xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_main.c (revision 522c175d2d03470de4073a4e5716851073d2bf22)
1 /*
2  * Copyright (c) 2022-2024, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdio.h>
10 
11 #include <arch_helpers.h>
12 #include <bl31/bl31.h>
13 #include <bl31/ehf.h>
14 #include <bl31/interrupt_mgmt.h>
15 #include <common/debug.h>
16 #include <common/fdt_wrappers.h>
17 #include <common/runtime_svc.h>
18 #include <common/uuid.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/smccc.h>
21 #include <lib/utils.h>
22 #include <lib/xlat_tables/xlat_tables_v2.h>
23 #include <libfdt.h>
24 #include <plat/common/platform.h>
25 #include <services/el3_spmc_logical_sp.h>
26 #include <services/ffa_svc.h>
27 #include <services/spmc_svc.h>
28 #include <services/spmd_svc.h>
29 #include "spmc.h"
30 #include "spmc_shared_mem.h"
31 
32 #include <platform_def.h>
33 
34 /* FFA_MEM_PERM_* helpers */
35 #define FFA_MEM_PERM_MASK		U(7)
36 #define FFA_MEM_PERM_DATA_MASK		U(3)
37 #define FFA_MEM_PERM_DATA_SHIFT		U(0)
38 #define FFA_MEM_PERM_DATA_NA		U(0)
39 #define FFA_MEM_PERM_DATA_RW		U(1)
40 #define FFA_MEM_PERM_DATA_RES		U(2)
41 #define FFA_MEM_PERM_DATA_RO		U(3)
42 #define FFA_MEM_PERM_INST_EXEC          (U(0) << 2)
43 #define FFA_MEM_PERM_INST_NON_EXEC      (U(1) << 2)
44 
45 /* Declare the maximum number of SPs and El3 LPs. */
46 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT
47 
48 /*
49  * Allocate a secure partition descriptor to describe each SP in the system that
50  * does not reside at EL3.
51  */
52 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
53 
54 /*
55  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
56  * the system that interacts with a SP. It is used to track the Hypervisor
57  * buffer pair, version and ID for now. It could be extended to track VM
58  * properties when the SPMC supports indirect messaging.
59  */
60 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
61 
62 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
63 					  uint32_t flags,
64 					  void *handle,
65 					  void *cookie);
66 
67 /*
68  * Helper function to obtain the array storing the EL3
69  * Logical Partition descriptors.
70  */
71 struct el3_lp_desc *get_el3_lp_array(void)
72 {
73 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
74 }
75 
76 /*
77  * Helper function to obtain the descriptor of the last SP to whom control was
78  * handed to on this physical cpu. Currently, we assume there is only one SP.
79  * TODO: Expand to track multiple partitions when required.
80  */
81 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
82 {
83 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
84 }
85 
86 /*
87  * Helper function to obtain the execution context of an SP on the
88  * current physical cpu.
89  */
90 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
91 {
92 	return &(sp->ec[get_ec_index(sp)]);
93 }
94 
95 /* Helper function to get pointer to SP context from its ID. */
96 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
97 {
98 	/* Check for Secure World Partitions. */
99 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
100 		if (sp_desc[i].sp_id == id) {
101 			return &(sp_desc[i]);
102 		}
103 	}
104 	return NULL;
105 }
106 
107 /*
108  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
109  * We assume that the first descriptor is reserved for this entity.
110  */
111 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
112 {
113 	return &(ns_ep_desc[0]);
114 }
115 
116 /*
117  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
118  * or OS kernel in the normal world or the last SP that was run.
119  */
120 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
121 {
122 	/* Obtain the RX/TX buffer pair descriptor. */
123 	if (secure_origin) {
124 		return &(spmc_get_current_sp_ctx()->mailbox);
125 	} else {
126 		return &(spmc_get_hyp_ctx()->mailbox);
127 	}
128 }
129 
130 /******************************************************************************
131  * This function returns to the place where spmc_sp_synchronous_entry() was
132  * called originally.
133  ******************************************************************************/
134 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
135 {
136 	/*
137 	 * The SPM must have initiated the original request through a
138 	 * synchronous entry into the secure partition. Jump back to the
139 	 * original C runtime context with the value of rc in x0;
140 	 */
141 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
142 
143 	panic();
144 }
145 
146 /*******************************************************************************
147  * Return FFA_ERROR with specified error code.
148  ******************************************************************************/
149 uint64_t spmc_ffa_error_return(void *handle, int error_code)
150 {
151 	SMC_RET8(handle, FFA_ERROR,
152 		 FFA_TARGET_INFO_MBZ, error_code,
153 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
154 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
155 }
156 
157 /******************************************************************************
158  * Helper function to validate a secure partition ID to ensure it does not
159  * conflict with any other FF-A component and follows the convention to
160  * indicate it resides within the secure world.
161  ******************************************************************************/
162 bool is_ffa_secure_id_valid(uint16_t partition_id)
163 {
164 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
165 
166 	/* Ensure the ID is not the invalid partition ID. */
167 	if (partition_id == INV_SP_ID) {
168 		return false;
169 	}
170 
171 	/* Ensure the ID is not the SPMD ID. */
172 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
173 		return false;
174 	}
175 
176 	/*
177 	 * Ensure the ID follows the convention to indicate it resides
178 	 * in the secure world.
179 	 */
180 	if (!ffa_is_secure_world_id(partition_id)) {
181 		return false;
182 	}
183 
184 	/* Ensure we don't conflict with the SPMC partition ID. */
185 	if (partition_id == FFA_SPMC_ID) {
186 		return false;
187 	}
188 
189 	/* Ensure we do not already have an SP context with this ID. */
190 	if (spmc_get_sp_ctx(partition_id)) {
191 		return false;
192 	}
193 
194 	/* Ensure we don't clash with any Logical SP's. */
195 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
196 		if (el3_lp_descs[i].sp_id == partition_id) {
197 			return false;
198 		}
199 	}
200 
201 	return true;
202 }
203 
204 /*******************************************************************************
205  * This function either forwards the request to the other world or returns
206  * with an ERET depending on the source of the call.
207  * We can assume that the destination is for an entity at a lower exception
208  * level as any messages destined for a logical SP resident in EL3 will have
209  * already been taken care of by the SPMC before entering this function.
210  ******************************************************************************/
211 static uint64_t spmc_smc_return(uint32_t smc_fid,
212 				bool secure_origin,
213 				uint64_t x1,
214 				uint64_t x2,
215 				uint64_t x3,
216 				uint64_t x4,
217 				void *handle,
218 				void *cookie,
219 				uint64_t flags,
220 				uint16_t dst_id)
221 {
222 	/* If the destination is in the normal world always go via the SPMD. */
223 	if (ffa_is_normal_world_id(dst_id)) {
224 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
225 					cookie, handle, flags);
226 	}
227 	/*
228 	 * If the caller is secure and we want to return to the secure world,
229 	 * ERET directly.
230 	 */
231 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
232 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
233 	}
234 	/* If we originated in the normal world then switch contexts. */
235 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
236 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
237 					     x3, x4, handle, flags);
238 	} else {
239 		/* Unknown State. */
240 		panic();
241 	}
242 
243 	/* Shouldn't be Reached. */
244 	return 0;
245 }
246 
247 /*******************************************************************************
248  * FF-A ABI Handlers.
249  ******************************************************************************/
250 
251 /*******************************************************************************
252  * Helper function to validate arg2 as part of a direct message.
253  ******************************************************************************/
254 static inline bool direct_msg_validate_arg2(uint64_t x2)
255 {
256 	/* Check message type. */
257 	if (x2 & FFA_FWK_MSG_BIT) {
258 		/* We have a framework message, ensure it is a known message. */
259 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
260 			VERBOSE("Invalid message format 0x%lx.\n", x2);
261 			return false;
262 		}
263 	} else {
264 		/* We have a partition messages, ensure x2 is not set. */
265 		if (x2 != (uint64_t) 0) {
266 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
267 				x2);
268 			return false;
269 		}
270 	}
271 	return true;
272 }
273 
274 /*******************************************************************************
275  * Helper function to validate the destination ID of a direct response.
276  ******************************************************************************/
277 static bool direct_msg_validate_dst_id(uint16_t dst_id)
278 {
279 	struct secure_partition_desc *sp;
280 
281 	/* Check if we're targeting a normal world partition. */
282 	if (ffa_is_normal_world_id(dst_id)) {
283 		return true;
284 	}
285 
286 	/* Or directed to the SPMC itself.*/
287 	if (dst_id == FFA_SPMC_ID) {
288 		return true;
289 	}
290 
291 	/* Otherwise ensure the SP exists. */
292 	sp = spmc_get_sp_ctx(dst_id);
293 	if (sp != NULL) {
294 		return true;
295 	}
296 
297 	return false;
298 }
299 
300 /*******************************************************************************
301  * Helper function to validate the response from a Logical Partition.
302  ******************************************************************************/
303 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id,
304 					void *handle)
305 {
306 	/* Retrieve populated Direct Response Arguments. */
307 	uint64_t smc_fid = SMC_GET_GP(handle, CTX_GPREG_X0);
308 	uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1);
309 	uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2);
310 	uint16_t src_id = ffa_endpoint_source(x1);
311 	uint16_t dst_id = ffa_endpoint_destination(x1);
312 
313 	if (src_id != lp_id) {
314 		ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id);
315 		return false;
316 	}
317 
318 	/*
319 	 * Check the destination ID is valid and ensure the LP is responding to
320 	 * the original request.
321 	 */
322 	if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) {
323 		ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id);
324 		return false;
325 	}
326 
327 	if ((smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) &&
328 			!direct_msg_validate_arg2(x2)) {
329 		ERROR("Invalid EL3 LP message encoding.\n");
330 		return false;
331 	}
332 	return true;
333 }
334 
335 /*******************************************************************************
336  * Helper function to check that partition can receive direct msg or not.
337  ******************************************************************************/
338 static bool direct_msg_receivable(uint32_t properties, uint16_t dir_req_fnum)
339 {
340 	if ((dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ &&
341 			((properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0U)) ||
342 			(dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ2 &&
343 			((properties & FFA_PARTITION_DIRECT_REQ2_RECV) == 0U))) {
344 		return false;
345 	}
346 
347 	return true;
348 }
349 
350 /*******************************************************************************
351  * Handle direct request messages and route to the appropriate destination.
352  ******************************************************************************/
353 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
354 				       bool secure_origin,
355 				       uint64_t x1,
356 				       uint64_t x2,
357 				       uint64_t x3,
358 				       uint64_t x4,
359 				       void *cookie,
360 				       void *handle,
361 				       uint64_t flags)
362 {
363 	uint16_t src_id = ffa_endpoint_source(x1);
364 	uint16_t dst_id = ffa_endpoint_destination(x1);
365 	uint16_t dir_req_funcid;
366 	struct el3_lp_desc *el3_lp_descs;
367 	struct secure_partition_desc *sp;
368 	unsigned int idx;
369 
370 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_REQ2_SMC64) ?
371 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
372 
373 	/*
374 	 * Sanity check for DIRECT_REQ:
375 	 * Check if arg2 has been populated correctly based on message type
376 	 */
377 	if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ) &&
378 			!direct_msg_validate_arg2(x2)) {
379 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
380 	}
381 
382 	/* Validate Sender is either the current SP or from the normal world. */
383 	if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) ||
384 		(!secure_origin && !ffa_is_normal_world_id(src_id))) {
385 		ERROR("Invalid direct request source ID (0x%x).\n", src_id);
386 		return spmc_ffa_error_return(handle,
387 					FFA_ERROR_INVALID_PARAMETER);
388 	}
389 
390 	el3_lp_descs = get_el3_lp_array();
391 
392 	/* Check if the request is destined for a Logical Partition. */
393 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
394 		if (el3_lp_descs[i].sp_id == dst_id) {
395 			if (!direct_msg_receivable(el3_lp_descs[i].properties, dir_req_funcid)) {
396 				return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
397 			}
398 
399 			uint64_t ret = el3_lp_descs[i].direct_req(
400 						smc_fid, secure_origin, x1, x2,
401 						x3, x4, cookie, handle, flags);
402 			if (!direct_msg_validate_lp_resp(src_id, dst_id,
403 							 handle)) {
404 				panic();
405 			}
406 
407 			/* Message checks out. */
408 			return ret;
409 		}
410 	}
411 
412 	/*
413 	 * If the request was not targeted to a LSP and from the secure world
414 	 * then it is invalid since a SP cannot call into the Normal world and
415 	 * there is no other SP to call into. If there are other SPs in future
416 	 * then the partition runtime model would need to be validated as well.
417 	 */
418 	if (secure_origin) {
419 		VERBOSE("Direct request not supported to the Normal World.\n");
420 		return spmc_ffa_error_return(handle,
421 					     FFA_ERROR_INVALID_PARAMETER);
422 	}
423 
424 	/* Check if the SP ID is valid. */
425 	sp = spmc_get_sp_ctx(dst_id);
426 	if (sp == NULL) {
427 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
428 			dst_id);
429 		return spmc_ffa_error_return(handle,
430 					     FFA_ERROR_INVALID_PARAMETER);
431 	}
432 
433 	if (!direct_msg_receivable(sp->properties, dir_req_funcid)) {
434 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
435 	}
436 
437 	/* Protect the runtime state of a UP S-EL0 SP with a lock. */
438 	if (sp->runtime_el == S_EL0) {
439 		spin_lock(&sp->rt_state_lock);
440 	}
441 
442 	/*
443 	 * Check that the target execution context is in a waiting state before
444 	 * forwarding the direct request to it.
445 	 */
446 	idx = get_ec_index(sp);
447 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
448 		VERBOSE("SP context on core%u is not waiting (%u).\n",
449 			idx, sp->ec[idx].rt_model);
450 
451 		if (sp->runtime_el == S_EL0) {
452 			spin_unlock(&sp->rt_state_lock);
453 		}
454 
455 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
456 	}
457 
458 	/*
459 	 * Everything checks out so forward the request to the SP after updating
460 	 * its state and runtime model.
461 	 */
462 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
463 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
464 	sp->ec[idx].dir_req_origin_id = src_id;
465 	sp->ec[idx].dir_req_funcid = dir_req_funcid;
466 
467 	if (sp->runtime_el == S_EL0) {
468 		spin_unlock(&sp->rt_state_lock);
469 	}
470 
471 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
472 			       handle, cookie, flags, dst_id);
473 }
474 
475 /*******************************************************************************
476  * Handle direct response messages and route to the appropriate destination.
477  ******************************************************************************/
478 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
479 					bool secure_origin,
480 					uint64_t x1,
481 					uint64_t x2,
482 					uint64_t x3,
483 					uint64_t x4,
484 					void *cookie,
485 					void *handle,
486 					uint64_t flags)
487 {
488 	uint16_t dst_id = ffa_endpoint_destination(x1);
489 	uint16_t dir_req_funcid;
490 	struct secure_partition_desc *sp;
491 	unsigned int idx;
492 
493 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) ?
494 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
495 
496 	/* Check if arg2 has been populated correctly based on message type. */
497 	if (!direct_msg_validate_arg2(x2)) {
498 		return spmc_ffa_error_return(handle,
499 					     FFA_ERROR_INVALID_PARAMETER);
500 	}
501 
502 	/* Check that the response did not originate from the Normal world. */
503 	if (!secure_origin) {
504 		VERBOSE("Direct Response not supported from Normal World.\n");
505 		return spmc_ffa_error_return(handle,
506 					     FFA_ERROR_INVALID_PARAMETER);
507 	}
508 
509 	/*
510 	 * Check that the response is either targeted to the Normal world or the
511 	 * SPMC e.g. a PM response.
512 	 */
513 	if (!direct_msg_validate_dst_id(dst_id)) {
514 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
515 			dst_id);
516 		return spmc_ffa_error_return(handle,
517 					     FFA_ERROR_INVALID_PARAMETER);
518 	}
519 
520 	/* Obtain the SP descriptor and update its runtime state. */
521 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
522 	if (sp == NULL) {
523 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
524 			dst_id);
525 		return spmc_ffa_error_return(handle,
526 					     FFA_ERROR_INVALID_PARAMETER);
527 	}
528 
529 	if (sp->runtime_el == S_EL0) {
530 		spin_lock(&sp->rt_state_lock);
531 	}
532 
533 	/* Sanity check state is being tracked correctly in the SPMC. */
534 	idx = get_ec_index(sp);
535 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
536 
537 	/* Ensure SP execution context was in the right runtime model. */
538 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
539 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
540 			idx, sp->ec[idx].rt_model);
541 		if (sp->runtime_el == S_EL0) {
542 			spin_unlock(&sp->rt_state_lock);
543 		}
544 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
545 	}
546 
547 	if (dir_req_funcid != sp->ec[idx].dir_req_funcid) {
548 		WARN("Unmatched direct req/resp func id. req:%x, resp:%x on core%u.\n",
549 		     sp->ec[idx].dir_req_funcid, (smc_fid & FUNCID_NUM_MASK), idx);
550 		if (sp->runtime_el == S_EL0) {
551 			spin_unlock(&sp->rt_state_lock);
552 		}
553 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
554 	}
555 
556 	if (sp->ec[idx].dir_req_origin_id != dst_id) {
557 		WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n",
558 		     dst_id, sp->ec[idx].dir_req_origin_id, idx);
559 		if (sp->runtime_el == S_EL0) {
560 			spin_unlock(&sp->rt_state_lock);
561 		}
562 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
563 	}
564 
565 	/* Update the state of the SP execution context. */
566 	sp->ec[idx].rt_state = RT_STATE_WAITING;
567 
568 	/* Clear the ongoing direct request ID. */
569 	sp->ec[idx].dir_req_origin_id = INV_SP_ID;
570 
571 	/* Clear the ongoing direct request message version. */
572 	sp->ec[idx].dir_req_funcid = 0U;
573 
574 	if (sp->runtime_el == S_EL0) {
575 		spin_unlock(&sp->rt_state_lock);
576 	}
577 
578 	/*
579 	 * If the receiver is not the SPMC then forward the response to the
580 	 * Normal world.
581 	 */
582 	if (dst_id == FFA_SPMC_ID) {
583 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
584 		/* Should not get here. */
585 		panic();
586 	}
587 
588 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
589 			       handle, cookie, flags, dst_id);
590 }
591 
592 /*******************************************************************************
593  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
594  * cycles.
595  ******************************************************************************/
596 static uint64_t msg_wait_handler(uint32_t smc_fid,
597 				 bool secure_origin,
598 				 uint64_t x1,
599 				 uint64_t x2,
600 				 uint64_t x3,
601 				 uint64_t x4,
602 				 void *cookie,
603 				 void *handle,
604 				 uint64_t flags)
605 {
606 	struct secure_partition_desc *sp;
607 	unsigned int idx;
608 
609 	/*
610 	 * Check that the response did not originate from the Normal world as
611 	 * only the secure world can call this ABI.
612 	 */
613 	if (!secure_origin) {
614 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
615 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
616 	}
617 
618 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
619 	sp = spmc_get_current_sp_ctx();
620 	if (sp == NULL) {
621 		return spmc_ffa_error_return(handle,
622 					     FFA_ERROR_INVALID_PARAMETER);
623 	}
624 
625 	/*
626 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
627 	 */
628 	idx = get_ec_index(sp);
629 	if (sp->runtime_el == S_EL0) {
630 		spin_lock(&sp->rt_state_lock);
631 	}
632 
633 	/* Ensure SP execution context was in the right runtime model. */
634 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
635 		if (sp->runtime_el == S_EL0) {
636 			spin_unlock(&sp->rt_state_lock);
637 		}
638 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
639 	}
640 
641 	/* Sanity check the state is being tracked correctly in the SPMC. */
642 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
643 
644 	/*
645 	 * Perform a synchronous exit if the partition was initialising. The
646 	 * state is updated after the exit.
647 	 */
648 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
649 		if (sp->runtime_el == S_EL0) {
650 			spin_unlock(&sp->rt_state_lock);
651 		}
652 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
653 		/* Should not get here */
654 		panic();
655 	}
656 
657 	/* Update the state of the SP execution context. */
658 	sp->ec[idx].rt_state = RT_STATE_WAITING;
659 
660 	/* Resume normal world if a secure interrupt was handled. */
661 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
662 		/* FFA_MSG_WAIT can only be called from the secure world. */
663 		unsigned int secure_state_in = SECURE;
664 		unsigned int secure_state_out = NON_SECURE;
665 
666 		cm_el1_sysregs_context_save(secure_state_in);
667 		cm_el1_sysregs_context_restore(secure_state_out);
668 		cm_set_next_eret_context(secure_state_out);
669 
670 		if (sp->runtime_el == S_EL0) {
671 			spin_unlock(&sp->rt_state_lock);
672 		}
673 
674 		SMC_RET0(cm_get_context(secure_state_out));
675 	}
676 
677 	/* Protect the runtime state of a S-EL0 SP with a lock. */
678 	if (sp->runtime_el == S_EL0) {
679 		spin_unlock(&sp->rt_state_lock);
680 	}
681 
682 	/* Forward the response to the Normal world. */
683 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
684 			       handle, cookie, flags, FFA_NWD_ID);
685 }
686 
687 static uint64_t ffa_error_handler(uint32_t smc_fid,
688 				 bool secure_origin,
689 				 uint64_t x1,
690 				 uint64_t x2,
691 				 uint64_t x3,
692 				 uint64_t x4,
693 				 void *cookie,
694 				 void *handle,
695 				 uint64_t flags)
696 {
697 	struct secure_partition_desc *sp;
698 	unsigned int idx;
699 	uint16_t dst_id = ffa_endpoint_destination(x1);
700 	bool cancel_dir_req = false;
701 
702 	/* Check that the response did not originate from the Normal world. */
703 	if (!secure_origin) {
704 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
705 	}
706 
707 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
708 	sp = spmc_get_current_sp_ctx();
709 	if (sp == NULL) {
710 		return spmc_ffa_error_return(handle,
711 					     FFA_ERROR_INVALID_PARAMETER);
712 	}
713 
714 	/* Get the execution context of the SP that invoked FFA_ERROR. */
715 	idx = get_ec_index(sp);
716 
717 	/*
718 	 * We only expect FFA_ERROR to be received during SP initialisation
719 	 * otherwise this is an invalid call.
720 	 */
721 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
722 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
723 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
724 		/* Should not get here. */
725 		panic();
726 	}
727 
728 	if (sp->runtime_el == S_EL0) {
729 		spin_lock(&sp->rt_state_lock);
730 	}
731 
732 	if (sp->ec[idx].rt_state == RT_STATE_RUNNING &&
733 			sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
734 		sp->ec[idx].rt_state = RT_STATE_WAITING;
735 		sp->ec[idx].dir_req_origin_id = INV_SP_ID;
736 		sp->ec[idx].dir_req_funcid = 0x00;
737 		cancel_dir_req = true;
738 	}
739 
740 	if (sp->runtime_el == S_EL0) {
741 		spin_unlock(&sp->rt_state_lock);
742 	}
743 
744 	if (cancel_dir_req) {
745 		if (dst_id == FFA_SPMC_ID) {
746 			spmc_sp_synchronous_exit(&sp->ec[idx], x4);
747 			/* Should not get here. */
748 			panic();
749 		} else
750 			return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
751 					       handle, cookie, flags, dst_id);
752 	}
753 
754 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
755 }
756 
757 static uint64_t ffa_version_handler(uint32_t smc_fid,
758 				    bool secure_origin,
759 				    uint64_t x1,
760 				    uint64_t x2,
761 				    uint64_t x3,
762 				    uint64_t x4,
763 				    void *cookie,
764 				    void *handle,
765 				    uint64_t flags)
766 {
767 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
768 
769 	if (requested_version & FFA_VERSION_BIT31_MASK) {
770 		/* Invalid encoding, return an error. */
771 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
772 		/* Execution stops here. */
773 	}
774 
775 	/* Determine the caller to store the requested version. */
776 	if (secure_origin) {
777 		/*
778 		 * Ensure that the SP is reporting the same version as
779 		 * specified in its manifest. If these do not match there is
780 		 * something wrong with the SP.
781 		 * TODO: Should we abort the SP? For now assert this is not
782 		 *       case.
783 		 */
784 		assert(requested_version ==
785 		       spmc_get_current_sp_ctx()->ffa_version);
786 	} else {
787 		/*
788 		 * If this is called by the normal world, record this
789 		 * information in its descriptor.
790 		 */
791 		spmc_get_hyp_ctx()->ffa_version = requested_version;
792 	}
793 
794 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
795 					  FFA_VERSION_MINOR));
796 }
797 
798 /*******************************************************************************
799  * Helper function to obtain the FF-A version of the calling partition.
800  ******************************************************************************/
801 uint32_t get_partition_ffa_version(bool secure_origin)
802 {
803 	if (secure_origin) {
804 		return spmc_get_current_sp_ctx()->ffa_version;
805 	} else {
806 		return spmc_get_hyp_ctx()->ffa_version;
807 	}
808 }
809 
810 static uint64_t rxtx_map_handler(uint32_t smc_fid,
811 				 bool secure_origin,
812 				 uint64_t x1,
813 				 uint64_t x2,
814 				 uint64_t x3,
815 				 uint64_t x4,
816 				 void *cookie,
817 				 void *handle,
818 				 uint64_t flags)
819 {
820 	int ret;
821 	uint32_t error_code;
822 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
823 	struct mailbox *mbox;
824 	uintptr_t tx_address = x1;
825 	uintptr_t rx_address = x2;
826 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
827 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
828 
829 	/*
830 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
831 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
832 	 * ABI on behalf of a VM and reject it if this is the case.
833 	 */
834 	if (tx_address == 0 || rx_address == 0) {
835 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
836 		return spmc_ffa_error_return(handle,
837 					     FFA_ERROR_INVALID_PARAMETER);
838 	}
839 
840 	/* Ensure the specified buffers are not the same. */
841 	if (tx_address == rx_address) {
842 		WARN("TX Buffer must not be the same as RX Buffer.\n");
843 		return spmc_ffa_error_return(handle,
844 					     FFA_ERROR_INVALID_PARAMETER);
845 	}
846 
847 	/* Ensure the buffer size is not 0. */
848 	if (buf_size == 0U) {
849 		WARN("Buffer size must not be 0\n");
850 		return spmc_ffa_error_return(handle,
851 					     FFA_ERROR_INVALID_PARAMETER);
852 	}
853 
854 	/*
855 	 * Ensure the buffer size is a multiple of the translation granule size
856 	 * in TF-A.
857 	 */
858 	if (buf_size % PAGE_SIZE != 0U) {
859 		WARN("Buffer size must be aligned to translation granule.\n");
860 		return spmc_ffa_error_return(handle,
861 					     FFA_ERROR_INVALID_PARAMETER);
862 	}
863 
864 	/* Obtain the RX/TX buffer pair descriptor. */
865 	mbox = spmc_get_mbox_desc(secure_origin);
866 
867 	spin_lock(&mbox->lock);
868 
869 	/* Check if buffers have already been mapped. */
870 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
871 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
872 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
873 		error_code = FFA_ERROR_DENIED;
874 		goto err;
875 	}
876 
877 	/* memmap the TX buffer as read only. */
878 	ret = mmap_add_dynamic_region(tx_address, /* PA */
879 			tx_address, /* VA */
880 			buf_size, /* size */
881 			mem_atts | MT_RO_DATA); /* attrs */
882 	if (ret != 0) {
883 		/* Return the correct error code. */
884 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
885 						FFA_ERROR_INVALID_PARAMETER;
886 		WARN("Unable to map TX buffer: %d\n", error_code);
887 		goto err;
888 	}
889 
890 	/* memmap the RX buffer as read write. */
891 	ret = mmap_add_dynamic_region(rx_address, /* PA */
892 			rx_address, /* VA */
893 			buf_size, /* size */
894 			mem_atts | MT_RW_DATA); /* attrs */
895 
896 	if (ret != 0) {
897 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
898 						FFA_ERROR_INVALID_PARAMETER;
899 		WARN("Unable to map RX buffer: %d\n", error_code);
900 		/* Unmap the TX buffer again. */
901 		mmap_remove_dynamic_region(tx_address, buf_size);
902 		goto err;
903 	}
904 
905 	mbox->tx_buffer = (void *) tx_address;
906 	mbox->rx_buffer = (void *) rx_address;
907 	mbox->rxtx_page_count = page_count;
908 	spin_unlock(&mbox->lock);
909 
910 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
911 	/* Execution stops here. */
912 err:
913 	spin_unlock(&mbox->lock);
914 	return spmc_ffa_error_return(handle, error_code);
915 }
916 
917 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
918 				   bool secure_origin,
919 				   uint64_t x1,
920 				   uint64_t x2,
921 				   uint64_t x3,
922 				   uint64_t x4,
923 				   void *cookie,
924 				   void *handle,
925 				   uint64_t flags)
926 {
927 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
928 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
929 
930 	/*
931 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
932 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
933 	 * ABI on behalf of a VM and reject it if this is the case.
934 	 */
935 	if (x1 != 0UL) {
936 		return spmc_ffa_error_return(handle,
937 					     FFA_ERROR_INVALID_PARAMETER);
938 	}
939 
940 	spin_lock(&mbox->lock);
941 
942 	/* Check if buffers are currently mapped. */
943 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
944 		spin_unlock(&mbox->lock);
945 		return spmc_ffa_error_return(handle,
946 					     FFA_ERROR_INVALID_PARAMETER);
947 	}
948 
949 	/* Unmap RX Buffer */
950 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
951 				       buf_size) != 0) {
952 		WARN("Unable to unmap RX buffer!\n");
953 	}
954 
955 	mbox->rx_buffer = 0;
956 
957 	/* Unmap TX Buffer */
958 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
959 				       buf_size) != 0) {
960 		WARN("Unable to unmap TX buffer!\n");
961 	}
962 
963 	mbox->tx_buffer = 0;
964 	mbox->rxtx_page_count = 0;
965 
966 	spin_unlock(&mbox->lock);
967 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
968 }
969 
970 /*
971  * Helper function to populate the properties field of a Partition Info Get
972  * descriptor.
973  */
974 static uint32_t
975 partition_info_get_populate_properties(uint32_t sp_properties,
976 				       enum sp_execution_state sp_ec_state)
977 {
978 	uint32_t properties = sp_properties;
979 	uint32_t ec_state;
980 
981 	/* Determine the execution state of the SP. */
982 	ec_state = sp_ec_state == SP_STATE_AARCH64 ?
983 		   FFA_PARTITION_INFO_GET_AARCH64_STATE :
984 		   FFA_PARTITION_INFO_GET_AARCH32_STATE;
985 
986 	properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT;
987 
988 	return properties;
989 }
990 
991 /*
992  * Collate the partition information in a v1.1 partition information
993  * descriptor format, this will be converter later if required.
994  */
995 static int partition_info_get_handler_v1_1(uint32_t *uuid,
996 					   struct ffa_partition_info_v1_1
997 						  *partitions,
998 					   uint32_t max_partitions,
999 					   uint32_t *partition_count)
1000 {
1001 	uint32_t index;
1002 	struct ffa_partition_info_v1_1 *desc;
1003 	bool null_uuid = is_null_uuid(uuid);
1004 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1005 
1006 	/* Deal with Logical Partitions. */
1007 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1008 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
1009 			/* Found a matching UUID, populate appropriately. */
1010 			if (*partition_count >= max_partitions) {
1011 				return FFA_ERROR_NO_MEMORY;
1012 			}
1013 
1014 			desc = &partitions[*partition_count];
1015 			desc->ep_id = el3_lp_descs[index].sp_id;
1016 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1017 			/* LSPs must be AArch64. */
1018 			desc->properties =
1019 				partition_info_get_populate_properties(
1020 					el3_lp_descs[index].properties,
1021 					SP_STATE_AARCH64);
1022 
1023 			if (null_uuid) {
1024 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
1025 			}
1026 			(*partition_count)++;
1027 		}
1028 	}
1029 
1030 	/* Deal with physical SP's. */
1031 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1032 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
1033 			/* Found a matching UUID, populate appropriately. */
1034 			if (*partition_count >= max_partitions) {
1035 				return FFA_ERROR_NO_MEMORY;
1036 			}
1037 
1038 			desc = &partitions[*partition_count];
1039 			desc->ep_id = sp_desc[index].sp_id;
1040 			/*
1041 			 * Execution context count must match No. cores for
1042 			 * S-EL1 SPs.
1043 			 */
1044 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1045 			desc->properties =
1046 				partition_info_get_populate_properties(
1047 					sp_desc[index].properties,
1048 					sp_desc[index].execution_state);
1049 
1050 			if (null_uuid) {
1051 				copy_uuid(desc->uuid, sp_desc[index].uuid);
1052 			}
1053 			(*partition_count)++;
1054 		}
1055 	}
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Handle the case where that caller only wants the count of partitions
1061  * matching a given UUID and does not want the corresponding descriptors
1062  * populated.
1063  */
1064 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
1065 {
1066 	uint32_t index = 0;
1067 	uint32_t partition_count = 0;
1068 	bool null_uuid = is_null_uuid(uuid);
1069 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1070 
1071 	/* Deal with Logical Partitions. */
1072 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1073 		if (null_uuid ||
1074 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
1075 			(partition_count)++;
1076 		}
1077 	}
1078 
1079 	/* Deal with physical SP's. */
1080 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1081 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
1082 			(partition_count)++;
1083 		}
1084 	}
1085 	return partition_count;
1086 }
1087 
1088 /*
1089  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
1090  * the corresponding descriptor format from the v1.1 descriptor array.
1091  */
1092 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
1093 					     *partitions,
1094 					     struct mailbox *mbox,
1095 					     int partition_count)
1096 {
1097 	uint32_t index;
1098 	uint32_t buf_size;
1099 	uint32_t descriptor_size;
1100 	struct ffa_partition_info_v1_0 *v1_0_partitions =
1101 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
1102 
1103 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1104 	descriptor_size = partition_count *
1105 			  sizeof(struct ffa_partition_info_v1_0);
1106 
1107 	if (descriptor_size > buf_size) {
1108 		return FFA_ERROR_NO_MEMORY;
1109 	}
1110 
1111 	for (index = 0U; index < partition_count; index++) {
1112 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
1113 		v1_0_partitions[index].execution_ctx_count =
1114 			partitions[index].execution_ctx_count;
1115 		/* Only report v1.0 properties. */
1116 		v1_0_partitions[index].properties =
1117 			(partitions[index].properties &
1118 			FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK);
1119 	}
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
1125  * v1.0 implementations.
1126  */
1127 static uint64_t partition_info_get_handler(uint32_t smc_fid,
1128 					   bool secure_origin,
1129 					   uint64_t x1,
1130 					   uint64_t x2,
1131 					   uint64_t x3,
1132 					   uint64_t x4,
1133 					   void *cookie,
1134 					   void *handle,
1135 					   uint64_t flags)
1136 {
1137 	int ret;
1138 	uint32_t partition_count = 0;
1139 	uint32_t size = 0;
1140 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1141 	struct mailbox *mbox;
1142 	uint64_t info_get_flags;
1143 	bool count_only;
1144 	uint32_t uuid[4];
1145 
1146 	uuid[0] = x1;
1147 	uuid[1] = x2;
1148 	uuid[2] = x3;
1149 	uuid[3] = x4;
1150 
1151 	/* Determine if the Partition descriptors should be populated. */
1152 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
1153 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
1154 
1155 	/* Handle the case where we don't need to populate the descriptors. */
1156 	if (count_only) {
1157 		partition_count = partition_info_get_handler_count_only(uuid);
1158 		if (partition_count == 0) {
1159 			return spmc_ffa_error_return(handle,
1160 						FFA_ERROR_INVALID_PARAMETER);
1161 		}
1162 	} else {
1163 		struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS];
1164 
1165 		/*
1166 		 * Handle the case where the partition descriptors are required,
1167 		 * check we have the buffers available and populate the
1168 		 * appropriate structure version.
1169 		 */
1170 
1171 		/* Obtain the v1.1 format of the descriptors. */
1172 		ret = partition_info_get_handler_v1_1(uuid, partitions,
1173 						      MAX_SP_LP_PARTITIONS,
1174 						      &partition_count);
1175 
1176 		/* Check if an error occurred during discovery. */
1177 		if (ret != 0) {
1178 			goto err;
1179 		}
1180 
1181 		/* If we didn't find any matches the UUID is unknown. */
1182 		if (partition_count == 0) {
1183 			ret = FFA_ERROR_INVALID_PARAMETER;
1184 			goto err;
1185 		}
1186 
1187 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
1188 		mbox = spmc_get_mbox_desc(secure_origin);
1189 
1190 		/*
1191 		 * If the caller has not bothered registering its RX/TX pair
1192 		 * then return an error code.
1193 		 */
1194 		spin_lock(&mbox->lock);
1195 		if (mbox->rx_buffer == NULL) {
1196 			ret = FFA_ERROR_BUSY;
1197 			goto err_unlock;
1198 		}
1199 
1200 		/* Ensure the RX buffer is currently free. */
1201 		if (mbox->state != MAILBOX_STATE_EMPTY) {
1202 			ret = FFA_ERROR_BUSY;
1203 			goto err_unlock;
1204 		}
1205 
1206 		/* Zero the RX buffer before populating. */
1207 		(void)memset(mbox->rx_buffer, 0,
1208 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
1209 
1210 		/*
1211 		 * Depending on the FF-A version of the requesting partition
1212 		 * we may need to convert to a v1.0 format otherwise we can copy
1213 		 * directly.
1214 		 */
1215 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
1216 			ret = partition_info_populate_v1_0(partitions,
1217 							   mbox,
1218 							   partition_count);
1219 			if (ret != 0) {
1220 				goto err_unlock;
1221 			}
1222 		} else {
1223 			uint32_t buf_size = mbox->rxtx_page_count *
1224 					    FFA_PAGE_SIZE;
1225 
1226 			/* Ensure the descriptor will fit in the buffer. */
1227 			size = sizeof(struct ffa_partition_info_v1_1);
1228 			if (partition_count * size  > buf_size) {
1229 				ret = FFA_ERROR_NO_MEMORY;
1230 				goto err_unlock;
1231 			}
1232 			memcpy(mbox->rx_buffer, partitions,
1233 			       partition_count * size);
1234 		}
1235 
1236 		mbox->state = MAILBOX_STATE_FULL;
1237 		spin_unlock(&mbox->lock);
1238 	}
1239 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
1240 
1241 err_unlock:
1242 	spin_unlock(&mbox->lock);
1243 err:
1244 	return spmc_ffa_error_return(handle, ret);
1245 }
1246 
1247 static uint64_t ffa_feature_success(void *handle, uint32_t arg2)
1248 {
1249 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2);
1250 }
1251 
1252 static uint64_t ffa_features_retrieve_request(bool secure_origin,
1253 					      uint32_t input_properties,
1254 					      void *handle)
1255 {
1256 	/*
1257 	 * If we're called by the normal world we don't support any
1258 	 * additional features.
1259 	 */
1260 	if (!secure_origin) {
1261 		if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) {
1262 			return spmc_ffa_error_return(handle,
1263 						     FFA_ERROR_NOT_SUPPORTED);
1264 		}
1265 
1266 	} else {
1267 		struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1268 		/*
1269 		 * If v1.1 the NS bit must be set otherwise it is an invalid
1270 		 * call. If v1.0 check and store whether the SP has requested
1271 		 * the use of the NS bit.
1272 		 */
1273 		if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) {
1274 			if ((input_properties &
1275 			     FFA_FEATURES_RET_REQ_NS_BIT) == 0U) {
1276 				return spmc_ffa_error_return(handle,
1277 						       FFA_ERROR_NOT_SUPPORTED);
1278 			}
1279 			return ffa_feature_success(handle,
1280 						   FFA_FEATURES_RET_REQ_NS_BIT);
1281 		} else {
1282 			sp->ns_bit_requested = (input_properties &
1283 					       FFA_FEATURES_RET_REQ_NS_BIT) !=
1284 					       0U;
1285 		}
1286 		if (sp->ns_bit_requested) {
1287 			return ffa_feature_success(handle,
1288 						   FFA_FEATURES_RET_REQ_NS_BIT);
1289 		}
1290 	}
1291 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1292 }
1293 
1294 static uint64_t ffa_features_handler(uint32_t smc_fid,
1295 				     bool secure_origin,
1296 				     uint64_t x1,
1297 				     uint64_t x2,
1298 				     uint64_t x3,
1299 				     uint64_t x4,
1300 				     void *cookie,
1301 				     void *handle,
1302 				     uint64_t flags)
1303 {
1304 	uint32_t function_id = (uint32_t) x1;
1305 	uint32_t input_properties = (uint32_t) x2;
1306 
1307 	/* Check if a Feature ID was requested. */
1308 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1309 		/* We currently don't support any additional features. */
1310 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1311 	}
1312 
1313 	/*
1314 	 * Handle the cases where we have separate handlers due to additional
1315 	 * properties.
1316 	 */
1317 	switch (function_id) {
1318 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1319 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1320 		return ffa_features_retrieve_request(secure_origin,
1321 						     input_properties,
1322 						     handle);
1323 	}
1324 
1325 	/*
1326 	 * We don't currently support additional input properties for these
1327 	 * other ABIs therefore ensure this value is set to 0.
1328 	 */
1329 	if (input_properties != 0U) {
1330 		return spmc_ffa_error_return(handle,
1331 					     FFA_ERROR_NOT_SUPPORTED);
1332 	}
1333 
1334 	/* Report if any other FF-A ABI is supported. */
1335 	switch (function_id) {
1336 	/* Supported features from both worlds. */
1337 	case FFA_ERROR:
1338 	case FFA_SUCCESS_SMC32:
1339 	case FFA_INTERRUPT:
1340 	case FFA_SPM_ID_GET:
1341 	case FFA_ID_GET:
1342 	case FFA_FEATURES:
1343 	case FFA_VERSION:
1344 	case FFA_RX_RELEASE:
1345 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1346 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1347 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1348 	case FFA_PARTITION_INFO_GET:
1349 	case FFA_RXTX_MAP_SMC32:
1350 	case FFA_RXTX_MAP_SMC64:
1351 	case FFA_RXTX_UNMAP:
1352 	case FFA_MEM_FRAG_TX:
1353 	case FFA_MSG_RUN:
1354 
1355 		/*
1356 		 * We are relying on the fact that the other registers
1357 		 * will be set to 0 as these values align with the
1358 		 * currently implemented features of the SPMC. If this
1359 		 * changes this function must be extended to handle
1360 		 * reporting the additional functionality.
1361 		 */
1362 
1363 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1364 		/* Execution stops here. */
1365 
1366 	/* Supported ABIs only from the secure world. */
1367 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1368 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1369 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1370 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1371 	case FFA_MEM_RELINQUISH:
1372 	case FFA_MSG_WAIT:
1373 	case FFA_CONSOLE_LOG_SMC32:
1374 	case FFA_CONSOLE_LOG_SMC64:
1375 
1376 		if (!secure_origin) {
1377 			return spmc_ffa_error_return(handle,
1378 				FFA_ERROR_NOT_SUPPORTED);
1379 		}
1380 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1381 		/* Execution stops here. */
1382 
1383 	/* Supported features only from the normal world. */
1384 	case FFA_MEM_SHARE_SMC32:
1385 	case FFA_MEM_SHARE_SMC64:
1386 	case FFA_MEM_LEND_SMC32:
1387 	case FFA_MEM_LEND_SMC64:
1388 	case FFA_MEM_RECLAIM:
1389 	case FFA_MEM_FRAG_RX:
1390 
1391 		if (secure_origin) {
1392 			return spmc_ffa_error_return(handle,
1393 					FFA_ERROR_NOT_SUPPORTED);
1394 		}
1395 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1396 		/* Execution stops here. */
1397 
1398 	default:
1399 		return spmc_ffa_error_return(handle,
1400 					FFA_ERROR_NOT_SUPPORTED);
1401 	}
1402 }
1403 
1404 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1405 				   bool secure_origin,
1406 				   uint64_t x1,
1407 				   uint64_t x2,
1408 				   uint64_t x3,
1409 				   uint64_t x4,
1410 				   void *cookie,
1411 				   void *handle,
1412 				   uint64_t flags)
1413 {
1414 	if (secure_origin) {
1415 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1416 			 spmc_get_current_sp_ctx()->sp_id);
1417 	} else {
1418 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1419 			 spmc_get_hyp_ctx()->ns_ep_id);
1420 	}
1421 }
1422 
1423 /*
1424  * Enable an SP to query the ID assigned to the SPMC.
1425  */
1426 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid,
1427 				       bool secure_origin,
1428 				       uint64_t x1,
1429 				       uint64_t x2,
1430 				       uint64_t x3,
1431 				       uint64_t x4,
1432 				       void *cookie,
1433 				       void *handle,
1434 				       uint64_t flags)
1435 {
1436 	assert(x1 == 0UL);
1437 	assert(x2 == 0UL);
1438 	assert(x3 == 0UL);
1439 	assert(x4 == 0UL);
1440 	assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL);
1441 	assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL);
1442 	assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL);
1443 
1444 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID);
1445 }
1446 
1447 static uint64_t ffa_run_handler(uint32_t smc_fid,
1448 				bool secure_origin,
1449 				uint64_t x1,
1450 				uint64_t x2,
1451 				uint64_t x3,
1452 				uint64_t x4,
1453 				void *cookie,
1454 				void *handle,
1455 				uint64_t flags)
1456 {
1457 	struct secure_partition_desc *sp;
1458 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1459 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1460 	unsigned int idx;
1461 	unsigned int *rt_state;
1462 	unsigned int *rt_model;
1463 
1464 	/* Can only be called from the normal world. */
1465 	if (secure_origin) {
1466 		ERROR("FFA_RUN can only be called from NWd.\n");
1467 		return spmc_ffa_error_return(handle,
1468 					     FFA_ERROR_INVALID_PARAMETER);
1469 	}
1470 
1471 	/* Cannot run a Normal world partition. */
1472 	if (ffa_is_normal_world_id(target_id)) {
1473 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1474 		return spmc_ffa_error_return(handle,
1475 					     FFA_ERROR_INVALID_PARAMETER);
1476 	}
1477 
1478 	/* Check that the target SP exists. */
1479 	sp = spmc_get_sp_ctx(target_id);
1480 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1481 	if (sp == NULL) {
1482 		return spmc_ffa_error_return(handle,
1483 					     FFA_ERROR_INVALID_PARAMETER);
1484 	}
1485 
1486 	idx = get_ec_index(sp);
1487 
1488 	if (idx != vcpu_id) {
1489 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1490 		return spmc_ffa_error_return(handle,
1491 					     FFA_ERROR_INVALID_PARAMETER);
1492 	}
1493 	if (sp->runtime_el == S_EL0) {
1494 		spin_lock(&sp->rt_state_lock);
1495 	}
1496 	rt_state = &((sp->ec[idx]).rt_state);
1497 	rt_model = &((sp->ec[idx]).rt_model);
1498 	if (*rt_state == RT_STATE_RUNNING) {
1499 		if (sp->runtime_el == S_EL0) {
1500 			spin_unlock(&sp->rt_state_lock);
1501 		}
1502 		ERROR("Partition (0x%x) is already running.\n", target_id);
1503 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1504 	}
1505 
1506 	/*
1507 	 * Sanity check that if the execution context was not waiting then it
1508 	 * was either in the direct request or the run partition runtime model.
1509 	 */
1510 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1511 		assert(*rt_model == RT_MODEL_RUN ||
1512 		       *rt_model == RT_MODEL_DIR_REQ);
1513 	}
1514 
1515 	/*
1516 	 * If the context was waiting then update the partition runtime model.
1517 	 */
1518 	if (*rt_state == RT_STATE_WAITING) {
1519 		*rt_model = RT_MODEL_RUN;
1520 	}
1521 
1522 	/*
1523 	 * Forward the request to the correct SP vCPU after updating
1524 	 * its state.
1525 	 */
1526 	*rt_state = RT_STATE_RUNNING;
1527 
1528 	if (sp->runtime_el == S_EL0) {
1529 		spin_unlock(&sp->rt_state_lock);
1530 	}
1531 
1532 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1533 			       handle, cookie, flags, target_id);
1534 }
1535 
1536 static uint64_t rx_release_handler(uint32_t smc_fid,
1537 				   bool secure_origin,
1538 				   uint64_t x1,
1539 				   uint64_t x2,
1540 				   uint64_t x3,
1541 				   uint64_t x4,
1542 				   void *cookie,
1543 				   void *handle,
1544 				   uint64_t flags)
1545 {
1546 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1547 
1548 	spin_lock(&mbox->lock);
1549 
1550 	if (mbox->state != MAILBOX_STATE_FULL) {
1551 		spin_unlock(&mbox->lock);
1552 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1553 	}
1554 
1555 	mbox->state = MAILBOX_STATE_EMPTY;
1556 	spin_unlock(&mbox->lock);
1557 
1558 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1559 }
1560 
1561 static uint64_t spmc_ffa_console_log(uint32_t smc_fid,
1562 				     bool secure_origin,
1563 				     uint64_t x1,
1564 				     uint64_t x2,
1565 				     uint64_t x3,
1566 				     uint64_t x4,
1567 				     void *cookie,
1568 				     void *handle,
1569 				     uint64_t flags)
1570 {
1571 	/* Maximum number of characters is 48: 6 registers of 8 bytes each. */
1572 	char chars[48] = {0};
1573 	size_t chars_max;
1574 	size_t chars_count = x1;
1575 
1576 	/* Does not support request from Nwd. */
1577 	if (!secure_origin) {
1578 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1579 	}
1580 
1581 	assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64);
1582 	if (smc_fid == FFA_CONSOLE_LOG_SMC32) {
1583 		uint32_t *registers = (uint32_t *)chars;
1584 		registers[0] = (uint32_t)x2;
1585 		registers[1] = (uint32_t)x3;
1586 		registers[2] = (uint32_t)x4;
1587 		registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5);
1588 		registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6);
1589 		registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7);
1590 		chars_max = 6 * sizeof(uint32_t);
1591 	} else {
1592 		uint64_t *registers = (uint64_t *)chars;
1593 		registers[0] = x2;
1594 		registers[1] = x3;
1595 		registers[2] = x4;
1596 		registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5);
1597 		registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6);
1598 		registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7);
1599 		chars_max = 6 * sizeof(uint64_t);
1600 	}
1601 
1602 	if ((chars_count == 0) || (chars_count > chars_max)) {
1603 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1604 	}
1605 
1606 	for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) {
1607 		putchar(chars[i]);
1608 	}
1609 
1610 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1611 }
1612 
1613 /*
1614  * Perform initial validation on the provided secondary entry point.
1615  * For now ensure it does not lie within the BL31 Image or the SP's
1616  * RX/TX buffers as these are mapped within EL3.
1617  * TODO: perform validation for additional invalid memory regions.
1618  */
1619 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1620 {
1621 	struct mailbox *mb;
1622 	uintptr_t buffer_size;
1623 	uintptr_t sp_rx_buffer;
1624 	uintptr_t sp_tx_buffer;
1625 	uintptr_t sp_rx_buffer_limit;
1626 	uintptr_t sp_tx_buffer_limit;
1627 
1628 	mb = &sp->mailbox;
1629 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1630 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1631 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1632 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1633 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1634 
1635 	/*
1636 	 * Check if the entry point lies within BL31, or the
1637 	 * SP's RX or TX buffer.
1638 	 */
1639 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1640 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1641 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1642 		return -EINVAL;
1643 	}
1644 	return 0;
1645 }
1646 
1647 /*******************************************************************************
1648  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1649  *  register an entry point for initialization during a secondary cold boot.
1650  ******************************************************************************/
1651 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1652 					    bool secure_origin,
1653 					    uint64_t x1,
1654 					    uint64_t x2,
1655 					    uint64_t x3,
1656 					    uint64_t x4,
1657 					    void *cookie,
1658 					    void *handle,
1659 					    uint64_t flags)
1660 {
1661 	struct secure_partition_desc *sp;
1662 	struct sp_exec_ctx *sp_ctx;
1663 
1664 	/* This request cannot originate from the Normal world. */
1665 	if (!secure_origin) {
1666 		WARN("%s: Can only be called from SWd.\n", __func__);
1667 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1668 	}
1669 
1670 	/* Get the context of the current SP. */
1671 	sp = spmc_get_current_sp_ctx();
1672 	if (sp == NULL) {
1673 		WARN("%s: Cannot find SP context.\n", __func__);
1674 		return spmc_ffa_error_return(handle,
1675 					     FFA_ERROR_INVALID_PARAMETER);
1676 	}
1677 
1678 	/* Only an S-EL1 SP should be invoking this ABI. */
1679 	if (sp->runtime_el != S_EL1) {
1680 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1681 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1682 	}
1683 
1684 	/* Ensure the SP is in its initialization state. */
1685 	sp_ctx = spmc_get_sp_ec(sp);
1686 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1687 		WARN("%s: Can only be called during SP initialization.\n",
1688 		     __func__);
1689 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1690 	}
1691 
1692 	/* Perform initial validation of the secondary entry point. */
1693 	if (validate_secondary_ep(x1, sp)) {
1694 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1695 		     __func__, x1);
1696 		return spmc_ffa_error_return(handle,
1697 					     FFA_ERROR_INVALID_PARAMETER);
1698 	}
1699 
1700 	/*
1701 	 * Update the secondary entrypoint in SP context.
1702 	 * We don't need a lock here as during partition initialization there
1703 	 * will only be a single core online.
1704 	 */
1705 	sp->secondary_ep = x1;
1706 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1707 
1708 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1709 }
1710 
1711 /*******************************************************************************
1712  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1713  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1714  * function converts a permission value from the FF-A format to the mmap_attr_t
1715  * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and
1716  * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are
1717  * ignored by the function xlat_change_mem_attributes_ctx().
1718  ******************************************************************************/
1719 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms)
1720 {
1721 	unsigned int tf_attr = 0U;
1722 	unsigned int access;
1723 
1724 	/* Deal with data access permissions first. */
1725 	access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT;
1726 
1727 	switch (access) {
1728 	case FFA_MEM_PERM_DATA_RW:
1729 		/* Return 0 if the execute is set with RW. */
1730 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) {
1731 			tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER;
1732 		}
1733 		break;
1734 
1735 	case FFA_MEM_PERM_DATA_RO:
1736 		tf_attr |= MT_RO | MT_USER;
1737 		/* Deal with the instruction access permissions next. */
1738 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) {
1739 			tf_attr |= MT_EXECUTE;
1740 		} else {
1741 			tf_attr |= MT_EXECUTE_NEVER;
1742 		}
1743 		break;
1744 
1745 	case FFA_MEM_PERM_DATA_NA:
1746 	default:
1747 		return tf_attr;
1748 	}
1749 
1750 	return tf_attr;
1751 }
1752 
1753 /*******************************************************************************
1754  * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP
1755  ******************************************************************************/
1756 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid,
1757 					 bool secure_origin,
1758 					 uint64_t x1,
1759 					 uint64_t x2,
1760 					 uint64_t x3,
1761 					 uint64_t x4,
1762 					 void *cookie,
1763 					 void *handle,
1764 					 uint64_t flags)
1765 {
1766 	struct secure_partition_desc *sp;
1767 	unsigned int idx;
1768 	uintptr_t base_va = (uintptr_t) x1;
1769 	size_t size = (size_t)(x2 * PAGE_SIZE);
1770 	uint32_t tf_attr;
1771 	int ret;
1772 
1773 	/* This request cannot originate from the Normal world. */
1774 	if (!secure_origin) {
1775 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1776 	}
1777 
1778 	if (size == 0) {
1779 		return spmc_ffa_error_return(handle,
1780 					     FFA_ERROR_INVALID_PARAMETER);
1781 	}
1782 
1783 	/* Get the context of the current SP. */
1784 	sp = spmc_get_current_sp_ctx();
1785 	if (sp == NULL) {
1786 		return spmc_ffa_error_return(handle,
1787 					     FFA_ERROR_INVALID_PARAMETER);
1788 	}
1789 
1790 	/* A S-EL1 SP has no business invoking this ABI. */
1791 	if (sp->runtime_el == S_EL1) {
1792 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1793 	}
1794 
1795 	if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) {
1796 		return spmc_ffa_error_return(handle,
1797 					     FFA_ERROR_INVALID_PARAMETER);
1798 	}
1799 
1800 	/* Get the execution context of the calling SP. */
1801 	idx = get_ec_index(sp);
1802 
1803 	/*
1804 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1805 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1806 	 * and can only be initialising on this cpu.
1807 	 */
1808 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1809 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1810 	}
1811 
1812 	VERBOSE("Setting memory permissions:\n");
1813 	VERBOSE("  Start address  : 0x%lx\n", base_va);
1814 	VERBOSE("  Number of pages: %lu (%zu bytes)\n", x2, size);
1815 	VERBOSE("  Attributes     : 0x%x\n", (uint32_t)x3);
1816 
1817 	/* Convert inbound permissions to TF-A permission attributes */
1818 	tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3);
1819 	if (tf_attr == 0U) {
1820 		return spmc_ffa_error_return(handle,
1821 					     FFA_ERROR_INVALID_PARAMETER);
1822 	}
1823 
1824 	/* Request the change in permissions */
1825 	ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle,
1826 					     base_va, size, tf_attr);
1827 	if (ret != 0) {
1828 		return spmc_ffa_error_return(handle,
1829 					     FFA_ERROR_INVALID_PARAMETER);
1830 	}
1831 
1832 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1833 }
1834 
1835 /*******************************************************************************
1836  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1837  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1838  * function converts a permission value from the mmap_attr_t format to the FF-A
1839  * format.
1840  ******************************************************************************/
1841 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr)
1842 {
1843 	unsigned int perms = 0U;
1844 	unsigned int data_access;
1845 
1846 	if ((attr & MT_USER) == 0) {
1847 		/* No access from EL0. */
1848 		data_access = FFA_MEM_PERM_DATA_NA;
1849 	} else {
1850 		if ((attr & MT_RW) != 0) {
1851 			data_access = FFA_MEM_PERM_DATA_RW;
1852 		} else {
1853 			data_access = FFA_MEM_PERM_DATA_RO;
1854 		}
1855 	}
1856 
1857 	perms |= (data_access & FFA_MEM_PERM_DATA_MASK)
1858 		<< FFA_MEM_PERM_DATA_SHIFT;
1859 
1860 	if ((attr & MT_EXECUTE_NEVER) != 0U) {
1861 		perms |= FFA_MEM_PERM_INST_NON_EXEC;
1862 	}
1863 
1864 	return perms;
1865 }
1866 
1867 /*******************************************************************************
1868  * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP
1869  ******************************************************************************/
1870 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid,
1871 					 bool secure_origin,
1872 					 uint64_t x1,
1873 					 uint64_t x2,
1874 					 uint64_t x3,
1875 					 uint64_t x4,
1876 					 void *cookie,
1877 					 void *handle,
1878 					 uint64_t flags)
1879 {
1880 	struct secure_partition_desc *sp;
1881 	unsigned int idx;
1882 	uintptr_t base_va = (uintptr_t)x1;
1883 	uint32_t tf_attr = 0;
1884 	int ret;
1885 
1886 	/* This request cannot originate from the Normal world. */
1887 	if (!secure_origin) {
1888 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1889 	}
1890 
1891 	/* Get the context of the current SP. */
1892 	sp = spmc_get_current_sp_ctx();
1893 	if (sp == NULL) {
1894 		return spmc_ffa_error_return(handle,
1895 					     FFA_ERROR_INVALID_PARAMETER);
1896 	}
1897 
1898 	/* A S-EL1 SP has no business invoking this ABI. */
1899 	if (sp->runtime_el == S_EL1) {
1900 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1901 	}
1902 
1903 	/* Get the execution context of the calling SP. */
1904 	idx = get_ec_index(sp);
1905 
1906 	/*
1907 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1908 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1909 	 * and can only be initialising on this cpu.
1910 	 */
1911 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1912 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1913 	}
1914 
1915 	/* Request the permissions */
1916 	ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr);
1917 	if (ret != 0) {
1918 		return spmc_ffa_error_return(handle,
1919 					     FFA_ERROR_INVALID_PARAMETER);
1920 	}
1921 
1922 	/* Convert TF-A permission to FF-A permissions attributes. */
1923 	x2 = mmap_perm_to_ffa_perm(tf_attr);
1924 
1925 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2);
1926 }
1927 
1928 /*******************************************************************************
1929  * This function will parse the Secure Partition Manifest. From manifest, it
1930  * will fetch details for preparing Secure partition image context and secure
1931  * partition image boot arguments if any.
1932  ******************************************************************************/
1933 static int sp_manifest_parse(void *sp_manifest, int offset,
1934 			     struct secure_partition_desc *sp,
1935 			     entry_point_info_t *ep_info,
1936 			     int32_t *boot_info_reg)
1937 {
1938 	int32_t ret, node;
1939 	uint32_t config_32;
1940 
1941 	/*
1942 	 * Look for the mandatory fields that are expected to be present in
1943 	 * the SP manifests.
1944 	 */
1945 	node = fdt_path_offset(sp_manifest, "/");
1946 	if (node < 0) {
1947 		ERROR("Did not find root node.\n");
1948 		return node;
1949 	}
1950 
1951 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
1952 				    ARRAY_SIZE(sp->uuid), sp->uuid);
1953 	if (ret != 0) {
1954 		ERROR("Missing Secure Partition UUID.\n");
1955 		return ret;
1956 	}
1957 
1958 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
1959 	if (ret != 0) {
1960 		ERROR("Missing SP Exception Level information.\n");
1961 		return ret;
1962 	}
1963 
1964 	sp->runtime_el = config_32;
1965 
1966 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
1967 	if (ret != 0) {
1968 		ERROR("Missing Secure Partition FF-A Version.\n");
1969 		return ret;
1970 	}
1971 
1972 	sp->ffa_version = config_32;
1973 
1974 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
1975 	if (ret != 0) {
1976 		ERROR("Missing Secure Partition Execution State.\n");
1977 		return ret;
1978 	}
1979 
1980 	sp->execution_state = config_32;
1981 
1982 	ret = fdt_read_uint32(sp_manifest, node,
1983 			      "messaging-method", &config_32);
1984 	if (ret != 0) {
1985 		ERROR("Missing Secure Partition messaging method.\n");
1986 		return ret;
1987 	}
1988 
1989 	/* Validate this entry, we currently only support direct messaging. */
1990 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
1991 			  FFA_PARTITION_DIRECT_REQ_SEND |
1992 			  FFA_PARTITION_DIRECT_REQ2_RECV |
1993 			  FFA_PARTITION_DIRECT_REQ2_SEND)) != 0U) {
1994 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
1995 		     config_32);
1996 		return -EINVAL;
1997 	}
1998 
1999 	sp->properties = config_32;
2000 
2001 	ret = fdt_read_uint32(sp_manifest, node,
2002 			      "execution-ctx-count", &config_32);
2003 
2004 	if (ret != 0) {
2005 		ERROR("Missing SP Execution Context Count.\n");
2006 		return ret;
2007 	}
2008 
2009 	/*
2010 	 * Ensure this field is set correctly in the manifest however
2011 	 * since this is currently a hardcoded value for S-EL1 partitions
2012 	 * we don't need to save it here, just validate.
2013 	 */
2014 	if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) {
2015 		ERROR("SP Execution Context Count (%u) must be %u.\n",
2016 			config_32, PLATFORM_CORE_COUNT);
2017 		return -EINVAL;
2018 	}
2019 
2020 	/*
2021 	 * Look for the optional fields that are expected to be present in
2022 	 * an SP manifest.
2023 	 */
2024 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
2025 	if (ret != 0) {
2026 		WARN("Missing Secure Partition ID.\n");
2027 	} else {
2028 		if (!is_ffa_secure_id_valid(config_32)) {
2029 			ERROR("Invalid Secure Partition ID (0x%x).\n",
2030 			      config_32);
2031 			return -EINVAL;
2032 		}
2033 		sp->sp_id = config_32;
2034 	}
2035 
2036 	ret = fdt_read_uint32(sp_manifest, node,
2037 			      "power-management-messages", &config_32);
2038 	if (ret != 0) {
2039 		WARN("Missing Power Management Messages entry.\n");
2040 	} else {
2041 		if ((sp->runtime_el == S_EL0) && (config_32 != 0)) {
2042 			ERROR("Power messages not supported for S-EL0 SP\n");
2043 			return -EINVAL;
2044 		}
2045 
2046 		/*
2047 		 * Ensure only the currently supported power messages have
2048 		 * been requested.
2049 		 */
2050 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
2051 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
2052 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
2053 			ERROR("Requested unsupported PM messages (%x)\n",
2054 			      config_32);
2055 			return -EINVAL;
2056 		}
2057 		sp->pwr_mgmt_msgs = config_32;
2058 	}
2059 
2060 	ret = fdt_read_uint32(sp_manifest, node,
2061 			      "gp-register-num", &config_32);
2062 	if (ret != 0) {
2063 		WARN("Missing boot information register.\n");
2064 	} else {
2065 		/* Check if a register number between 0-3 is specified. */
2066 		if (config_32 < 4) {
2067 			*boot_info_reg = config_32;
2068 		} else {
2069 			WARN("Incorrect boot information register (%u).\n",
2070 			     config_32);
2071 		}
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 /*******************************************************************************
2078  * This function gets the Secure Partition Manifest base and maps the manifest
2079  * region.
2080  * Currently only one Secure Partition manifest is considered which is used to
2081  * prepare the context for the single Secure Partition.
2082  ******************************************************************************/
2083 static int find_and_prepare_sp_context(void)
2084 {
2085 	void *sp_manifest;
2086 	uintptr_t manifest_base;
2087 	uintptr_t manifest_base_align;
2088 	entry_point_info_t *next_image_ep_info;
2089 	int32_t ret, boot_info_reg = -1;
2090 	struct secure_partition_desc *sp;
2091 
2092 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
2093 	if (next_image_ep_info == NULL) {
2094 		WARN("No Secure Partition image provided by BL2.\n");
2095 		return -ENOENT;
2096 	}
2097 
2098 	sp_manifest = (void *)next_image_ep_info->args.arg0;
2099 	if (sp_manifest == NULL) {
2100 		WARN("Secure Partition manifest absent.\n");
2101 		return -ENOENT;
2102 	}
2103 
2104 	manifest_base = (uintptr_t)sp_manifest;
2105 	manifest_base_align = page_align(manifest_base, DOWN);
2106 
2107 	/*
2108 	 * Map the secure partition manifest region in the EL3 translation
2109 	 * regime.
2110 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
2111 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
2112 	 * not completely accommodate the secure partition manifest region.
2113 	 */
2114 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
2115 				      manifest_base_align,
2116 				      PAGE_SIZE * 2,
2117 				      MT_RO_DATA);
2118 	if (ret != 0) {
2119 		ERROR("Error while mapping SP manifest (%d).\n", ret);
2120 		return ret;
2121 	}
2122 
2123 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
2124 					    "arm,ffa-manifest-1.0");
2125 	if (ret < 0) {
2126 		ERROR("Error happened in SP manifest reading.\n");
2127 		return -EINVAL;
2128 	}
2129 
2130 	/*
2131 	 * Store the size of the manifest so that it can be used later to pass
2132 	 * the manifest as boot information later.
2133 	 */
2134 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
2135 	INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base,
2136 	     next_image_ep_info->args.arg1);
2137 
2138 	/*
2139 	 * Select an SP descriptor for initialising the partition's execution
2140 	 * context on the primary CPU.
2141 	 */
2142 	sp = spmc_get_current_sp_ctx();
2143 
2144 #if SPMC_AT_EL3_SEL0_SP
2145 	/* Assign translation tables context. */
2146 	sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context();
2147 
2148 #endif /* SPMC_AT_EL3_SEL0_SP */
2149 	/* Initialize entry point information for the SP */
2150 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
2151 		       SECURE | EP_ST_ENABLE);
2152 
2153 	/* Parse the SP manifest. */
2154 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info,
2155 				&boot_info_reg);
2156 	if (ret != 0) {
2157 		ERROR("Error in Secure Partition manifest parsing.\n");
2158 		return ret;
2159 	}
2160 
2161 	/* Perform any common initialisation. */
2162 	spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg);
2163 
2164 	/* Perform any initialisation specific to S-EL1 SPs. */
2165 	if (sp->runtime_el == S_EL1) {
2166 		spmc_el1_sp_setup(sp, next_image_ep_info);
2167 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2168 	}
2169 #if SPMC_AT_EL3_SEL0_SP
2170 	/* Perform any initialisation specific to S-EL0 SPs. */
2171 	else if (sp->runtime_el == S_EL0) {
2172 		/* Setup spsr in endpoint info for common context management routine. */
2173 		spmc_el0_sp_spsr_setup(next_image_ep_info);
2174 
2175 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2176 
2177 		/*
2178 		 * Perform any initialisation specific to S-EL0 not set by common
2179 		 * context management routine.
2180 		 */
2181 		spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest);
2182 	}
2183 #endif /* SPMC_AT_EL3_SEL0_SP */
2184 	else {
2185 		ERROR("Unexpected runtime EL: %u\n", sp->runtime_el);
2186 		return -EINVAL;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 /*******************************************************************************
2193  * This function takes an SP context pointer and performs a synchronous entry
2194  * into it.
2195  ******************************************************************************/
2196 static int32_t logical_sp_init(void)
2197 {
2198 	int32_t rc = 0;
2199 	struct el3_lp_desc *el3_lp_descs;
2200 
2201 	/* Perform initial validation of the Logical Partitions. */
2202 	rc = el3_sp_desc_validate();
2203 	if (rc != 0) {
2204 		ERROR("Logical Partition validation failed!\n");
2205 		return rc;
2206 	}
2207 
2208 	el3_lp_descs = get_el3_lp_array();
2209 
2210 	INFO("Logical Secure Partition init start.\n");
2211 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
2212 		rc = el3_lp_descs[i].init();
2213 		if (rc != 0) {
2214 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
2215 			      el3_lp_descs[i].sp_id);
2216 			return rc;
2217 		}
2218 		VERBOSE("Logical SP (0x%x) Initialized\n",
2219 			      el3_lp_descs[i].sp_id);
2220 	}
2221 
2222 	INFO("Logical Secure Partition init completed.\n");
2223 
2224 	return rc;
2225 }
2226 
2227 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
2228 {
2229 	uint64_t rc;
2230 
2231 	assert(ec != NULL);
2232 
2233 	/* Assign the context of the SP to this CPU */
2234 	cm_set_context(&(ec->cpu_ctx), SECURE);
2235 
2236 	/* Restore the context assigned above */
2237 	cm_el1_sysregs_context_restore(SECURE);
2238 	cm_set_next_eret_context(SECURE);
2239 
2240 	/* Invalidate TLBs at EL1. */
2241 	tlbivmalle1();
2242 	dsbish();
2243 
2244 	/* Enter Secure Partition */
2245 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
2246 
2247 	/* Save secure state */
2248 	cm_el1_sysregs_context_save(SECURE);
2249 
2250 	return rc;
2251 }
2252 
2253 /*******************************************************************************
2254  * SPMC Helper Functions.
2255  ******************************************************************************/
2256 static int32_t sp_init(void)
2257 {
2258 	uint64_t rc;
2259 	struct secure_partition_desc *sp;
2260 	struct sp_exec_ctx *ec;
2261 
2262 	sp = spmc_get_current_sp_ctx();
2263 	ec = spmc_get_sp_ec(sp);
2264 	ec->rt_model = RT_MODEL_INIT;
2265 	ec->rt_state = RT_STATE_RUNNING;
2266 
2267 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
2268 
2269 	rc = spmc_sp_synchronous_entry(ec);
2270 	if (rc != 0) {
2271 		/* Indicate SP init was not successful. */
2272 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
2273 		      sp->sp_id, rc);
2274 		return 0;
2275 	}
2276 
2277 	ec->rt_state = RT_STATE_WAITING;
2278 	INFO("Secure Partition initialized.\n");
2279 
2280 	return 1;
2281 }
2282 
2283 static void initalize_sp_descs(void)
2284 {
2285 	struct secure_partition_desc *sp;
2286 
2287 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
2288 		sp = &sp_desc[i];
2289 		sp->sp_id = INV_SP_ID;
2290 		sp->mailbox.rx_buffer = NULL;
2291 		sp->mailbox.tx_buffer = NULL;
2292 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
2293 		sp->secondary_ep = 0;
2294 	}
2295 }
2296 
2297 static void initalize_ns_ep_descs(void)
2298 {
2299 	struct ns_endpoint_desc *ns_ep;
2300 
2301 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
2302 		ns_ep = &ns_ep_desc[i];
2303 		/*
2304 		 * Clashes with the Hypervisor ID but will not be a
2305 		 * problem in practice.
2306 		 */
2307 		ns_ep->ns_ep_id = 0;
2308 		ns_ep->ffa_version = 0;
2309 		ns_ep->mailbox.rx_buffer = NULL;
2310 		ns_ep->mailbox.tx_buffer = NULL;
2311 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
2312 	}
2313 }
2314 
2315 /*******************************************************************************
2316  * Initialize SPMC attributes for the SPMD.
2317  ******************************************************************************/
2318 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
2319 {
2320 	spmc_attrs->major_version = FFA_VERSION_MAJOR;
2321 	spmc_attrs->minor_version = FFA_VERSION_MINOR;
2322 	spmc_attrs->exec_state = MODE_RW_64;
2323 	spmc_attrs->spmc_id = FFA_SPMC_ID;
2324 }
2325 
2326 /*******************************************************************************
2327  * Initialize contexts of all Secure Partitions.
2328  ******************************************************************************/
2329 int32_t spmc_setup(void)
2330 {
2331 	int32_t ret;
2332 	uint32_t flags;
2333 
2334 	/* Initialize endpoint descriptors */
2335 	initalize_sp_descs();
2336 	initalize_ns_ep_descs();
2337 
2338 	/*
2339 	 * Retrieve the information of the datastore for tracking shared memory
2340 	 * requests allocated by platform code and zero the region if available.
2341 	 */
2342 	ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data,
2343 					    &spmc_shmem_obj_state.data_size);
2344 	if (ret != 0) {
2345 		ERROR("Failed to obtain memory descriptor backing store!\n");
2346 		return ret;
2347 	}
2348 	memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size);
2349 
2350 	/* Setup logical SPs. */
2351 	ret = logical_sp_init();
2352 	if (ret != 0) {
2353 		ERROR("Failed to initialize Logical Partitions.\n");
2354 		return ret;
2355 	}
2356 
2357 	/* Perform physical SP setup. */
2358 
2359 	/* Disable MMU at EL1 (initialized by BL2) */
2360 	disable_mmu_icache_el1();
2361 
2362 	/* Initialize context of the SP */
2363 	INFO("Secure Partition context setup start.\n");
2364 
2365 	ret = find_and_prepare_sp_context();
2366 	if (ret != 0) {
2367 		ERROR("Error in SP finding and context preparation.\n");
2368 		return ret;
2369 	}
2370 
2371 	/* Register power management hooks with PSCI */
2372 	psci_register_spd_pm_hook(&spmc_pm);
2373 
2374 	/*
2375 	 * Register an interrupt handler for S-EL1 interrupts
2376 	 * when generated during code executing in the
2377 	 * non-secure state.
2378 	 */
2379 	flags = 0;
2380 	set_interrupt_rm_flag(flags, NON_SECURE);
2381 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
2382 					      spmc_sp_interrupt_handler,
2383 					      flags);
2384 	if (ret != 0) {
2385 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
2386 		panic();
2387 	}
2388 
2389 	/* Register init function for deferred init.  */
2390 	bl31_register_bl32_init(&sp_init);
2391 
2392 	INFO("Secure Partition setup done.\n");
2393 
2394 	return 0;
2395 }
2396 
2397 /*******************************************************************************
2398  * Secure Partition Manager SMC handler.
2399  ******************************************************************************/
2400 uint64_t spmc_smc_handler(uint32_t smc_fid,
2401 			  bool secure_origin,
2402 			  uint64_t x1,
2403 			  uint64_t x2,
2404 			  uint64_t x3,
2405 			  uint64_t x4,
2406 			  void *cookie,
2407 			  void *handle,
2408 			  uint64_t flags)
2409 {
2410 	switch (smc_fid) {
2411 
2412 	case FFA_VERSION:
2413 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
2414 					   x4, cookie, handle, flags);
2415 
2416 	case FFA_SPM_ID_GET:
2417 		return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2,
2418 					     x3, x4, cookie, handle, flags);
2419 
2420 	case FFA_ID_GET:
2421 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
2422 					  x4, cookie, handle, flags);
2423 
2424 	case FFA_FEATURES:
2425 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
2426 					    x4, cookie, handle, flags);
2427 
2428 	case FFA_SECONDARY_EP_REGISTER_SMC64:
2429 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
2430 						   x2, x3, x4, cookie, handle,
2431 						   flags);
2432 
2433 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
2434 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
2435 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
2436 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
2437 					      x3, x4, cookie, handle, flags);
2438 
2439 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
2440 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
2441 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
2442 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
2443 					       x3, x4, cookie, handle, flags);
2444 
2445 	case FFA_RXTX_MAP_SMC32:
2446 	case FFA_RXTX_MAP_SMC64:
2447 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2448 					cookie, handle, flags);
2449 
2450 	case FFA_RXTX_UNMAP:
2451 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
2452 					  x4, cookie, handle, flags);
2453 
2454 	case FFA_PARTITION_INFO_GET:
2455 		return partition_info_get_handler(smc_fid, secure_origin, x1,
2456 						  x2, x3, x4, cookie, handle,
2457 						  flags);
2458 
2459 	case FFA_RX_RELEASE:
2460 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
2461 					  x4, cookie, handle, flags);
2462 
2463 	case FFA_MSG_WAIT:
2464 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2465 					cookie, handle, flags);
2466 
2467 	case FFA_ERROR:
2468 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2469 					cookie, handle, flags);
2470 
2471 	case FFA_MSG_RUN:
2472 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2473 				       cookie, handle, flags);
2474 
2475 	case FFA_MEM_SHARE_SMC32:
2476 	case FFA_MEM_SHARE_SMC64:
2477 	case FFA_MEM_LEND_SMC32:
2478 	case FFA_MEM_LEND_SMC64:
2479 		return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4,
2480 					 cookie, handle, flags);
2481 
2482 	case FFA_MEM_FRAG_TX:
2483 		return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3,
2484 					    x4, cookie, handle, flags);
2485 
2486 	case FFA_MEM_FRAG_RX:
2487 		return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3,
2488 					    x4, cookie, handle, flags);
2489 
2490 	case FFA_MEM_RETRIEVE_REQ_SMC32:
2491 	case FFA_MEM_RETRIEVE_REQ_SMC64:
2492 		return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2,
2493 						 x3, x4, cookie, handle, flags);
2494 
2495 	case FFA_MEM_RELINQUISH:
2496 		return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2,
2497 					       x3, x4, cookie, handle, flags);
2498 
2499 	case FFA_MEM_RECLAIM:
2500 		return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3,
2501 						x4, cookie, handle, flags);
2502 	case FFA_CONSOLE_LOG_SMC32:
2503 	case FFA_CONSOLE_LOG_SMC64:
2504 		return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3,
2505 						x4, cookie, handle, flags);
2506 
2507 	case FFA_MEM_PERM_GET_SMC32:
2508 	case FFA_MEM_PERM_GET_SMC64:
2509 		return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2,
2510 						x3, x4, cookie, handle, flags);
2511 
2512 	case FFA_MEM_PERM_SET_SMC32:
2513 	case FFA_MEM_PERM_SET_SMC64:
2514 		return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2,
2515 						x3, x4, cookie, handle, flags);
2516 
2517 	default:
2518 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
2519 		break;
2520 	}
2521 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
2522 }
2523 
2524 /*******************************************************************************
2525  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
2526  * validates the interrupt and upon success arranges entry into the SP for
2527  * handling the interrupt.
2528  ******************************************************************************/
2529 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
2530 					  uint32_t flags,
2531 					  void *handle,
2532 					  void *cookie)
2533 {
2534 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
2535 	struct sp_exec_ctx *ec;
2536 	uint32_t linear_id = plat_my_core_pos();
2537 
2538 	/* Sanity check for a NULL pointer dereference. */
2539 	assert(sp != NULL);
2540 
2541 	/* Check the security state when the exception was generated. */
2542 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
2543 
2544 	/* Panic if not an S-EL1 Partition. */
2545 	if (sp->runtime_el != S_EL1) {
2546 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
2547 		      linear_id);
2548 		panic();
2549 	}
2550 
2551 	/* Obtain a reference to the SP execution context. */
2552 	ec = spmc_get_sp_ec(sp);
2553 
2554 	/* Ensure that the execution context is in waiting state else panic. */
2555 	if (ec->rt_state != RT_STATE_WAITING) {
2556 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
2557 		      linear_id, RT_STATE_WAITING, ec->rt_state);
2558 		panic();
2559 	}
2560 
2561 	/* Update the runtime model and state of the partition. */
2562 	ec->rt_model = RT_MODEL_INTR;
2563 	ec->rt_state = RT_STATE_RUNNING;
2564 
2565 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
2566 
2567 	/*
2568 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
2569 	 * populated as the SP can determine this by itself.
2570 	 * The flags field is forced to 0 mainly to pass the SVE hint bit
2571 	 * cleared for consumption by the lower EL.
2572 	 */
2573 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
2574 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2575 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2576 				     handle, 0ULL);
2577 }
2578