xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_main.c (revision 729d7793f830781ff8ed44d144c3346c6e4251a3)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include <arch_helpers.h>
11 #include <bl31/bl31.h>
12 #include <bl31/ehf.h>
13 #include <bl31/interrupt_mgmt.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <common/runtime_svc.h>
17 #include <common/uuid.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/smccc.h>
20 #include <lib/utils.h>
21 #include <lib/xlat_tables/xlat_tables_v2.h>
22 #include <libfdt.h>
23 #include <plat/common/platform.h>
24 #include <services/el3_spmc_logical_sp.h>
25 #include <services/ffa_svc.h>
26 #include <services/spmc_svc.h>
27 #include <services/spmd_svc.h>
28 #include "spmc.h"
29 
30 #include <platform_def.h>
31 
32 /* Declare the maximum number of SPs and El3 LPs. */
33 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT
34 
35 /*
36  * Allocate a secure partition descriptor to describe each SP in the system that
37  * does not reside at EL3.
38  */
39 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
40 
41 /*
42  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
43  * the system that interacts with a SP. It is used to track the Hypervisor
44  * buffer pair, version and ID for now. It could be extended to track VM
45  * properties when the SPMC supports indirect messaging.
46  */
47 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
48 
49 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
50 					  uint32_t flags,
51 					  void *handle,
52 					  void *cookie);
53 
54 /*
55  * Helper function to obtain the array storing the EL3
56  * Logical Partition descriptors.
57  */
58 struct el3_lp_desc *get_el3_lp_array(void)
59 {
60 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
61 }
62 
63 /*
64  * Helper function to obtain the descriptor of the last SP to whom control was
65  * handed to on this physical cpu. Currently, we assume there is only one SP.
66  * TODO: Expand to track multiple partitions when required.
67  */
68 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
69 {
70 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
71 }
72 
73 /*
74  * Helper function to obtain the execution context of an SP on the
75  * current physical cpu.
76  */
77 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
78 {
79 	return &(sp->ec[get_ec_index(sp)]);
80 }
81 
82 /* Helper function to get pointer to SP context from its ID. */
83 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
84 {
85 	/* Check for Secure World Partitions. */
86 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
87 		if (sp_desc[i].sp_id == id) {
88 			return &(sp_desc[i]);
89 		}
90 	}
91 	return NULL;
92 }
93 
94 /*
95  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
96  * We assume that the first descriptor is reserved for this entity.
97  */
98 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
99 {
100 	return &(ns_ep_desc[0]);
101 }
102 
103 /*
104  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
105  * or OS kernel in the normal world or the last SP that was run.
106  */
107 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
108 {
109 	/* Obtain the RX/TX buffer pair descriptor. */
110 	if (secure_origin) {
111 		return &(spmc_get_current_sp_ctx()->mailbox);
112 	} else {
113 		return &(spmc_get_hyp_ctx()->mailbox);
114 	}
115 }
116 
117 /******************************************************************************
118  * This function returns to the place where spmc_sp_synchronous_entry() was
119  * called originally.
120  ******************************************************************************/
121 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
122 {
123 	/*
124 	 * The SPM must have initiated the original request through a
125 	 * synchronous entry into the secure partition. Jump back to the
126 	 * original C runtime context with the value of rc in x0;
127 	 */
128 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
129 
130 	panic();
131 }
132 
133 /*******************************************************************************
134  * Return FFA_ERROR with specified error code.
135  ******************************************************************************/
136 uint64_t spmc_ffa_error_return(void *handle, int error_code)
137 {
138 	SMC_RET8(handle, FFA_ERROR,
139 		 FFA_TARGET_INFO_MBZ, error_code,
140 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
141 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
142 }
143 
144 /******************************************************************************
145  * Helper function to validate a secure partition ID to ensure it does not
146  * conflict with any other FF-A component and follows the convention to
147  * indicate it resides within the secure world.
148  ******************************************************************************/
149 bool is_ffa_secure_id_valid(uint16_t partition_id)
150 {
151 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
152 
153 	/* Ensure the ID is not the invalid partition ID. */
154 	if (partition_id == INV_SP_ID) {
155 		return false;
156 	}
157 
158 	/* Ensure the ID is not the SPMD ID. */
159 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
160 		return false;
161 	}
162 
163 	/*
164 	 * Ensure the ID follows the convention to indicate it resides
165 	 * in the secure world.
166 	 */
167 	if (!ffa_is_secure_world_id(partition_id)) {
168 		return false;
169 	}
170 
171 	/* Ensure we don't conflict with the SPMC partition ID. */
172 	if (partition_id == FFA_SPMC_ID) {
173 		return false;
174 	}
175 
176 	/* Ensure we do not already have an SP context with this ID. */
177 	if (spmc_get_sp_ctx(partition_id)) {
178 		return false;
179 	}
180 
181 	/* Ensure we don't clash with any Logical SP's. */
182 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
183 		if (el3_lp_descs[i].sp_id == partition_id) {
184 			return false;
185 		}
186 	}
187 
188 	return true;
189 }
190 
191 /*******************************************************************************
192  * This function either forwards the request to the other world or returns
193  * with an ERET depending on the source of the call.
194  * We can assume that the destination is for an entity at a lower exception
195  * level as any messages destined for a logical SP resident in EL3 will have
196  * already been taken care of by the SPMC before entering this function.
197  ******************************************************************************/
198 static uint64_t spmc_smc_return(uint32_t smc_fid,
199 				bool secure_origin,
200 				uint64_t x1,
201 				uint64_t x2,
202 				uint64_t x3,
203 				uint64_t x4,
204 				void *handle,
205 				void *cookie,
206 				uint64_t flags,
207 				uint16_t dst_id)
208 {
209 	/* If the destination is in the normal world always go via the SPMD. */
210 	if (ffa_is_normal_world_id(dst_id)) {
211 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
212 					cookie, handle, flags);
213 	}
214 	/*
215 	 * If the caller is secure and we want to return to the secure world,
216 	 * ERET directly.
217 	 */
218 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
219 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
220 	}
221 	/* If we originated in the normal world then switch contexts. */
222 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
223 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
224 					     x3, x4, handle);
225 	} else {
226 		/* Unknown State. */
227 		panic();
228 	}
229 
230 	/* Shouldn't be Reached. */
231 	return 0;
232 }
233 
234 /*******************************************************************************
235  * FF-A ABI Handlers.
236  ******************************************************************************/
237 
238 /*******************************************************************************
239  * Helper function to validate arg2 as part of a direct message.
240  ******************************************************************************/
241 static inline bool direct_msg_validate_arg2(uint64_t x2)
242 {
243 	/* Check message type. */
244 	if (x2 & FFA_FWK_MSG_BIT) {
245 		/* We have a framework message, ensure it is a known message. */
246 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
247 			VERBOSE("Invalid message format 0x%lx.\n", x2);
248 			return false;
249 		}
250 	} else {
251 		/* We have a partition messages, ensure x2 is not set. */
252 		if (x2 != (uint64_t) 0) {
253 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
254 				x2);
255 			return false;
256 		}
257 	}
258 	return true;
259 }
260 
261 /*******************************************************************************
262  * Handle direct request messages and route to the appropriate destination.
263  ******************************************************************************/
264 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
265 				       bool secure_origin,
266 				       uint64_t x1,
267 				       uint64_t x2,
268 				       uint64_t x3,
269 				       uint64_t x4,
270 				       void *cookie,
271 				       void *handle,
272 				       uint64_t flags)
273 {
274 	uint16_t dst_id = ffa_endpoint_destination(x1);
275 	struct el3_lp_desc *el3_lp_descs;
276 	struct secure_partition_desc *sp;
277 	unsigned int idx;
278 
279 	/* Check if arg2 has been populated correctly based on message type. */
280 	if (!direct_msg_validate_arg2(x2)) {
281 		return spmc_ffa_error_return(handle,
282 					     FFA_ERROR_INVALID_PARAMETER);
283 	}
284 
285 	el3_lp_descs = get_el3_lp_array();
286 
287 	/* Check if the request is destined for a Logical Partition. */
288 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
289 		if (el3_lp_descs[i].sp_id == dst_id) {
290 			return el3_lp_descs[i].direct_req(
291 					smc_fid, secure_origin, x1, x2, x3, x4,
292 					cookie, handle, flags);
293 		}
294 	}
295 
296 	/*
297 	 * If the request was not targeted to a LSP and from the secure world
298 	 * then it is invalid since a SP cannot call into the Normal world and
299 	 * there is no other SP to call into. If there are other SPs in future
300 	 * then the partition runtime model would need to be validated as well.
301 	 */
302 	if (secure_origin) {
303 		VERBOSE("Direct request not supported to the Normal World.\n");
304 		return spmc_ffa_error_return(handle,
305 					     FFA_ERROR_INVALID_PARAMETER);
306 	}
307 
308 	/* Check if the SP ID is valid. */
309 	sp = spmc_get_sp_ctx(dst_id);
310 	if (sp == NULL) {
311 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
312 			dst_id);
313 		return spmc_ffa_error_return(handle,
314 					     FFA_ERROR_INVALID_PARAMETER);
315 	}
316 
317 	/*
318 	 * Check that the target execution context is in a waiting state before
319 	 * forwarding the direct request to it.
320 	 */
321 	idx = get_ec_index(sp);
322 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
323 		VERBOSE("SP context on core%u is not waiting (%u).\n",
324 			idx, sp->ec[idx].rt_model);
325 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
326 	}
327 
328 	/*
329 	 * Everything checks out so forward the request to the SP after updating
330 	 * its state and runtime model.
331 	 */
332 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
333 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
334 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
335 			       handle, cookie, flags, dst_id);
336 }
337 
338 /*******************************************************************************
339  * Handle direct response messages and route to the appropriate destination.
340  ******************************************************************************/
341 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
342 					bool secure_origin,
343 					uint64_t x1,
344 					uint64_t x2,
345 					uint64_t x3,
346 					uint64_t x4,
347 					void *cookie,
348 					void *handle,
349 					uint64_t flags)
350 {
351 	uint16_t dst_id = ffa_endpoint_destination(x1);
352 	struct secure_partition_desc *sp;
353 	unsigned int idx;
354 
355 	/* Check if arg2 has been populated correctly based on message type. */
356 	if (!direct_msg_validate_arg2(x2)) {
357 		return spmc_ffa_error_return(handle,
358 					     FFA_ERROR_INVALID_PARAMETER);
359 	}
360 
361 	/* Check that the response did not originate from the Normal world. */
362 	if (!secure_origin) {
363 		VERBOSE("Direct Response not supported from Normal World.\n");
364 		return spmc_ffa_error_return(handle,
365 					     FFA_ERROR_INVALID_PARAMETER);
366 	}
367 
368 	/*
369 	 * Check that the response is either targeted to the Normal world or the
370 	 * SPMC e.g. a PM response.
371 	 */
372 	if ((dst_id != FFA_SPMC_ID) && ffa_is_secure_world_id(dst_id)) {
373 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
374 			dst_id);
375 		return spmc_ffa_error_return(handle,
376 					     FFA_ERROR_INVALID_PARAMETER);
377 	}
378 
379 	/* Obtain the SP descriptor and update its runtime state. */
380 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
381 	if (sp == NULL) {
382 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
383 			dst_id);
384 		return spmc_ffa_error_return(handle,
385 					     FFA_ERROR_INVALID_PARAMETER);
386 	}
387 
388 	/* Sanity check state is being tracked correctly in the SPMC. */
389 	idx = get_ec_index(sp);
390 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
391 
392 	/* Ensure SP execution context was in the right runtime model. */
393 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
394 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
395 			idx, sp->ec[idx].rt_model);
396 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
397 	}
398 
399 	/* Update the state of the SP execution context. */
400 	sp->ec[idx].rt_state = RT_STATE_WAITING;
401 
402 	/*
403 	 * If the receiver is not the SPMC then forward the response to the
404 	 * Normal world.
405 	 */
406 	if (dst_id == FFA_SPMC_ID) {
407 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
408 		/* Should not get here. */
409 		panic();
410 	}
411 
412 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
413 			       handle, cookie, flags, dst_id);
414 }
415 
416 /*******************************************************************************
417  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
418  * cycles.
419  ******************************************************************************/
420 static uint64_t msg_wait_handler(uint32_t smc_fid,
421 				 bool secure_origin,
422 				 uint64_t x1,
423 				 uint64_t x2,
424 				 uint64_t x3,
425 				 uint64_t x4,
426 				 void *cookie,
427 				 void *handle,
428 				 uint64_t flags)
429 {
430 	struct secure_partition_desc *sp;
431 	unsigned int idx;
432 
433 	/*
434 	 * Check that the response did not originate from the Normal world as
435 	 * only the secure world can call this ABI.
436 	 */
437 	if (!secure_origin) {
438 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
439 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
440 	}
441 
442 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
443 	sp = spmc_get_current_sp_ctx();
444 	if (sp == NULL) {
445 		return spmc_ffa_error_return(handle,
446 					     FFA_ERROR_INVALID_PARAMETER);
447 	}
448 
449 	/*
450 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
451 	 */
452 	idx = get_ec_index(sp);
453 
454 	/* Ensure SP execution context was in the right runtime model. */
455 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
456 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
457 	}
458 
459 	/* Sanity check the state is being tracked correctly in the SPMC. */
460 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
461 
462 	/*
463 	 * Perform a synchronous exit if the partition was initialising. The
464 	 * state is updated after the exit.
465 	 */
466 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
467 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
468 		/* Should not get here */
469 		panic();
470 	}
471 
472 	/* Update the state of the SP execution context. */
473 	sp->ec[idx].rt_state = RT_STATE_WAITING;
474 
475 	/* Resume normal world if a secure interrupt was handled. */
476 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
477 		/* FFA_MSG_WAIT can only be called from the secure world. */
478 		unsigned int secure_state_in = SECURE;
479 		unsigned int secure_state_out = NON_SECURE;
480 
481 		cm_el1_sysregs_context_save(secure_state_in);
482 		cm_el1_sysregs_context_restore(secure_state_out);
483 		cm_set_next_eret_context(secure_state_out);
484 		SMC_RET0(cm_get_context(secure_state_out));
485 	}
486 
487 	/* Forward the response to the Normal world. */
488 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
489 			       handle, cookie, flags, FFA_NWD_ID);
490 }
491 
492 static uint64_t ffa_error_handler(uint32_t smc_fid,
493 				 bool secure_origin,
494 				 uint64_t x1,
495 				 uint64_t x2,
496 				 uint64_t x3,
497 				 uint64_t x4,
498 				 void *cookie,
499 				 void *handle,
500 				 uint64_t flags)
501 {
502 	struct secure_partition_desc *sp;
503 	unsigned int idx;
504 
505 	/* Check that the response did not originate from the Normal world. */
506 	if (!secure_origin) {
507 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
508 	}
509 
510 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
511 	sp = spmc_get_current_sp_ctx();
512 	if (sp == NULL) {
513 		return spmc_ffa_error_return(handle,
514 					     FFA_ERROR_INVALID_PARAMETER);
515 	}
516 
517 	/* Get the execution context of the SP that invoked FFA_ERROR. */
518 	idx = get_ec_index(sp);
519 
520 	/*
521 	 * We only expect FFA_ERROR to be received during SP initialisation
522 	 * otherwise this is an invalid call.
523 	 */
524 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
525 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
526 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
527 		/* Should not get here. */
528 		panic();
529 	}
530 
531 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
532 }
533 
534 static uint64_t ffa_version_handler(uint32_t smc_fid,
535 				    bool secure_origin,
536 				    uint64_t x1,
537 				    uint64_t x2,
538 				    uint64_t x3,
539 				    uint64_t x4,
540 				    void *cookie,
541 				    void *handle,
542 				    uint64_t flags)
543 {
544 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
545 
546 	if (requested_version & FFA_VERSION_BIT31_MASK) {
547 		/* Invalid encoding, return an error. */
548 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
549 		/* Execution stops here. */
550 	}
551 
552 	/* Determine the caller to store the requested version. */
553 	if (secure_origin) {
554 		/*
555 		 * Ensure that the SP is reporting the same version as
556 		 * specified in its manifest. If these do not match there is
557 		 * something wrong with the SP.
558 		 * TODO: Should we abort the SP? For now assert this is not
559 		 *       case.
560 		 */
561 		assert(requested_version ==
562 		       spmc_get_current_sp_ctx()->ffa_version);
563 	} else {
564 		/*
565 		 * If this is called by the normal world, record this
566 		 * information in its descriptor.
567 		 */
568 		spmc_get_hyp_ctx()->ffa_version = requested_version;
569 	}
570 
571 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
572 					  FFA_VERSION_MINOR));
573 }
574 
575 /*******************************************************************************
576  * Helper function to obtain the FF-A version of the calling partition.
577  ******************************************************************************/
578 uint32_t get_partition_ffa_version(bool secure_origin)
579 {
580 	if (secure_origin) {
581 		return spmc_get_current_sp_ctx()->ffa_version;
582 	} else {
583 		return spmc_get_hyp_ctx()->ffa_version;
584 	}
585 }
586 
587 static uint64_t rxtx_map_handler(uint32_t smc_fid,
588 				 bool secure_origin,
589 				 uint64_t x1,
590 				 uint64_t x2,
591 				 uint64_t x3,
592 				 uint64_t x4,
593 				 void *cookie,
594 				 void *handle,
595 				 uint64_t flags)
596 {
597 	int ret;
598 	uint32_t error_code;
599 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
600 	struct mailbox *mbox;
601 	uintptr_t tx_address = x1;
602 	uintptr_t rx_address = x2;
603 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
604 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
605 
606 	/*
607 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
608 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
609 	 * ABI on behalf of a VM and reject it if this is the case.
610 	 */
611 	if (tx_address == 0 || rx_address == 0) {
612 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
613 		return spmc_ffa_error_return(handle,
614 					     FFA_ERROR_INVALID_PARAMETER);
615 	}
616 
617 	/* Ensure the specified buffers are not the same. */
618 	if (tx_address == rx_address) {
619 		WARN("TX Buffer must not be the same as RX Buffer.\n");
620 		return spmc_ffa_error_return(handle,
621 					     FFA_ERROR_INVALID_PARAMETER);
622 	}
623 
624 	/* Ensure the buffer size is not 0. */
625 	if (buf_size == 0U) {
626 		WARN("Buffer size must not be 0\n");
627 		return spmc_ffa_error_return(handle,
628 					     FFA_ERROR_INVALID_PARAMETER);
629 	}
630 
631 	/*
632 	 * Ensure the buffer size is a multiple of the translation granule size
633 	 * in TF-A.
634 	 */
635 	if (buf_size % PAGE_SIZE != 0U) {
636 		WARN("Buffer size must be aligned to translation granule.\n");
637 		return spmc_ffa_error_return(handle,
638 					     FFA_ERROR_INVALID_PARAMETER);
639 	}
640 
641 	/* Obtain the RX/TX buffer pair descriptor. */
642 	mbox = spmc_get_mbox_desc(secure_origin);
643 
644 	spin_lock(&mbox->lock);
645 
646 	/* Check if buffers have already been mapped. */
647 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
648 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
649 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
650 		error_code = FFA_ERROR_DENIED;
651 		goto err;
652 	}
653 
654 	/* memmap the TX buffer as read only. */
655 	ret = mmap_add_dynamic_region(tx_address, /* PA */
656 			tx_address, /* VA */
657 			buf_size, /* size */
658 			mem_atts | MT_RO_DATA); /* attrs */
659 	if (ret != 0) {
660 		/* Return the correct error code. */
661 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
662 						FFA_ERROR_INVALID_PARAMETER;
663 		WARN("Unable to map TX buffer: %d\n", error_code);
664 		goto err;
665 	}
666 
667 	/* memmap the RX buffer as read write. */
668 	ret = mmap_add_dynamic_region(rx_address, /* PA */
669 			rx_address, /* VA */
670 			buf_size, /* size */
671 			mem_atts | MT_RW_DATA); /* attrs */
672 
673 	if (ret != 0) {
674 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
675 						FFA_ERROR_INVALID_PARAMETER;
676 		WARN("Unable to map RX buffer: %d\n", error_code);
677 		/* Unmap the TX buffer again. */
678 		mmap_remove_dynamic_region(tx_address, buf_size);
679 		goto err;
680 	}
681 
682 	mbox->tx_buffer = (void *) tx_address;
683 	mbox->rx_buffer = (void *) rx_address;
684 	mbox->rxtx_page_count = page_count;
685 	spin_unlock(&mbox->lock);
686 
687 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
688 	/* Execution stops here. */
689 err:
690 	spin_unlock(&mbox->lock);
691 	return spmc_ffa_error_return(handle, error_code);
692 }
693 
694 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
695 				   bool secure_origin,
696 				   uint64_t x1,
697 				   uint64_t x2,
698 				   uint64_t x3,
699 				   uint64_t x4,
700 				   void *cookie,
701 				   void *handle,
702 				   uint64_t flags)
703 {
704 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
705 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
706 
707 	/*
708 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
709 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
710 	 * ABI on behalf of a VM and reject it if this is the case.
711 	 */
712 	if (x1 != 0UL) {
713 		return spmc_ffa_error_return(handle,
714 					     FFA_ERROR_INVALID_PARAMETER);
715 	}
716 
717 	spin_lock(&mbox->lock);
718 
719 	/* Check if buffers are currently mapped. */
720 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
721 		spin_unlock(&mbox->lock);
722 		return spmc_ffa_error_return(handle,
723 					     FFA_ERROR_INVALID_PARAMETER);
724 	}
725 
726 	/* Unmap RX Buffer */
727 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
728 				       buf_size) != 0) {
729 		WARN("Unable to unmap RX buffer!\n");
730 	}
731 
732 	mbox->rx_buffer = 0;
733 
734 	/* Unmap TX Buffer */
735 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
736 				       buf_size) != 0) {
737 		WARN("Unable to unmap TX buffer!\n");
738 	}
739 
740 	mbox->tx_buffer = 0;
741 	mbox->rxtx_page_count = 0;
742 
743 	spin_unlock(&mbox->lock);
744 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
745 }
746 
747 /*
748  * Collate the partition information in a v1.1 partition information
749  * descriptor format, this will be converter later if required.
750  */
751 static int partition_info_get_handler_v1_1(uint32_t *uuid,
752 					   struct ffa_partition_info_v1_1
753 						  *partitions,
754 					   uint32_t max_partitions,
755 					   uint32_t *partition_count)
756 {
757 	uint32_t index;
758 	struct ffa_partition_info_v1_1 *desc;
759 	bool null_uuid = is_null_uuid(uuid);
760 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
761 
762 	/* Deal with Logical Partitions. */
763 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
764 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
765 			/* Found a matching UUID, populate appropriately. */
766 			if (*partition_count >= max_partitions) {
767 				return FFA_ERROR_NO_MEMORY;
768 			}
769 
770 			desc = &partitions[*partition_count];
771 			desc->ep_id = el3_lp_descs[index].sp_id;
772 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
773 			desc->properties = el3_lp_descs[index].properties;
774 			if (null_uuid) {
775 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
776 			}
777 			(*partition_count)++;
778 		}
779 	}
780 
781 	/* Deal with physical SP's. */
782 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
783 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
784 			/* Found a matching UUID, populate appropriately. */
785 			if (*partition_count >= max_partitions) {
786 				return FFA_ERROR_NO_MEMORY;
787 			}
788 
789 			desc = &partitions[*partition_count];
790 			desc->ep_id = sp_desc[index].sp_id;
791 			/*
792 			 * Execution context count must match No. cores for
793 			 * S-EL1 SPs.
794 			 */
795 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
796 			desc->properties = sp_desc[index].properties;
797 			if (null_uuid) {
798 				copy_uuid(desc->uuid, sp_desc[index].uuid);
799 			}
800 			(*partition_count)++;
801 		}
802 	}
803 	return 0;
804 }
805 
806 /*
807  * Handle the case where that caller only wants the count of partitions
808  * matching a given UUID and does not want the corresponding descriptors
809  * populated.
810  */
811 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
812 {
813 	uint32_t index = 0;
814 	uint32_t partition_count = 0;
815 	bool null_uuid = is_null_uuid(uuid);
816 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
817 
818 	/* Deal with Logical Partitions. */
819 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
820 		if (null_uuid ||
821 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
822 			(partition_count)++;
823 		}
824 	}
825 
826 	/* Deal with physical SP's. */
827 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
828 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
829 			(partition_count)++;
830 		}
831 	}
832 	return partition_count;
833 }
834 
835 /*
836  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
837  * the coresponding descriptor format from the v1.1 descriptor array.
838  */
839 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
840 					     *partitions,
841 					     struct mailbox *mbox,
842 					     int partition_count)
843 {
844 	uint32_t index;
845 	uint32_t buf_size;
846 	uint32_t descriptor_size;
847 	struct ffa_partition_info_v1_0 *v1_0_partitions =
848 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
849 
850 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
851 	descriptor_size = partition_count *
852 			  sizeof(struct ffa_partition_info_v1_0);
853 
854 	if (descriptor_size > buf_size) {
855 		return FFA_ERROR_NO_MEMORY;
856 	}
857 
858 	for (index = 0U; index < partition_count; index++) {
859 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
860 		v1_0_partitions[index].execution_ctx_count =
861 			partitions[index].execution_ctx_count;
862 		v1_0_partitions[index].properties =
863 			partitions[index].properties;
864 	}
865 	return 0;
866 }
867 
868 /*
869  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
870  * v1.0 implementations.
871  */
872 static uint64_t partition_info_get_handler(uint32_t smc_fid,
873 					   bool secure_origin,
874 					   uint64_t x1,
875 					   uint64_t x2,
876 					   uint64_t x3,
877 					   uint64_t x4,
878 					   void *cookie,
879 					   void *handle,
880 					   uint64_t flags)
881 {
882 	int ret;
883 	uint32_t partition_count = 0;
884 	uint32_t size = 0;
885 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
886 	struct mailbox *mbox;
887 	uint64_t info_get_flags;
888 	bool count_only;
889 	uint32_t uuid[4];
890 
891 	uuid[0] = x1;
892 	uuid[1] = x2;
893 	uuid[2] = x3;
894 	uuid[3] = x4;
895 
896 	/* Determine if the Partition descriptors should be populated. */
897 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
898 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
899 
900 	/* Handle the case where we don't need to populate the descriptors. */
901 	if (count_only) {
902 		partition_count = partition_info_get_handler_count_only(uuid);
903 		if (partition_count == 0) {
904 			return spmc_ffa_error_return(handle,
905 						FFA_ERROR_INVALID_PARAMETER);
906 		}
907 	} else {
908 		struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS];
909 
910 		/*
911 		 * Handle the case where the partition descriptors are required,
912 		 * check we have the buffers available and populate the
913 		 * appropriate structure version.
914 		 */
915 
916 		/* Obtain the v1.1 format of the descriptors. */
917 		ret = partition_info_get_handler_v1_1(uuid, partitions,
918 						      MAX_SP_LP_PARTITIONS,
919 						      &partition_count);
920 
921 		/* Check if an error occurred during discovery. */
922 		if (ret != 0) {
923 			goto err;
924 		}
925 
926 		/* If we didn't find any matches the UUID is unknown. */
927 		if (partition_count == 0) {
928 			ret = FFA_ERROR_INVALID_PARAMETER;
929 			goto err;
930 		}
931 
932 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
933 		mbox = spmc_get_mbox_desc(secure_origin);
934 
935 		/*
936 		 * If the caller has not bothered registering its RX/TX pair
937 		 * then return an error code.
938 		 */
939 		spin_lock(&mbox->lock);
940 		if (mbox->rx_buffer == NULL) {
941 			ret = FFA_ERROR_BUSY;
942 			goto err_unlock;
943 		}
944 
945 		/* Ensure the RX buffer is currently free. */
946 		if (mbox->state != MAILBOX_STATE_EMPTY) {
947 			ret = FFA_ERROR_BUSY;
948 			goto err_unlock;
949 		}
950 
951 		/* Zero the RX buffer before populating. */
952 		(void)memset(mbox->rx_buffer, 0,
953 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
954 
955 		/*
956 		 * Depending on the FF-A version of the requesting partition
957 		 * we may need to convert to a v1.0 format otherwise we can copy
958 		 * directly.
959 		 */
960 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
961 			ret = partition_info_populate_v1_0(partitions,
962 							   mbox,
963 							   partition_count);
964 			if (ret != 0) {
965 				goto err_unlock;
966 			}
967 		} else {
968 			uint32_t buf_size = mbox->rxtx_page_count *
969 					    FFA_PAGE_SIZE;
970 
971 			/* Ensure the descriptor will fit in the buffer. */
972 			size = sizeof(struct ffa_partition_info_v1_1);
973 			if (partition_count * size  > buf_size) {
974 				ret = FFA_ERROR_NO_MEMORY;
975 				goto err_unlock;
976 			}
977 			memcpy(mbox->rx_buffer, partitions,
978 			       partition_count * size);
979 		}
980 
981 		mbox->state = MAILBOX_STATE_FULL;
982 		spin_unlock(&mbox->lock);
983 	}
984 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
985 
986 err_unlock:
987 	spin_unlock(&mbox->lock);
988 err:
989 	return spmc_ffa_error_return(handle, ret);
990 }
991 
992 static uint64_t ffa_features_handler(uint32_t smc_fid,
993 				     bool secure_origin,
994 				     uint64_t x1,
995 				     uint64_t x2,
996 				     uint64_t x3,
997 				     uint64_t x4,
998 				     void *cookie,
999 				     void *handle,
1000 				     uint64_t flags)
1001 {
1002 	uint32_t function_id = (uint32_t) x1;
1003 	uint32_t input_properties = (uint32_t) x2;
1004 
1005 	/*
1006 	 * We don't currently support any additional input properties
1007 	 * for any ABI therefore ensure this value is always set to 0.
1008 	 */
1009 	if (input_properties != 0) {
1010 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1011 	}
1012 
1013 	/* Check if a Feature ID was requested. */
1014 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1015 		/* We currently don't support any additional features. */
1016 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1017 	}
1018 
1019 	/* Report if an FF-A ABI is supported. */
1020 	switch (function_id) {
1021 	/* Supported features from both worlds. */
1022 	case FFA_ERROR:
1023 	case FFA_SUCCESS_SMC32:
1024 	case FFA_INTERRUPT:
1025 	case FFA_ID_GET:
1026 	case FFA_FEATURES:
1027 	case FFA_VERSION:
1028 	case FFA_RX_RELEASE:
1029 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1030 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1031 	case FFA_PARTITION_INFO_GET:
1032 	case FFA_RXTX_MAP_SMC32:
1033 	case FFA_RXTX_MAP_SMC64:
1034 	case FFA_RXTX_UNMAP:
1035 	case FFA_MSG_RUN:
1036 
1037 		/*
1038 		 * We are relying on the fact that the other registers
1039 		 * will be set to 0 as these values align with the
1040 		 * currently implemented features of the SPMC. If this
1041 		 * changes this function must be extended to handle
1042 		 * reporting the additional functionality.
1043 		 */
1044 
1045 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1046 		/* Execution stops here. */
1047 
1048 	/* Supported ABIs only from the secure world. */
1049 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1050 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1051 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1052 	case FFA_MSG_WAIT:
1053 
1054 		if (!secure_origin) {
1055 			return spmc_ffa_error_return(handle,
1056 					FFA_ERROR_NOT_SUPPORTED);
1057 		}
1058 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1059 		/* Execution stops here. */
1060 
1061 	default:
1062 		return spmc_ffa_error_return(handle,
1063 					FFA_ERROR_NOT_SUPPORTED);
1064 	}
1065 }
1066 
1067 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1068 				   bool secure_origin,
1069 				   uint64_t x1,
1070 				   uint64_t x2,
1071 				   uint64_t x3,
1072 				   uint64_t x4,
1073 				   void *cookie,
1074 				   void *handle,
1075 				   uint64_t flags)
1076 {
1077 	if (secure_origin) {
1078 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1079 			 spmc_get_current_sp_ctx()->sp_id);
1080 	} else {
1081 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1082 			 spmc_get_hyp_ctx()->ns_ep_id);
1083 	}
1084 }
1085 
1086 static uint64_t ffa_run_handler(uint32_t smc_fid,
1087 				bool secure_origin,
1088 				uint64_t x1,
1089 				uint64_t x2,
1090 				uint64_t x3,
1091 				uint64_t x4,
1092 				void *cookie,
1093 				void *handle,
1094 				uint64_t flags)
1095 {
1096 	struct secure_partition_desc *sp;
1097 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1098 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1099 	unsigned int idx;
1100 	unsigned int *rt_state;
1101 	unsigned int *rt_model;
1102 
1103 	/* Can only be called from the normal world. */
1104 	if (secure_origin) {
1105 		ERROR("FFA_RUN can only be called from NWd.\n");
1106 		return spmc_ffa_error_return(handle,
1107 					     FFA_ERROR_INVALID_PARAMETER);
1108 	}
1109 
1110 	/* Cannot run a Normal world partition. */
1111 	if (ffa_is_normal_world_id(target_id)) {
1112 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1113 		return spmc_ffa_error_return(handle,
1114 					     FFA_ERROR_INVALID_PARAMETER);
1115 	}
1116 
1117 	/* Check that the target SP exists. */
1118 	sp = spmc_get_sp_ctx(target_id);
1119 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1120 	if (sp == NULL) {
1121 		return spmc_ffa_error_return(handle,
1122 					     FFA_ERROR_INVALID_PARAMETER);
1123 	}
1124 
1125 	idx = get_ec_index(sp);
1126 	if (idx != vcpu_id) {
1127 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1128 		return spmc_ffa_error_return(handle,
1129 					     FFA_ERROR_INVALID_PARAMETER);
1130 	}
1131 	rt_state = &((sp->ec[idx]).rt_state);
1132 	rt_model = &((sp->ec[idx]).rt_model);
1133 	if (*rt_state == RT_STATE_RUNNING) {
1134 		ERROR("Partition (0x%x) is already running.\n", target_id);
1135 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1136 	}
1137 
1138 	/*
1139 	 * Sanity check that if the execution context was not waiting then it
1140 	 * was either in the direct request or the run partition runtime model.
1141 	 */
1142 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1143 		assert(*rt_model == RT_MODEL_RUN ||
1144 		       *rt_model == RT_MODEL_DIR_REQ);
1145 	}
1146 
1147 	/*
1148 	 * If the context was waiting then update the partition runtime model.
1149 	 */
1150 	if (*rt_state == RT_STATE_WAITING) {
1151 		*rt_model = RT_MODEL_RUN;
1152 	}
1153 
1154 	/*
1155 	 * Forward the request to the correct SP vCPU after updating
1156 	 * its state.
1157 	 */
1158 	*rt_state = RT_STATE_RUNNING;
1159 
1160 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1161 			       handle, cookie, flags, target_id);
1162 }
1163 
1164 static uint64_t rx_release_handler(uint32_t smc_fid,
1165 				   bool secure_origin,
1166 				   uint64_t x1,
1167 				   uint64_t x2,
1168 				   uint64_t x3,
1169 				   uint64_t x4,
1170 				   void *cookie,
1171 				   void *handle,
1172 				   uint64_t flags)
1173 {
1174 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1175 
1176 	spin_lock(&mbox->lock);
1177 
1178 	if (mbox->state != MAILBOX_STATE_FULL) {
1179 		spin_unlock(&mbox->lock);
1180 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1181 	}
1182 
1183 	mbox->state = MAILBOX_STATE_EMPTY;
1184 	spin_unlock(&mbox->lock);
1185 
1186 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1187 }
1188 
1189 /*
1190  * Perform initial validation on the provided secondary entry point.
1191  * For now ensure it does not lie within the BL31 Image or the SP's
1192  * RX/TX buffers as these are mapped within EL3.
1193  * TODO: perform validation for additional invalid memory regions.
1194  */
1195 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1196 {
1197 	struct mailbox *mb;
1198 	uintptr_t buffer_size;
1199 	uintptr_t sp_rx_buffer;
1200 	uintptr_t sp_tx_buffer;
1201 	uintptr_t sp_rx_buffer_limit;
1202 	uintptr_t sp_tx_buffer_limit;
1203 
1204 	mb = &sp->mailbox;
1205 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1206 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1207 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1208 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1209 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1210 
1211 	/*
1212 	 * Check if the entry point lies within BL31, or the
1213 	 * SP's RX or TX buffer.
1214 	 */
1215 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1216 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1217 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1218 		return -EINVAL;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /*******************************************************************************
1224  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1225  *  register an entry point for initialization during a secondary cold boot.
1226  ******************************************************************************/
1227 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1228 					    bool secure_origin,
1229 					    uint64_t x1,
1230 					    uint64_t x2,
1231 					    uint64_t x3,
1232 					    uint64_t x4,
1233 					    void *cookie,
1234 					    void *handle,
1235 					    uint64_t flags)
1236 {
1237 	struct secure_partition_desc *sp;
1238 	struct sp_exec_ctx *sp_ctx;
1239 
1240 	/* This request cannot originate from the Normal world. */
1241 	if (!secure_origin) {
1242 		WARN("%s: Can only be called from SWd.\n", __func__);
1243 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1244 	}
1245 
1246 	/* Get the context of the current SP. */
1247 	sp = spmc_get_current_sp_ctx();
1248 	if (sp == NULL) {
1249 		WARN("%s: Cannot find SP context.\n", __func__);
1250 		return spmc_ffa_error_return(handle,
1251 					     FFA_ERROR_INVALID_PARAMETER);
1252 	}
1253 
1254 	/* Only an S-EL1 SP should be invoking this ABI. */
1255 	if (sp->runtime_el != S_EL1) {
1256 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1257 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1258 	}
1259 
1260 	/* Ensure the SP is in its initialization state. */
1261 	sp_ctx = spmc_get_sp_ec(sp);
1262 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1263 		WARN("%s: Can only be called during SP initialization.\n",
1264 		     __func__);
1265 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1266 	}
1267 
1268 	/* Perform initial validation of the secondary entry point. */
1269 	if (validate_secondary_ep(x1, sp)) {
1270 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1271 		     __func__, x1);
1272 		return spmc_ffa_error_return(handle,
1273 					     FFA_ERROR_INVALID_PARAMETER);
1274 	}
1275 
1276 	/*
1277 	 * Update the secondary entrypoint in SP context.
1278 	 * We don't need a lock here as during partition initialization there
1279 	 * will only be a single core online.
1280 	 */
1281 	sp->secondary_ep = x1;
1282 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1283 
1284 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1285 }
1286 
1287 /*******************************************************************************
1288  * This function will parse the Secure Partition Manifest. From manifest, it
1289  * will fetch details for preparing Secure partition image context and secure
1290  * partition image boot arguments if any.
1291  ******************************************************************************/
1292 static int sp_manifest_parse(void *sp_manifest, int offset,
1293 			     struct secure_partition_desc *sp,
1294 			     entry_point_info_t *ep_info)
1295 {
1296 	int32_t ret, node;
1297 	uint32_t config_32;
1298 
1299 	/*
1300 	 * Look for the mandatory fields that are expected to be present in
1301 	 * the SP manifests.
1302 	 */
1303 	node = fdt_path_offset(sp_manifest, "/");
1304 	if (node < 0) {
1305 		ERROR("Did not find root node.\n");
1306 		return node;
1307 	}
1308 
1309 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
1310 				    ARRAY_SIZE(sp->uuid), sp->uuid);
1311 	if (ret != 0) {
1312 		ERROR("Missing Secure Partition UUID.\n");
1313 		return ret;
1314 	}
1315 
1316 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
1317 	if (ret != 0) {
1318 		ERROR("Missing SP Exception Level information.\n");
1319 		return ret;
1320 	}
1321 
1322 	sp->runtime_el = config_32;
1323 
1324 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
1325 	if (ret != 0) {
1326 		ERROR("Missing Secure Partition FF-A Version.\n");
1327 		return ret;
1328 	}
1329 
1330 	sp->ffa_version = config_32;
1331 
1332 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
1333 	if (ret != 0) {
1334 		ERROR("Missing Secure Partition Execution State.\n");
1335 		return ret;
1336 	}
1337 
1338 	sp->execution_state = config_32;
1339 
1340 	ret = fdt_read_uint32(sp_manifest, node,
1341 			      "messaging-method", &config_32);
1342 	if (ret != 0) {
1343 		ERROR("Missing Secure Partition messaging method.\n");
1344 		return ret;
1345 	}
1346 
1347 	/* Validate this entry, we currently only support direct messaging. */
1348 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
1349 			  FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) {
1350 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
1351 		     config_32);
1352 		return -EINVAL;
1353 	}
1354 
1355 	sp->properties = config_32;
1356 
1357 	ret = fdt_read_uint32(sp_manifest, node,
1358 			      "execution-ctx-count", &config_32);
1359 
1360 	if (ret != 0) {
1361 		ERROR("Missing SP Execution Context Count.\n");
1362 		return ret;
1363 	}
1364 
1365 	/*
1366 	 * Ensure this field is set correctly in the manifest however
1367 	 * since this is currently a hardcoded value for S-EL1 partitions
1368 	 * we don't need to save it here, just validate.
1369 	 */
1370 	if (config_32 != PLATFORM_CORE_COUNT) {
1371 		ERROR("SP Execution Context Count (%u) must be %u.\n",
1372 			config_32, PLATFORM_CORE_COUNT);
1373 		return -EINVAL;
1374 	}
1375 
1376 	/*
1377 	 * Look for the optional fields that are expected to be present in
1378 	 * an SP manifest.
1379 	 */
1380 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
1381 	if (ret != 0) {
1382 		WARN("Missing Secure Partition ID.\n");
1383 	} else {
1384 		if (!is_ffa_secure_id_valid(config_32)) {
1385 			ERROR("Invalid Secure Partition ID (0x%x).\n",
1386 			      config_32);
1387 			return -EINVAL;
1388 		}
1389 		sp->sp_id = config_32;
1390 	}
1391 
1392 	ret = fdt_read_uint32(sp_manifest, node,
1393 			      "power-management-messages", &config_32);
1394 	if (ret != 0) {
1395 		WARN("Missing Power Management Messages entry.\n");
1396 	} else {
1397 		/*
1398 		 * Ensure only the currently supported power messages have
1399 		 * been requested.
1400 		 */
1401 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
1402 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
1403 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
1404 			ERROR("Requested unsupported PM messages (%x)\n",
1405 			      config_32);
1406 			return -EINVAL;
1407 		}
1408 		sp->pwr_mgmt_msgs = config_32;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 /*******************************************************************************
1415  * This function gets the Secure Partition Manifest base and maps the manifest
1416  * region.
1417  * Currently only one Secure Partition manifest is considered which is used to
1418  * prepare the context for the single Secure Partition.
1419  ******************************************************************************/
1420 static int find_and_prepare_sp_context(void)
1421 {
1422 	void *sp_manifest;
1423 	uintptr_t manifest_base;
1424 	uintptr_t manifest_base_align;
1425 	entry_point_info_t *next_image_ep_info;
1426 	int32_t ret;
1427 	struct secure_partition_desc *sp;
1428 
1429 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
1430 	if (next_image_ep_info == NULL) {
1431 		WARN("No Secure Partition image provided by BL2.\n");
1432 		return -ENOENT;
1433 	}
1434 
1435 	sp_manifest = (void *)next_image_ep_info->args.arg0;
1436 	if (sp_manifest == NULL) {
1437 		WARN("Secure Partition manifest absent.\n");
1438 		return -ENOENT;
1439 	}
1440 
1441 	manifest_base = (uintptr_t)sp_manifest;
1442 	manifest_base_align = page_align(manifest_base, DOWN);
1443 
1444 	/*
1445 	 * Map the secure partition manifest region in the EL3 translation
1446 	 * regime.
1447 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
1448 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
1449 	 * not completely accommodate the secure partition manifest region.
1450 	 */
1451 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
1452 				      manifest_base_align,
1453 				      PAGE_SIZE * 2,
1454 				      MT_RO_DATA);
1455 	if (ret != 0) {
1456 		ERROR("Error while mapping SP manifest (%d).\n", ret);
1457 		return ret;
1458 	}
1459 
1460 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
1461 					    "arm,ffa-manifest-1.0");
1462 	if (ret < 0) {
1463 		ERROR("Error happened in SP manifest reading.\n");
1464 		return -EINVAL;
1465 	}
1466 
1467 	/*
1468 	 * Store the size of the manifest so that it can be used later to pass
1469 	 * the manifest as boot information later.
1470 	 */
1471 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
1472 	INFO("Manifest size = %lu bytes.\n", next_image_ep_info->args.arg1);
1473 
1474 	/*
1475 	 * Select an SP descriptor for initialising the partition's execution
1476 	 * context on the primary CPU.
1477 	 */
1478 	sp = spmc_get_current_sp_ctx();
1479 
1480 	/* Initialize entry point information for the SP */
1481 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
1482 		       SECURE | EP_ST_ENABLE);
1483 
1484 	/* Parse the SP manifest. */
1485 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info);
1486 	if (ret != 0) {
1487 		ERROR("Error in Secure Partition manifest parsing.\n");
1488 		return ret;
1489 	}
1490 
1491 	/* Check that the runtime EL in the manifest was correct. */
1492 	if (sp->runtime_el != S_EL1) {
1493 		ERROR("Unexpected runtime EL: %d\n", sp->runtime_el);
1494 		return -EINVAL;
1495 	}
1496 
1497 	/* Perform any common initialisation. */
1498 	spmc_sp_common_setup(sp, next_image_ep_info);
1499 
1500 	/* Perform any initialisation specific to S-EL1 SPs. */
1501 	spmc_el1_sp_setup(sp, next_image_ep_info);
1502 
1503 	/* Initialize the SP context with the required ep info. */
1504 	spmc_sp_common_ep_commit(sp, next_image_ep_info);
1505 
1506 	return 0;
1507 }
1508 
1509 /*******************************************************************************
1510  * This function takes an SP context pointer and performs a synchronous entry
1511  * into it.
1512  ******************************************************************************/
1513 static int32_t logical_sp_init(void)
1514 {
1515 	int32_t rc = 0;
1516 	struct el3_lp_desc *el3_lp_descs;
1517 
1518 	/* Perform initial validation of the Logical Partitions. */
1519 	rc = el3_sp_desc_validate();
1520 	if (rc != 0) {
1521 		ERROR("Logical Partition validation failed!\n");
1522 		return rc;
1523 	}
1524 
1525 	el3_lp_descs = get_el3_lp_array();
1526 
1527 	INFO("Logical Secure Partition init start.\n");
1528 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
1529 		rc = el3_lp_descs[i].init();
1530 		if (rc != 0) {
1531 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
1532 			      el3_lp_descs[i].sp_id);
1533 			return rc;
1534 		}
1535 		VERBOSE("Logical SP (0x%x) Initialized\n",
1536 			      el3_lp_descs[i].sp_id);
1537 	}
1538 
1539 	INFO("Logical Secure Partition init completed.\n");
1540 
1541 	return rc;
1542 }
1543 
1544 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
1545 {
1546 	uint64_t rc;
1547 
1548 	assert(ec != NULL);
1549 
1550 	/* Assign the context of the SP to this CPU */
1551 	cm_set_context(&(ec->cpu_ctx), SECURE);
1552 
1553 	/* Restore the context assigned above */
1554 	cm_el1_sysregs_context_restore(SECURE);
1555 	cm_set_next_eret_context(SECURE);
1556 
1557 	/* Invalidate TLBs at EL1. */
1558 	tlbivmalle1();
1559 	dsbish();
1560 
1561 	/* Enter Secure Partition */
1562 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
1563 
1564 	/* Save secure state */
1565 	cm_el1_sysregs_context_save(SECURE);
1566 
1567 	return rc;
1568 }
1569 
1570 /*******************************************************************************
1571  * SPMC Helper Functions.
1572  ******************************************************************************/
1573 static int32_t sp_init(void)
1574 {
1575 	uint64_t rc;
1576 	struct secure_partition_desc *sp;
1577 	struct sp_exec_ctx *ec;
1578 
1579 	sp = spmc_get_current_sp_ctx();
1580 	ec = spmc_get_sp_ec(sp);
1581 	ec->rt_model = RT_MODEL_INIT;
1582 	ec->rt_state = RT_STATE_RUNNING;
1583 
1584 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
1585 
1586 	rc = spmc_sp_synchronous_entry(ec);
1587 	if (rc != 0) {
1588 		/* Indicate SP init was not successful. */
1589 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
1590 		      sp->sp_id, rc);
1591 		return 0;
1592 	}
1593 
1594 	ec->rt_state = RT_STATE_WAITING;
1595 	INFO("Secure Partition initialized.\n");
1596 
1597 	return 1;
1598 }
1599 
1600 static void initalize_sp_descs(void)
1601 {
1602 	struct secure_partition_desc *sp;
1603 
1604 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
1605 		sp = &sp_desc[i];
1606 		sp->sp_id = INV_SP_ID;
1607 		sp->mailbox.rx_buffer = NULL;
1608 		sp->mailbox.tx_buffer = NULL;
1609 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
1610 		sp->secondary_ep = 0;
1611 	}
1612 }
1613 
1614 static void initalize_ns_ep_descs(void)
1615 {
1616 	struct ns_endpoint_desc *ns_ep;
1617 
1618 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
1619 		ns_ep = &ns_ep_desc[i];
1620 		/*
1621 		 * Clashes with the Hypervisor ID but will not be a
1622 		 * problem in practice.
1623 		 */
1624 		ns_ep->ns_ep_id = 0;
1625 		ns_ep->ffa_version = 0;
1626 		ns_ep->mailbox.rx_buffer = NULL;
1627 		ns_ep->mailbox.tx_buffer = NULL;
1628 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
1629 	}
1630 }
1631 
1632 /*******************************************************************************
1633  * Initialize SPMC attributes for the SPMD.
1634  ******************************************************************************/
1635 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
1636 {
1637 	spmc_attrs->major_version = FFA_VERSION_MAJOR;
1638 	spmc_attrs->minor_version = FFA_VERSION_MINOR;
1639 	spmc_attrs->exec_state = MODE_RW_64;
1640 	spmc_attrs->spmc_id = FFA_SPMC_ID;
1641 }
1642 
1643 /*******************************************************************************
1644  * Initialize contexts of all Secure Partitions.
1645  ******************************************************************************/
1646 int32_t spmc_setup(void)
1647 {
1648 	int32_t ret;
1649 	uint32_t flags;
1650 
1651 	/* Initialize endpoint descriptors */
1652 	initalize_sp_descs();
1653 	initalize_ns_ep_descs();
1654 
1655 	/* Setup logical SPs. */
1656 	ret = logical_sp_init();
1657 	if (ret != 0) {
1658 		ERROR("Failed to initialize Logical Partitions.\n");
1659 		return ret;
1660 	}
1661 
1662 	/* Perform physical SP setup. */
1663 
1664 	/* Disable MMU at EL1 (initialized by BL2) */
1665 	disable_mmu_icache_el1();
1666 
1667 	/* Initialize context of the SP */
1668 	INFO("Secure Partition context setup start.\n");
1669 
1670 	ret = find_and_prepare_sp_context();
1671 	if (ret != 0) {
1672 		ERROR("Error in SP finding and context preparation.\n");
1673 		return ret;
1674 	}
1675 
1676 	/* Register power management hooks with PSCI */
1677 	psci_register_spd_pm_hook(&spmc_pm);
1678 
1679 	/*
1680 	 * Register an interrupt handler for S-EL1 interrupts
1681 	 * when generated during code executing in the
1682 	 * non-secure state.
1683 	 */
1684 	flags = 0;
1685 	set_interrupt_rm_flag(flags, NON_SECURE);
1686 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
1687 					      spmc_sp_interrupt_handler,
1688 					      flags);
1689 	if (ret != 0) {
1690 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
1691 		panic();
1692 	}
1693 
1694 	/* Register init function for deferred init.  */
1695 	bl31_register_bl32_init(&sp_init);
1696 
1697 	INFO("Secure Partition setup done.\n");
1698 
1699 	return 0;
1700 }
1701 
1702 /*******************************************************************************
1703  * Secure Partition Manager SMC handler.
1704  ******************************************************************************/
1705 uint64_t spmc_smc_handler(uint32_t smc_fid,
1706 			  bool secure_origin,
1707 			  uint64_t x1,
1708 			  uint64_t x2,
1709 			  uint64_t x3,
1710 			  uint64_t x4,
1711 			  void *cookie,
1712 			  void *handle,
1713 			  uint64_t flags)
1714 {
1715 	switch (smc_fid) {
1716 
1717 	case FFA_VERSION:
1718 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
1719 					   x4, cookie, handle, flags);
1720 
1721 	case FFA_ID_GET:
1722 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
1723 					  x4, cookie, handle, flags);
1724 
1725 	case FFA_FEATURES:
1726 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
1727 					    x4, cookie, handle, flags);
1728 
1729 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1730 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
1731 						   x2, x3, x4, cookie, handle,
1732 						   flags);
1733 
1734 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1735 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1736 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
1737 					      x3, x4, cookie, handle, flags);
1738 
1739 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1740 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1741 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
1742 					       x3, x4, cookie, handle, flags);
1743 
1744 	case FFA_RXTX_MAP_SMC32:
1745 	case FFA_RXTX_MAP_SMC64:
1746 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
1747 					cookie, handle, flags);
1748 
1749 	case FFA_RXTX_UNMAP:
1750 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
1751 					  x4, cookie, handle, flags);
1752 
1753 	case FFA_PARTITION_INFO_GET:
1754 		return partition_info_get_handler(smc_fid, secure_origin, x1,
1755 						  x2, x3, x4, cookie, handle,
1756 						  flags);
1757 
1758 	case FFA_RX_RELEASE:
1759 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
1760 					  x4, cookie, handle, flags);
1761 
1762 	case FFA_MSG_WAIT:
1763 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
1764 					cookie, handle, flags);
1765 
1766 	case FFA_ERROR:
1767 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
1768 					cookie, handle, flags);
1769 
1770 	case FFA_MSG_RUN:
1771 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
1772 				       cookie, handle, flags);
1773 	default:
1774 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
1775 		break;
1776 	}
1777 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1778 }
1779 
1780 /*******************************************************************************
1781  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
1782  * validates the interrupt and upon success arranges entry into the SP for
1783  * handling the interrupt.
1784  ******************************************************************************/
1785 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
1786 					  uint32_t flags,
1787 					  void *handle,
1788 					  void *cookie)
1789 {
1790 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1791 	struct sp_exec_ctx *ec;
1792 	uint32_t linear_id = plat_my_core_pos();
1793 
1794 	/* Sanity check for a NULL pointer dereference. */
1795 	assert(sp != NULL);
1796 
1797 	/* Check the security state when the exception was generated. */
1798 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
1799 
1800 	/* Panic if not an S-EL1 Partition. */
1801 	if (sp->runtime_el != S_EL1) {
1802 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
1803 		      linear_id);
1804 		panic();
1805 	}
1806 
1807 	/* Obtain a reference to the SP execution context. */
1808 	ec = spmc_get_sp_ec(sp);
1809 
1810 	/* Ensure that the execution context is in waiting state else panic. */
1811 	if (ec->rt_state != RT_STATE_WAITING) {
1812 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
1813 		      linear_id, RT_STATE_WAITING, ec->rt_state);
1814 		panic();
1815 	}
1816 
1817 	/* Update the runtime model and state of the partition. */
1818 	ec->rt_model = RT_MODEL_INTR;
1819 	ec->rt_state = RT_STATE_RUNNING;
1820 
1821 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
1822 
1823 	/*
1824 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
1825 	 * populated as the SP can determine this by itself.
1826 	 */
1827 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
1828 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1829 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
1830 				     handle);
1831 }
1832