count == 0) { 961 ret = FFA_ERROR_INVALID_PARAMETER; 962 goto err; 963 } 964 965 /* Obtain the partition mailbox RX/TX buffer pair descriptor. */ 966 mbox = spmc_get_mbox_desc(secure_origin); 967 968 /* 969 * If the caller has not bothered registering its RX/TX pair 970 * then return an error code. 971 */ 972 spin_lock(&mbox->lock); 973 if (mbox->rx_buffer == NULL) { 974 ret = FFA_ERROR_BUSY; 975 goto err_unlock; 976 } 977 978 /* Ensure the RX buffer is currently free. */ 979 if (mbox->state != MAILBOX_STATE_EMPTY) { 980 ret = FFA_ERROR_BUSY; 981 goto err_unlock; 982 } 983 984 /* Zero the RX buffer before populating. */ 985 (void)memset(mbox->rx_buffer, 0, 986 mbox->rxtx_page_count * FFA_PAGE_SIZE); 987 988 /* 989 * Depending on the FF-A version of the requesting partition 990 * we may need to convert to a v1.0 format otherwise we can copy 991 * directly. 992 */ 993 if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) { 994 ret = partition_info_populate_v1_0(partitions, 995 mbox, 996 partition_count); 997 if (ret != 0) { 998 goto err_unlock; 999 } 1000 } else { 1001 uint32_t buf_size = mbox->rxtx_page_count * 1002 FFA_PAGE_SIZE; 1003 1004 /* Ensure the descriptor will fit in the buffer. */ 1005 size = sizeof(struct ffa_partition_info_v1_1); 1006 if (partition_count * size > buf_size) { 1007 ret = FFA_ERROR_NO_MEMORY; 1008 goto err_unlock; 1009 } 1010 memcpy(mbox->rx_buffer, partitions, 1011 partition_count * size); 1012 } 1013 1014 mbox->state = MAILBOX_STATE_FULL; 1015 spin_unlock(&mbox->lock); 1016 } 1017 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size); 1018 1019 err_unlock: 1020 spin_unlock(&mbox->lock); 1021 err: 1022 return spmc_ffa_error_return(handle, ret); 1023 } 1024 1025 static uint64_t ffa_feature_success(void *handle, uint32_t arg2) 1026 { 1027 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2); 1028 } 1029 1030 static uint64_t ffa_features_retrieve_request(bool secure_origin, 1031 uint32_t input_properties, 1032 void *handle) 1033 { 1034 /* 1035 * If we're called by the normal world we don't support any 1036 * additional features. 1037 */ 1038 if (!secure_origin) { 1039 if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) { 1040 return spmc_ffa_error_return(handle, 1041 FFA_ERROR_NOT_SUPPORTED); 1042 } 1043 1044 } else { 1045 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1046 /* 1047 * If v1.1 the NS bit must be set otherwise it is an invalid 1048 * call. If v1.0 check and store whether the SP has requested 1049 * the use of the NS bit. 1050 */ 1051 if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) { 1052 if ((input_properties & 1053 FFA_FEATURES_RET_REQ_NS_BIT) == 0U) { 1054 return spmc_ffa_error_return(handle, 1055 FFA_ERROR_NOT_SUPPORTED); 1056 } 1057 return ffa_feature_success(handle, 1058 FFA_FEATURES_RET_REQ_NS_BIT); 1059 } else { 1060 sp->ns_bit_requested = (input_properties & 1061 FFA_FEATURES_RET_REQ_NS_BIT) != 1062 0U; 1063 } 1064 if (sp->ns_bit_requested) { 1065 return ffa_feature_success(handle, 1066 FFA_FEATURES_RET_REQ_NS_BIT); 1067 } 1068 } 1069 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1070 } 1071 1072 static uint64_t ffa_features_handler(uint32_t smc_fid, 1073 bool secure_origin, 1074 uint64_t x1, 1075 uint64_t x2, 1076 uint64_t x3, 1077 uint64_t x4, 1078 void *cookie, 1079 void *handle, 1080 uint64_t flags) 1081 { 1082 uint32_t function_id = (uint32_t) x1; 1083 uint32_t input_properties = (uint32_t) x2; 1084 1085 /* Check if a Feature ID was requested. */ 1086 if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) { 1087 /* We currently don't support any additional features. */ 1088 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1089 } 1090 1091 /* 1092 * Handle the cases where we have separate handlers due to additional 1093 * properties. 1094 */ 1095 switch (function_id) { 1096 case FFA_MEM_RETRIEVE_REQ_SMC32: 1097 case FFA_MEM_RETRIEVE_REQ_SMC64: 1098 return ffa_features_retrieve_request(secure_origin, 1099 input_properties, 1100 handle); 1101 } 1102 1103 /* 1104 * We don't currently support additional input properties for these 1105 * other ABIs therefore ensure this value is set to 0. 1106 */ 1107 if (input_properties != 0U) { 1108 return spmc_ffa_error_return(handle, 1109 FFA_ERROR_NOT_SUPPORTED); 1110 } 1111 1112 /* Report if any other FF-A ABI is supported. */ 1113 switch (function_id) { 1114 /* Supported features from both worlds. */ 1115 case FFA_ERROR: 1116 case FFA_SUCCESS_SMC32: 1117 case FFA_INTERRUPT: 1118 case FFA_SPM_ID_GET: 1119 case FFA_ID_GET: 1120 case FFA_FEATURES: 1121 case FFA_VERSION: 1122 case FFA_RX_RELEASE: 1123 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1124 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1125 case FFA_PARTITION_INFO_GET: 1126 case FFA_RXTX_MAP_SMC32: 1127 case FFA_RXTX_MAP_SMC64: 1128 case FFA_RXTX_UNMAP: 1129 case FFA_MEM_FRAG_TX: 1130 case FFA_MSG_RUN: 1131 1132 /* 1133 * We are relying on the fact that the other registers 1134 * will be set to 0 as these values align with the 1135 * currently implemented features of the SPMC. If this 1136 * changes this function must be extended to handle 1137 * reporting the additional functionality. 1138 */ 1139 1140 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1141 /* Execution stops here. */ 1142 1143 /* Supported ABIs only from the secure world. */ 1144 case FFA_SECONDARY_EP_REGISTER_SMC64: 1145 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1146 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1147 case FFA_MEM_RELINQUISH: 1148 case FFA_MSG_WAIT: 1149 1150 if (!secure_origin) { 1151 return spmc_ffa_error_return(handle, 1152 FFA_ERROR_NOT_SUPPORTED); 1153 } 1154 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1155 /* Execution stops here. */ 1156 1157 /* Supported features only from the normal world. */ 1158 case FFA_MEM_SHARE_SMC32: 1159 case FFA_MEM_SHARE_SMC64: 1160 case FFA_MEM_LEND_SMC32: 1161 case FFA_MEM_LEND_SMC64: 1162 case FFA_MEM_RECLAIM: 1163 case FFA_MEM_FRAG_RX: 1164 1165 if (secure_origin) { 1166 return spmc_ffa_error_return(handle, 1167 FFA_ERROR_NOT_SUPPORTED); 1168 } 1169 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1170 /* Execution stops here. */ 1171 1172 default: 1173 return spmc_ffa_error_return(handle, 1174 FFA_ERROR_NOT_SUPPORTED); 1175 } 1176 } 1177 1178 static uint64_t ffa_id_get_handler(uint32_t smc_fid, 1179 bool secure_origin, 1180 uint64_t x1, 1181 uint64_t x2, 1182 uint64_t x3, 1183 uint64_t x4, 1184 void *cookie, 1185 void *handle, 1186 uint64_t flags) 1187 { 1188 if (secure_origin) { 1189 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1190 spmc_get_current_sp_ctx()->sp_id); 1191 } else { 1192 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1193 spmc_get_hyp_ctx()->ns_ep_id); 1194 } 1195 } 1196 1197 /* 1198 * Enable an SP to query the ID assigned to the SPMC. 1199 */ 1200 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid, 1201 bool secure_origin, 1202 uint64_t x1, 1203 uint64_t x2, 1204 uint64_t x3, 1205 uint64_t x4, 1206 void *cookie, 1207 void *handle, 1208 uint64_t flags) 1209 { 1210 assert(x1 == 0UL); 1211 assert(x2 == 0UL); 1212 assert(x3 == 0UL); 1213 assert(x4 == 0UL); 1214 assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL); 1215 assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL); 1216 assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL); 1217 1218 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID); 1219 } 1220 1221 static uint64_t ffa_run_handler(uint32_t smc_fid, 1222 bool secure_origin, 1223 uint64_t x1, 1224 uint64_t x2, 1225 uint64_t x3, 1226 uint64_t x4, 1227 void *cookie, 1228 void *handle, 1229 uint64_t flags) 1230 { 1231 struct secure_partition_desc *sp; 1232 uint16_t target_id = FFA_RUN_EP_ID(x1); 1233 uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1); 1234 unsigned int idx; 1235 unsigned int *rt_state; 1236 unsigned int *rt_model; 1237 1238 /* Can only be called from the normal world. */ 1239 if (secure_origin) { 1240 ERROR("FFA_RUN can only be called from NWd.\n"); 1241 return spmc_ffa_error_return(handle, 1242 FFA_ERROR_INVALID_PARAMETER); 1243 } 1244 1245 /* Cannot run a Normal world partition. */ 1246 if (ffa_is_normal_world_id(target_id)) { 1247 ERROR("Cannot run a NWd partition (0x%x).\n", target_id); 1248 return spmc_ffa_error_return(handle, 1249 FFA_ERROR_INVALID_PARAMETER); 1250 } 1251 1252 /* Check that the target SP exists. */ 1253 sp = spmc_get_sp_ctx(target_id); 1254 ERROR("Unknown partition ID (0x%x).\n", target_id); 1255 if (sp == NULL) { 1256 return spmc_ffa_error_return(handle, 1257 FFA_ERROR_INVALID_PARAMETER); 1258 } 1259 1260 idx = get_ec_index(sp); 1261 if (idx != vcpu_id) { 1262 ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id); 1263 return spmc_ffa_error_return(handle, 1264 FFA_ERROR_INVALID_PARAMETER); 1265 } 1266 rt_state = &((sp->ec[idx]).rt_state); 1267 rt_model = &((sp->ec[idx]).rt_model); 1268 if (*rt_state == RT_STATE_RUNNING) { 1269 ERROR("Partition (0x%x) is already running.\n", target_id); 1270 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 1271 } 1272 1273 /* 1274 * Sanity check that if the execution context was not waiting then it 1275 * was either in the direct request or the run partition runtime model. 1276 */ 1277 if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) { 1278 assert(*rt_model == RT_MODEL_RUN || 1279 *rt_model == RT_MODEL_DIR_REQ); 1280 } 1281 1282 /* 1283 * If the context was waiting then update the partition runtime model. 1284 */ 1285 if (*rt_state == RT_STATE_WAITING) { 1286 *rt_model = RT_MODEL_RUN; 1287 } 1288 1289 /* 1290 * Forward the request to the correct SP vCPU after updating 1291 * its state. 1292 */ 1293 *rt_state = RT_STATE_RUNNING; 1294 1295 return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0, 1296 handle, cookie, flags, target_id); 1297 } 1298 1299 static uint64_t rx_release_handler(uint32_t smc_fid, 1300 bool secure_origin, 1301 uint64_t x1, 1302 uint64_t x2, 1303 uint64_t x3, 1304 uint64_t x4, 1305 void *cookie, 1306 void *handle, 1307 uint64_t flags) 1308 { 1309 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1310 1311 spin_lock(&mbox->lock); 1312 1313 if (mbox->state != MAILBOX_STATE_FULL) { 1314 spin_unlock(&mbox->lock); 1315 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1316 } 1317 1318 mbox->state = MAILBOX_STATE_EMPTY; 1319 spin_unlock(&mbox->lock); 1320 1321 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1322 } 1323 1324 /* 1325 * Perform initial validation on the provided secondary entry point. 1326 * For now ensure it does not lie within the BL31 Image or the SP's 1327 * RX/TX buffers as these are mapped within EL3. 1328 * TODO: perform validation for additional invalid memory regions. 1329 */ 1330 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp) 1331 { 1332 struct mailbox *mb; 1333 uintptr_t buffer_size; 1334 uintptr_t sp_rx_buffer; 1335 uintptr_t sp_tx_buffer; 1336 uintptr_t sp_rx_buffer_limit; 1337 uintptr_t sp_tx_buffer_limit; 1338 1339 mb = &sp->mailbox; 1340 buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE); 1341 sp_rx_buffer = (uintptr_t) mb->rx_buffer; 1342 sp_tx_buffer = (uintptr_t) mb->tx_buffer; 1343 sp_rx_buffer_limit = sp_rx_buffer + buffer_size; 1344 sp_tx_buffer_limit = sp_tx_buffer + buffer_size; 1345 1346 /* 1347 * Check if the entry point lies within BL31, or the 1348 * SP's RX or TX buffer. 1349 */ 1350 if ((ep >= BL31_BASE && ep < BL31_LIMIT) || 1351 (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) || 1352 (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) { 1353 return -EINVAL; 1354 } 1355 return 0; 1356 } 1357 1358 /******************************************************************************* 1359 * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to 1360 * register an entry point for initialization during a secondary cold boot. 1361 ******************************************************************************/ 1362 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid, 1363 bool secure_origin, 1364 uint64_t x1, 1365 uint64_t x2, 1366 uint64_t x3, 1367 uint64_t x4, 1368 void *cookie, 1369 void *handle, 1370 uint64_t flags) 1371 { 1372 struct secure_partition_desc *sp; 1373 struct sp_exec_ctx *sp_ctx; 1374 1375 /* This request cannot originate from the Normal world. */ 1376 if (!secure_origin) { 1377 WARN("%s: Can only be called from SWd.\n", __func__); 1378 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1379 } 1380 1381 /* Get the context of the current SP. */ 1382 sp = spmc_get_current_sp_ctx(); 1383 if (sp == NULL) { 1384 WARN("%s: Cannot find SP context.\n", __func__); 1385 return spmc_ffa_error_return(handle, 1386 FFA_ERROR_INVALID_PARAMETER); 1387 } 1388 1389 /* Only an S-EL1 SP should be invoking this ABI. */ 1390 if (sp->runtime_el != S_EL1) { 1391 WARN("%s: Can only be called for a S-EL1 SP.\n", __func__); 1392 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1393 } 1394 1395 /* Ensure the SP is in its initialization state. */ 1396 sp_ctx = spmc_get_sp_ec(sp); 1397 if (sp_ctx->rt_model != RT_MODEL_INIT) { 1398 WARN("%s: Can only be called during SP initialization.\n", 1399 __func__); 1400 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1401 } 1402 1403 /* Perform initial validation of the secondary entry point. */ 1404 if (validate_secondary_ep(x1, sp)) { 1405 WARN("%s: Invalid entry point provided (0x%lx).\n", 1406 __func__, x1); 1407 return spmc_ffa_error_return(handle, 1408 FFA_ERROR_INVALID_PARAMETER); 1409 } 1410 1411 /* 1412 * Update the secondary entrypoint in SP context. 1413 * We don't need a lock here as during partition initialization there 1414 * will only be a single core online. 1415 */ 1416 sp->secondary_ep = x1; 1417 VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep); 1418 1419 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1420 } 1421 1422 /******************************************************************************* 1423 * This function will parse the Secure Partition Manifest. From manifest, it 1424 * will fetch details for preparing Secure partition image context and secure 1425 * partition image boot arguments if any. 1426 ******************************************************************************/ 1427 static int sp_manifest_parse(void *sp_manifest, int offset, 1428 struct secure_partition_desc *sp, 1429 entry_point_info_t *ep_info, 1430 int32_t *boot_info_reg) 1431 { 1432 int32_t ret, node; 1433 uint32_t config_32; 1434 1435 /* 1436 * Look for the mandatory fields that are expected to be present in 1437 * the SP manifests. 1438 */ 1439 node = fdt_path_offset(sp_manifest, "/"); 1440 if (node < 0) { 1441 ERROR("Did not find root node.\n"); 1442 return node; 1443 } 1444 1445 ret = fdt_read_uint32_array(sp_manifest, node, "uuid", 1446 ARRAY_SIZE(sp->uuid), sp->uuid); 1447 if (ret != 0) { 1448 ERROR("Missing Secure Partition UUID.\n"); 1449 return ret; 1450 } 1451 1452 ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32); 1453 if (ret != 0) { 1454 ERROR("Missing SP Exception Level information.\n"); 1455 return ret; 1456 } 1457 1458 sp->runtime_el = config_32; 1459 1460 ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32); 1461 if (ret != 0) { 1462 ERROR("Missing Secure Partition FF-A Version.\n"); 1463 return ret; 1464 } 1465 1466 sp->ffa_version = config_32; 1467 1468 ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32); 1469 if (ret != 0) { 1470 ERROR("Missing Secure Partition Execution State.\n"); 1471 return ret; 1472 } 1473 1474 sp->execution_state = config_32; 1475 1476 ret = fdt_read_uint32(sp_manifest, node, 1477 "messaging-method", &config_32); 1478 if (ret != 0) { 1479 ERROR("Missing Secure Partition messaging method.\n"); 1480 return ret; 1481 } 1482 1483 /* Validate this entry, we currently only support direct messaging. */ 1484 if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV | 1485 FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) { 1486 WARN("Invalid Secure Partition messaging method (0x%x)\n", 1487 config_32); 1488 return -EINVAL; 1489 } 1490 1491 sp->properties = config_32; 1492 1493 ret = fdt_read_uint32(sp_manifest, node, 1494 "execution-ctx-count", &config_32); 1495 1496 if (ret != 0) { 1497 ERROR("Missing SP Execution Context Count.\n"); 1498 return ret; 1499 } 1500 1501 /* 1502 * Ensure this field is set correctly in the manifest however 1503 * since this is currently a hardcoded value for S-EL1 partitions 1504 * we don't need to save it here, just validate. 1505 */ 1506 if (config_32 != PLATFORM_CORE_COUNT) { 1507 ERROR("SP Execution Context Count (%u) must be %u.\n", 1508 config_32, PLATFORM_CORE_COUNT); 1509 return -EINVAL; 1510 } 1511 1512 /* 1513 * Look for the optional fields that are expected to be present in 1514 * an SP manifest. 1515 */ 1516 ret = fdt_read_uint32(sp_manifest, node, "id", &config_32); 1517 if (ret != 0) { 1518 WARN("Missing Secure Partition ID.\n"); 1519 } else { 1520 if (!is_ffa_secure_id_valid(config_32)) { 1521 ERROR("Invalid Secure Partition ID (0x%x).\n", 1522 config_32); 1523 return -EINVAL; 1524 } 1525 sp->sp_id = config_32; 1526 } 1527 1528 ret = fdt_read_uint32(sp_manifest, node, 1529 "power-management-messages", &config_32); 1530 if (ret != 0) { 1531 WARN("Missing Power Management Messages entry.\n"); 1532 } else { 1533 /* 1534 * Ensure only the currently supported power messages have 1535 * been requested. 1536 */ 1537 if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF | 1538 FFA_PM_MSG_SUB_CPU_SUSPEND | 1539 FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) { 1540 ERROR("Requested unsupported PM messages (%x)\n", 1541 config_32); 1542 return -EINVAL; 1543 } 1544 sp->pwr_mgmt_msgs = config_32; 1545 } 1546 1547 ret = fdt_read_uint32(sp_manifest, node, 1548 "gp-register-num", &config_32); 1549 if (ret != 0) { 1550 WARN("Missing boot information register.\n"); 1551 } else { 1552 /* Check if a register number between 0-3 is specified. */ 1553 if (config_32 < 4) { 1554 *boot_info_reg = config_32; 1555 } else { 1556 WARN("Incorrect boot information register (%u).\n", 1557 config_32); 1558 } 1559 } 1560 1561 return 0; 1562 } 1563 1564 /******************************************************************************* 1565 * This function gets the Secure Partition Manifest base and maps the manifest 1566 * region. 1567 * Currently only one Secure Partition manifest is considered which is used to 1568 * prepare the context for the single Secure Partition. 1569 ******************************************************************************/ 1570 static int find_and_prepare_sp_context(void) 1571 { 1572 void *sp_manifest; 1573 uintptr_t manifest_base; 1574 uintptr_t manifest_base_align; 1575 entry_point_info_t *next_image_ep_info; 1576 int32_t ret, boot_info_reg = -1; 1577 struct secure_partition_desc *sp; 1578 1579 next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 1580 if (next_image_ep_info == NULL) { 1581 WARN("No Secure Partition image provided by BL2.\n"); 1582 return -ENOENT; 1583 } 1584 1585 sp_manifest = (void *)next_image_ep_info->args.arg0; 1586 if (sp_manifest == NULL) { 1587 WARN("Secure Partition manifest absent.\n"); 1588 return -ENOENT; 1589 } 1590 1591 manifest_base = (uintptr_t)sp_manifest; 1592 manifest_base_align = page_align(manifest_base, DOWN); 1593 1594 /* 1595 * Map the secure partition manifest region in the EL3 translation 1596 * regime. 1597 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base 1598 * alignment the region of 1 PAGE_SIZE from manifest align base may 1599 * not completely accommodate the secure partition manifest region. 1600 */ 1601 ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align, 1602 manifest_base_align, 1603 PAGE_SIZE * 2, 1604 MT_RO_DATA); 1605 if (ret != 0) { 1606 ERROR("Error while mapping SP manifest (%d).\n", ret); 1607 return ret; 1608 } 1609 1610 ret = fdt_node_offset_by_compatible(sp_manifest, -1, 1611 "arm,ffa-manifest-1.0"); 1612 if (ret < 0) { 1613 ERROR("Error happened in SP manifest reading.\n"); 1614 return -EINVAL; 1615 } 1616 1617 /* 1618 * Store the size of the manifest so that it can be used later to pass 1619 * the manifest as boot information later. 1620 */ 1621 next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest); 1622 INFO("Manifest size = %lu bytes.\n", next_image_ep_info->args.arg1); 1623 1624 /* 1625 * Select an SP descriptor for initialising the partition's execution 1626 * context on the primary CPU. 1627 */ 1628 sp = spmc_get_current_sp_ctx(); 1629 1630 /* Initialize entry point information for the SP */ 1631 SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1, 1632 SECURE | EP_ST_ENABLE); 1633 1634 /* Parse the SP manifest. */ 1635 ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info, 1636 &boot_info_reg); 1637 if (ret != 0) { 1638 ERROR("Error in Secure Partition manifest parsing.\n"); 1639 return ret; 1640 } 1641 1642 /* Check that the runtime EL in the manifest was correct. */ 1643 if (sp->runtime_el != S_EL1) { 1644 ERROR("Unexpected runtime EL: %d\n", sp->runtime_el); 1645 return -EINVAL; 1646 } 1647 1648 /* Perform any common initialisation. */ 1649 spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg); 1650 1651 /* Perform any initialisation specific to S-EL1 SPs. */ 1652 spmc_el1_sp_setup(sp, next_image_ep_info); 1653 1654 /* Initialize the SP context with the required ep info. */ 1655 spmc_sp_common_ep_commit(sp, next_image_ep_info); 1656 1657 return 0; 1658 } 1659 1660 /******************************************************************************* 1661 * This function takes an SP context pointer and performs a synchronous entry 1662 * into it. 1663 ******************************************************************************/ 1664 static int32_t logical_sp_init(void) 1665 { 1666 int32_t rc = 0; 1667 struct el3_lp_desc *el3_lp_descs; 1668 1669 /* Perform initial validation of the Logical Partitions. */ 1670 rc = el3_sp_desc_validate(); 1671 if (rc != 0) { 1672 ERROR("Logical Partition validation failed!\n"); 1673 return rc; 1674 } 1675 1676 el3_lp_descs = get_el3_lp_array(); 1677 1678 INFO("Logical Secure Partition init start.\n"); 1679 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 1680 rc = el3_lp_descs[i].init(); 1681 if (rc != 0) { 1682 ERROR("Logical SP (0x%x) Failed to Initialize\n", 1683 el3_lp_descs[i].sp_id); 1684 return rc; 1685 } 1686 VERBOSE("Logical SP (0x%x) Initialized\n", 1687 el3_lp_descs[i].sp_id); 1688 } 1689 1690 INFO("Logical Secure Partition init completed.\n"); 1691 1692 return rc; 1693 } 1694 1695 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec) 1696 { 1697 uint64_t rc; 1698 1699 assert(ec != NULL); 1700 1701 /* Assign the context of the SP to this CPU */ 1702 cm_set_context(&(ec->cpu_ctx), SECURE); 1703 1704 /* Restore the context assigned above */ 1705 cm_el1_sysregs_context_restore(SECURE); 1706 cm_set_next_eret_context(SECURE); 1707 1708 /* Invalidate TLBs at EL1. */ 1709 tlbivmalle1(); 1710 dsbish(); 1711 1712 /* Enter Secure Partition */ 1713 rc = spm_secure_partition_enter(&ec->c_rt_ctx); 1714 1715 /* Save secure state */ 1716 cm_el1_sysregs_context_save(SECURE); 1717 1718 return rc; 1719 } 1720 1721 /******************************************************************************* 1722 * SPMC Helper Functions. 1723 ******************************************************************************/ 1724 static int32_t sp_init(void) 1725 { 1726 uint64_t rc; 1727 struct secure_partition_desc *sp; 1728 struct sp_exec_ctx *ec; 1729 1730 sp = spmc_get_current_sp_ctx(); 1731 ec = spmc_get_sp_ec(sp); 1732 ec->rt_model = RT_MODEL_INIT; 1733 ec->rt_state = RT_STATE_RUNNING; 1734 1735 INFO("Secure Partition (0x%x) init start.\n", sp->sp_id); 1736 1737 rc = spmc_sp_synchronous_entry(ec); 1738 if (rc != 0) { 1739 /* Indicate SP init was not successful. */ 1740 ERROR("SP (0x%x) failed to initialize (%lu).\n", 1741 sp->sp_id, rc); 1742 return 0; 1743 } 1744 1745 ec->rt_state = RT_STATE_WAITING; 1746 INFO("Secure Partition initialized.\n"); 1747 1748 return 1; 1749 } 1750 1751 static void initalize_sp_descs(void) 1752 { 1753 struct secure_partition_desc *sp; 1754 1755 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 1756 sp = &sp_desc[i]; 1757 sp->sp_id = INV_SP_ID; 1758 sp->mailbox.rx_buffer = NULL; 1759 sp->mailbox.tx_buffer = NULL; 1760 sp->mailbox.state = MAILBOX_STATE_EMPTY; 1761 sp->secondary_ep = 0; 1762 } 1763 } 1764 1765 static void initalize_ns_ep_descs(void) 1766 { 1767 struct ns_endpoint_desc *ns_ep; 1768 1769 for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) { 1770 ns_ep = &ns_ep_desc[i]; 1771 /* 1772 * Clashes with the Hypervisor ID but will not be a 1773 * problem in practice. 1774 */ 1775 ns_ep->ns_ep_id = 0; 1776 ns_ep->ffa_version = 0; 1777 ns_ep->mailbox.rx_buffer = NULL; 1778 ns_ep->mailbox.tx_buffer = NULL; 1779 ns_ep->mailbox.state = MAILBOX_STATE_EMPTY; 1780 } 1781 } 1782 1783 /******************************************************************************* 1784 * Initialize SPMC attributes for the SPMD. 1785 ******************************************************************************/ 1786 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs) 1787 { 1788 spmc_attrs->major_version = FFA_VERSION_MAJOR; 1789 spmc_attrs->minor_version = FFA_VERSION_MINOR; 1790 spmc_attrs->exec_state = MODE_RW_64; 1791 spmc_attrs->spmc_id = FFA_SPMC_ID; 1792 } 1793 1794 /******************************************************************************* 1795 * Initialize contexts of all Secure Partitions. 1796 ******************************************************************************/ 1797 int32_t spmc_setup(void) 1798 { 1799 int32_t ret; 1800 uint32_t flags; 1801 1802 /* Initialize endpoint descriptors */ 1803 initalize_sp_descs(); 1804 initalize_ns_ep_descs(); 1805 1806 /* 1807 * Retrieve the information of the datastore for tracking shared memory 1808 * requests allocated by platform code and zero the region if available. 1809 */ 1810 ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data, 1811 &spmc_shmem_obj_state.data_size); 1812 if (ret != 0) { 1813 ERROR("Failed to obtain memory descriptor backing store!\n"); 1814 return ret; 1815 } 1816 memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size); 1817 1818 /* Setup logical SPs. */ 1819 ret = logical_sp_init(); 1820 if (ret != 0) { 1821 ERROR("Failed to initialize Logical Partitions.\n"); 1822 return ret; 1823 } 1824 1825 /* Perform physical SP setup. */ 1826 1827 /* Disable MMU at EL1 (initialized by BL2) */ 1828 disable_mmu_icache_el1(); 1829 1830 /* Initialize context of the SP */ 1831 INFO("Secure Partition context setup start.\n"); 1832 1833 ret = find_and_prepare_sp_context(); 1834 if (ret != 0) { 1835 ERROR("Error in SP finding and context preparation.\n"); 1836 return ret; 1837 } 1838 1839 /* Register power management hooks with PSCI */ 1840 psci_register_spd_pm_hook(&spmc_pm); 1841 1842 /* 1843 * Register an interrupt handler for S-EL1 interrupts 1844 * when generated during code executing in the 1845 * non-secure state. 1846 */ 1847 flags = 0; 1848 set_interrupt_rm_flag(flags, NON_SECURE); 1849 ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, 1850 spmc_sp_interrupt_handler, 1851 flags); 1852 if (ret != 0) { 1853 ERROR("Failed to register interrupt handler! (%d)\n", ret); 1854 panic(); 1855 } 1856 1857 /* Register init function for deferred init. */ 1858 bl31_register_bl32_init(&sp_init); 1859 1860 INFO("Secure Partition setup done.\n"); 1861 1862 return 0; 1863 } 1864 1865 /******************************************************************************* 1866 * Secure Partition Manager SMC handler. 1867 ******************************************************************************/ 1868 uint64_t spmc_smc_handler(uint32_t smc_fid, 1869 bool secure_origin, 1870 uint64_t x1, 1871 uint64_t x2, 1872 uint64_t x3, 1873 uint64_t x4, 1874 void *cookie, 1875 void *handle, 1876 uint64_t flags) 1877 { 1878 switch (smc_fid) { 1879 1880 case FFA_VERSION: 1881 return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3, 1882 x4, cookie, handle, flags); 1883 1884 case FFA_SPM_ID_GET: 1885 return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2, 1886 x3, x4, cookie, handle, flags); 1887 1888 case FFA_ID_GET: 1889 return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3, 1890 x4, cookie, handle, flags); 1891 1892 case FFA_FEATURES: 1893 return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3, 1894 x4, cookie, handle, flags); 1895 1896 case FFA_SECONDARY_EP_REGISTER_SMC64: 1897 return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1, 1898 x2, x3, x4, cookie, handle, 1899 flags); 1900 1901 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1902 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1903 return direct_req_smc_handler(smc_fid, secure_origin, x1, x2, 1904 x3, x4, cookie, handle, flags); 1905 1906 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1907 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1908 return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2, 1909 x3, x4, cookie, handle, flags); 1910 1911 case FFA_RXTX_MAP_SMC32: 1912 case FFA_RXTX_MAP_SMC64: 1913 return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4, 1914 cookie, handle, flags); 1915 1916 case FFA_RXTX_UNMAP: 1917 return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3, 1918 x4, cookie, handle, flags); 1919 1920 case FFA_PARTITION_INFO_GET: 1921 return partition_info_get_handler(smc_fid, secure_origin, x1, 1922 x2, x3, x4, cookie, handle, 1923 flags); 1924 1925 case FFA_RX_RELEASE: 1926 return rx_release_handler(smc_fid, secure_origin, x1, x2, x3, 1927 x4, cookie, handle, flags); 1928 1929 case FFA_MSG_WAIT: 1930 return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4, 1931 cookie, handle, flags); 1932 1933 case FFA_ERROR: 1934 return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4, 1935 cookie, handle, flags); 1936 1937 case FFA_MSG_RUN: 1938 return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4, 1939 cookie, handle, flags); 1940 1941 case FFA_MEM_SHARE_SMC32: 1942 case FFA_MEM_SHARE_SMC64: 1943 case FFA_MEM_LEND_SMC32: 1944 case FFA_MEM_LEND_SMC64: 1945 return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4, 1946 cookie, handle, flags); 1947 1948 case FFA_MEM_FRAG_TX: 1949 return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3, 1950 x4, cookie, handle, flags); 1951 1952 case FFA_MEM_FRAG_RX: 1953 return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3, 1954 x4, cookie, handle, flags); 1955 1956 case FFA_MEM_RETRIEVE_REQ_SMC32: 1957 case FFA_MEM_RETRIEVE_REQ_SMC64: 1958 return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2, 1959 x3, x4, cookie, handle, flags); 1960 1961 case FFA_MEM_RELINQUISH: 1962 return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2, 1963 x3, x4, cookie, handle, flags); 1964 1965 case FFA_MEM_RECLAIM: 1966 return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3, 1967 x4, cookie, handle, flags); 1968 1969 default: 1970 WARN("Unsupported FF-A call 0x%08x.\n", smc_fid); 1971 break; 1972 } 1973 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1974 } 1975 1976 /******************************************************************************* 1977 * This function is the handler registered for S-EL1 interrupts by the SPMC. It 1978 * validates the interrupt and upon success arranges entry into the SP for 1979 * handling the interrupt. 1980 ******************************************************************************/ 1981 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 1982 uint32_t flags, 1983 void *handle, 1984 void *cookie) 1985 { 1986 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1987 struct sp_exec_ctx *ec; 1988 uint32_t linear_id = plat_my_core_pos(); 1989 1990 /* Sanity check for a NULL pointer dereference. */ 1991 assert(sp != NULL); 1992 1993 /* Check the security state when the exception was generated. */ 1994 assert(get_interrupt_src_ss(flags) == NON_SECURE); 1995 1996 /* Panic if not an S-EL1 Partition. */ 1997 if (sp->runtime_el != S_EL1) { 1998 ERROR("Interrupt received for a non S-EL1 SP on core%u.\n", 1999 linear_id); 2000 panic(); 2001 } 2002 2003 /* Obtain a reference to the SP execution context. */ 2004 ec = spmc_get_sp_ec(sp); 2005 2006 /* Ensure that the execution context is in waiting state else panic. */ 2007 if (ec->rt_state != RT_STATE_WAITING) { 2008 ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n", 2009 linear_id, RT_STATE_WAITING, ec->rt_state); 2010 panic(); 2011 } 2012 2013 /* Update the runtime model and state of the partition. */ 2014 ec->rt_model = RT_MODEL_INTR; 2015 ec->rt_state = RT_STATE_RUNNING; 2016 2017 VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id); 2018 2019 /* 2020 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not 2021 * populated as the SP can determine this by itself. 2022 */ 2023 return spmd_smc_switch_state(FFA_INTERRUPT, false, 2024 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2025 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2026 handle); 2027 } 2028