1 /* 2 * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 10 #include <arch_helpers.h> 11 #include <bl31/bl31.h> 12 #include <bl31/ehf.h> 13 #include <bl31/interrupt_mgmt.h> 14 #include <common/debug.h> 15 #include <common/fdt_wrappers.h> 16 #include <common/runtime_svc.h> 17 #include <common/uuid.h> 18 #include <lib/el3_runtime/context_mgmt.h> 19 #include <lib/smccc.h> 20 #include <lib/utils.h> 21 #include <lib/xlat_tables/xlat_tables_v2.h> 22 #include <libfdt.h> 23 #include <plat/common/platform.h> 24 #include <services/el3_spmc_logical_sp.h> 25 #include <services/ffa_svc.h> 26 #include <services/spmc_svc.h> 27 #include <services/spmd_svc.h> 28 #include "spmc.h" 29 #include "spmc_shared_mem.h" 30 31 #include <platform_def.h> 32 33 /* Declare the maximum number of SPs and El3 LPs. */ 34 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT 35 36 /* 37 * Allocate a secure partition descriptor to describe each SP in the system that 38 * does not reside at EL3. 39 */ 40 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT]; 41 42 /* 43 * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in 44 * the system that interacts with a SP. It is used to track the Hypervisor 45 * buffer pair, version and ID for now. It could be extended to track VM 46 * properties when the SPMC supports indirect messaging. 47 */ 48 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT]; 49 50 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 51 uint32_t flags, 52 void *handle, 53 void *cookie); 54 55 /* 56 * Helper function to obtain the array storing the EL3 57 * Logical Partition descriptors. 58 */ 59 struct el3_lp_desc *get_el3_lp_array(void) 60 { 61 return (struct el3_lp_desc *) EL3_LP_DESCS_START; 62 } 63 64 /* 65 * Helper function to obtain the descriptor of the last SP to whom control was 66 * handed to on this physical cpu. Currently, we assume there is only one SP. 67 * TODO: Expand to track multiple partitions when required. 68 */ 69 struct secure_partition_desc *spmc_get_current_sp_ctx(void) 70 { 71 return &(sp_desc[ACTIVE_SP_DESC_INDEX]); 72 } 73 74 /* 75 * Helper function to obtain the execution context of an SP on the 76 * current physical cpu. 77 */ 78 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp) 79 { 80 return &(sp->ec[get_ec_index(sp)]); 81 } 82 83 /* Helper function to get pointer to SP context from its ID. */ 84 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id) 85 { 86 /* Check for Secure World Partitions. */ 87 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 88 if (sp_desc[i].sp_id == id) { 89 return &(sp_desc[i]); 90 } 91 } 92 return NULL; 93 } 94 95 /* 96 * Helper function to obtain the descriptor of the Hypervisor or OS kernel. 97 * We assume that the first descriptor is reserved for this entity. 98 */ 99 struct ns_endpoint_desc *spmc_get_hyp_ctx(void) 100 { 101 return &(ns_ep_desc[0]); 102 } 103 104 /* 105 * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor 106 * or OS kernel in the normal world or the last SP that was run. 107 */ 108 struct mailbox *spmc_get_mbox_desc(bool secure_origin) 109 { 110 /* Obtain the RX/TX buffer pair descriptor. */ 111 if (secure_origin) { 112 return &(spmc_get_current_sp_ctx()->mailbox); 113 } else { 114 return &(spmc_get_hyp_ctx()->mailbox); 115 } 116 } 117 118 /****************************************************************************** 119 * This function returns to the place where spmc_sp_synchronous_entry() was 120 * called originally. 121 ******************************************************************************/ 122 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc) 123 { 124 /* 125 * The SPM must have initiated the original request through a 126 * synchronous entry into the secure partition. Jump back to the 127 * original C runtime context with the value of rc in x0; 128 */ 129 spm_secure_partition_exit(ec->c_rt_ctx, rc); 130 131 panic(); 132 } 133 134 /******************************************************************************* 135 * Return FFA_ERROR with specified error code. 136 ******************************************************************************/ 137 uint64_t spmc_ffa_error_return(void *handle, int error_code) 138 { 139 SMC_RET8(handle, FFA_ERROR, 140 FFA_TARGET_INFO_MBZ, error_code, 141 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, 142 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 143 } 144 145 /****************************************************************************** 146 * Helper function to validate a secure partition ID to ensure it does not 147 * conflict with any other FF-A component and follows the convention to 148 * indicate it resides within the secure world. 149 ******************************************************************************/ 150 bool is_ffa_secure_id_valid(uint16_t partition_id) 151 { 152 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 153 154 /* Ensure the ID is not the invalid partition ID. */ 155 if (partition_id == INV_SP_ID) { 156 return false; 157 } 158 159 /* Ensure the ID is not the SPMD ID. */ 160 if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) { 161 return false; 162 } 163 164 /* 165 * Ensure the ID follows the convention to indicate it resides 166 * in the secure world. 167 */ 168 if (!ffa_is_secure_world_id(partition_id)) { 169 return false; 170 } 171 172 /* Ensure we don't conflict with the SPMC partition ID. */ 173 if (partition_id == FFA_SPMC_ID) { 174 return false; 175 } 176 177 /* Ensure we do not already have an SP context with this ID. */ 178 if (spmc_get_sp_ctx(partition_id)) { 179 return false; 180 } 181 182 /* Ensure we don't clash with any Logical SP's. */ 183 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 184 if (el3_lp_descs[i].sp_id == partition_id) { 185 return false; 186 } 187 } 188 189 return true; 190 } 191 192 /******************************************************************************* 193 * This function either forwards the request to the other world or returns 194 * with an ERET depending on the source of the call. 195 * We can assume that the destination is for an entity at a lower exception 196 * level as any messages destined for a logical SP resident in EL3 will have 197 * already been taken care of by the SPMC before entering this function. 198 ******************************************************************************/ 199 static uint64_t spmc_smc_return(uint32_t smc_fid, 200 bool secure_origin, 201 uint64_t x1, 202 uint64_t x2, 203 uint64_t x3, 204 uint64_t x4, 205 void *handle, 206 void *cookie, 207 uint64_t flags, 208 uint16_t dst_id) 209 { 210 /* If the destination is in the normal world always go via the SPMD. */ 211 if (ffa_is_normal_world_id(dst_id)) { 212 return spmd_smc_handler(smc_fid, x1, x2, x3, x4, 213 cookie, handle, flags); 214 } 215 /* 216 * If the caller is secure and we want to return to the secure world, 217 * ERET directly. 218 */ 219 else if (secure_origin && ffa_is_secure_world_id(dst_id)) { 220 SMC_RET5(handle, smc_fid, x1, x2, x3, x4); 221 } 222 /* If we originated in the normal world then switch contexts. */ 223 else if (!secure_origin && ffa_is_secure_world_id(dst_id)) { 224 return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, 225 x3, x4, handle); 226 } else { 227 /* Unknown State. */ 228 panic(); 229 } 230 231 /* Shouldn't be Reached. */ 232 return 0; 233 } 234 235 /******************************************************************************* 236 * FF-A ABI Handlers. 237 ******************************************************************************/ 238 239 /******************************************************************************* 240 * Helper function to validate arg2 as part of a direct message. 241 ******************************************************************************/ 242 static inline bool direct_msg_validate_arg2(uint64_t x2) 243 { 244 /* Check message type. */ 245 if (x2 & FFA_FWK_MSG_BIT) { 246 /* We have a framework message, ensure it is a known message. */ 247 if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) { 248 VERBOSE("Invalid message format 0x%lx.\n", x2); 249 return false; 250 } 251 } else { 252 /* We have a partition messages, ensure x2 is not set. */ 253 if (x2 != (uint64_t) 0) { 254 VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n", 255 x2); 256 return false; 257 } 258 } 259 return true; 260 } 261 262 /******************************************************************************* 263 * Helper function to validate the destination ID of a direct response. 264 ******************************************************************************/ 265 static bool direct_msg_validate_dst_id(uint16_t dst_id) 266 { 267 struct secure_partition_desc *sp; 268 269 /* Check if we're targeting a normal world partition. */ 270 if (ffa_is_normal_world_id(dst_id)) { 271 return true; 272 } 273 274 /* Or directed to the SPMC itself.*/ 275 if (dst_id == FFA_SPMC_ID) { 276 return true; 277 } 278 279 /* Otherwise ensure the SP exists. */ 280 sp = spmc_get_sp_ctx(dst_id); 281 if (sp != NULL) { 282 return true; 283 } 284 285 return false; 286 } 287 288 /******************************************************************************* 289 * Helper function to validate the response from a Logical Partition. 290 ******************************************************************************/ 291 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id, 292 void *handle) 293 { 294 /* Retrieve populated Direct Response Arguments. */ 295 uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1); 296 uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2); 297 uint16_t src_id = ffa_endpoint_source(x1); 298 uint16_t dst_id = ffa_endpoint_destination(x1); 299 300 if (src_id != lp_id) { 301 ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id); 302 return false; 303 } 304 305 /* 306 * Check the destination ID is valid and ensure the LP is responding to 307 * the original request. 308 */ 309 if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) { 310 ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id); 311 return false; 312 } 313 314 if (!direct_msg_validate_arg2(x2)) { 315 ERROR("Invalid EL3 LP message encoding.\n"); 316 return false; 317 } 318 return true; 319 } 320 321 /******************************************************************************* 322 * Handle direct request messages and route to the appropriate destination. 323 ******************************************************************************/ 324 static uint64_t direct_req_smc_handler(uint32_t smc_fid, 325 bool secure_origin, 326 uint64_t x1, 327 uint64_t x2, 328 uint64_t x3, 329 uint64_t x4, 330 void *cookie, 331 void *handle, 332 uint64_t flags) 333 { 334 uint16_t src_id = ffa_endpoint_source(x1); 335 uint16_t dst_id = ffa_endpoint_destination(x1); 336 struct el3_lp_desc *el3_lp_descs; 337 struct secure_partition_desc *sp; 338 unsigned int idx; 339 340 /* Check if arg2 has been populated correctly based on message type. */ 341 if (!direct_msg_validate_arg2(x2)) { 342 return spmc_ffa_error_return(handle, 343 FFA_ERROR_INVALID_PARAMETER); 344 } 345 346 /* Validate Sender is either the current SP or from the normal world. */ 347 if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) || 348 (!secure_origin && !ffa_is_normal_world_id(src_id))) { 349 ERROR("Invalid direct request source ID (0x%x).\n", src_id); 350 return spmc_ffa_error_return(handle, 351 FFA_ERROR_INVALID_PARAMETER); 352 } 353 354 el3_lp_descs = get_el3_lp_array(); 355 356 /* Check if the request is destined for a Logical Partition. */ 357 for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) { 358 if (el3_lp_descs[i].sp_id == dst_id) { 359 uint64_t ret = el3_lp_descs[i].direct_req( 360 smc_fid, secure_origin, x1, x2, 361 x3, x4, cookie, handle, flags); 362 if (!direct_msg_validate_lp_resp(src_id, dst_id, 363 handle)) { 364 panic(); 365 } 366 367 /* Message checks out. */ 368 return ret; 369 } 370 } 371 372 /* 373 * If the request was not targeted to a LSP and from the secure world 374 * then it is invalid since a SP cannot call into the Normal world and 375 * there is no other SP to call into. If there are other SPs in future 376 * then the partition runtime model would need to be validated as well. 377 */ 378 if (secure_origin) { 379 VERBOSE("Direct request not supported to the Normal World.\n"); 380 return spmc_ffa_error_return(handle, 381 FFA_ERROR_INVALID_PARAMETER); 382 } 383 384 /* Check if the SP ID is valid. */ 385 sp = spmc_get_sp_ctx(dst_id); 386 if (sp == NULL) { 387 VERBOSE("Direct request to unknown partition ID (0x%x).\n", 388 dst_id); 389 return spmc_ffa_error_return(handle, 390 FFA_ERROR_INVALID_PARAMETER); 391 } 392 393 /* 394 * Check that the target execution context is in a waiting state before 395 * forwarding the direct request to it. 396 */ 397 idx = get_ec_index(sp); 398 if (sp->ec[idx].rt_state != RT_STATE_WAITING) { 399 VERBOSE("SP context on core%u is not waiting (%u).\n", 400 idx, sp->ec[idx].rt_model); 401 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 402 } 403 404 /* 405 * Everything checks out so forward the request to the SP after updating 406 * its state and runtime model. 407 */ 408 sp->ec[idx].rt_state = RT_STATE_RUNNING; 409 sp->ec[idx].rt_model = RT_MODEL_DIR_REQ; 410 sp->ec[idx].dir_req_origin_id = src_id; 411 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 412 handle, cookie, flags, dst_id); 413 } 414 415 /******************************************************************************* 416 * Handle direct response messages and route to the appropriate destination. 417 ******************************************************************************/ 418 static uint64_t direct_resp_smc_handler(uint32_t smc_fid, 419 bool secure_origin, 420 uint64_t x1, 421 uint64_t x2, 422 uint64_t x3, 423 uint64_t x4, 424 void *cookie, 425 void *handle, 426 uint64_t flags) 427 { 428 uint16_t dst_id = ffa_endpoint_destination(x1); 429 struct secure_partition_desc *sp; 430 unsigned int idx; 431 432 /* Check if arg2 has been populated correctly based on message type. */ 433 if (!direct_msg_validate_arg2(x2)) { 434 return spmc_ffa_error_return(handle, 435 FFA_ERROR_INVALID_PARAMETER); 436 } 437 438 /* Check that the response did not originate from the Normal world. */ 439 if (!secure_origin) { 440 VERBOSE("Direct Response not supported from Normal World.\n"); 441 return spmc_ffa_error_return(handle, 442 FFA_ERROR_INVALID_PARAMETER); 443 } 444 445 /* 446 * Check that the response is either targeted to the Normal world or the 447 * SPMC e.g. a PM response. 448 */ 449 if (!direct_msg_validate_dst_id(dst_id)) { 450 VERBOSE("Direct response to invalid partition ID (0x%x).\n", 451 dst_id); 452 return spmc_ffa_error_return(handle, 453 FFA_ERROR_INVALID_PARAMETER); 454 } 455 456 /* Obtain the SP descriptor and update its runtime state. */ 457 sp = spmc_get_sp_ctx(ffa_endpoint_source(x1)); 458 if (sp == NULL) { 459 VERBOSE("Direct response to unknown partition ID (0x%x).\n", 460 dst_id); 461 return spmc_ffa_error_return(handle, 462 FFA_ERROR_INVALID_PARAMETER); 463 } 464 465 /* Sanity check state is being tracked correctly in the SPMC. */ 466 idx = get_ec_index(sp); 467 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 468 469 /* Ensure SP execution context was in the right runtime model. */ 470 if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) { 471 VERBOSE("SP context on core%u not handling direct req (%u).\n", 472 idx, sp->ec[idx].rt_model); 473 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 474 } 475 476 if (sp->ec[idx].dir_req_origin_id != dst_id) { 477 WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n", 478 dst_id, sp->ec[idx].dir_req_origin_id, idx); 479 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 480 } 481 482 /* Update the state of the SP execution context. */ 483 sp->ec[idx].rt_state = RT_STATE_WAITING; 484 485 /* Clear the ongoing direct request ID. */ 486 sp->ec[idx].dir_req_origin_id = INV_SP_ID; 487 488 /* 489 * If the receiver is not the SPMC then forward the response to the 490 * Normal world. 491 */ 492 if (dst_id == FFA_SPMC_ID) { 493 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 494 /* Should not get here. */ 495 panic(); 496 } 497 498 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 499 handle, cookie, flags, dst_id); 500 } 501 502 /******************************************************************************* 503 * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its 504 * cycles. 505 ******************************************************************************/ 506 static uint64_t msg_wait_handler(uint32_t smc_fid, 507 bool secure_origin, 508 uint64_t x1, 509 uint64_t x2, 510 uint64_t x3, 511 uint64_t x4, 512 void *cookie, 513 void *handle, 514 uint64_t flags) 515 { 516 struct secure_partition_desc *sp; 517 unsigned int idx; 518 519 /* 520 * Check that the response did not originate from the Normal world as 521 * only the secure world can call this ABI. 522 */ 523 if (!secure_origin) { 524 VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n"); 525 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 526 } 527 528 /* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */ 529 sp = spmc_get_current_sp_ctx(); 530 if (sp == NULL) { 531 return spmc_ffa_error_return(handle, 532 FFA_ERROR_INVALID_PARAMETER); 533 } 534 535 /* 536 * Get the execution context of the SP that invoked FFA_MSG_WAIT. 537 */ 538 idx = get_ec_index(sp); 539 540 /* Ensure SP execution context was in the right runtime model. */ 541 if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 542 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 543 } 544 545 /* Sanity check the state is being tracked correctly in the SPMC. */ 546 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 547 548 /* 549 * Perform a synchronous exit if the partition was initialising. The 550 * state is updated after the exit. 551 */ 552 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 553 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 554 /* Should not get here */ 555 panic(); 556 } 557 558 /* Update the state of the SP execution context. */ 559 sp->ec[idx].rt_state = RT_STATE_WAITING; 560 561 /* Resume normal world if a secure interrupt was handled. */ 562 if (sp->ec[idx].rt_model == RT_MODEL_INTR) { 563 /* FFA_MSG_WAIT can only be called from the secure world. */ 564 unsigned int secure_state_in = SECURE; 565 unsigned int secure_state_out = NON_SECURE; 566 567 cm_el1_sysregs_context_save(secure_state_in); 568 cm_el1_sysregs_context_restore(secure_state_out); 569 cm_set_next_eret_context(secure_state_out); 570 SMC_RET0(cm_get_context(secure_state_out)); 571 } 572 573 /* Forward the response to the Normal world. */ 574 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 575 handle, cookie, flags, FFA_NWD_ID); 576 } 577 578 static uint64_t ffa_error_handler(uint32_t smc_fid, 579 bool secure_origin, 580 uint64_t x1, 581 uint64_t x2, 582 uint64_t x3, 583 uint64_t x4, 584 void *cookie, 585 void *handle, 586 uint64_t flags) 587 { 588 struct secure_partition_desc *sp; 589 unsigned int idx; 590 591 /* Check that the response did not originate from the Normal world. */ 592 if (!secure_origin) { 593 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 594 } 595 596 /* Get the descriptor of the SP that invoked FFA_ERROR. */ 597 sp = spmc_get_current_sp_ctx(); 598 if (sp == NULL) { 599 return spmc_ffa_error_return(handle, 600 FFA_ERROR_INVALID_PARAMETER); 601 } 602 603 /* Get the execution context of the SP that invoked FFA_ERROR. */ 604 idx = get_ec_index(sp); 605 606 /* 607 * We only expect FFA_ERROR to be received during SP initialisation 608 * otherwise this is an invalid call. 609 */ 610 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 611 ERROR("SP 0x%x failed to initialize.\n", sp->sp_id); 612 spmc_sp_synchronous_exit(&sp->ec[idx], x2); 613 /* Should not get here. */ 614 panic(); 615 } 616 617 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 618 } 619 620 static uint64_t ffa_version_handler(uint32_t smc_fid, 621 bool secure_origin, 622 uint64_t x1, 623 uint64_t x2, 624 uint64_t x3, 625 uint64_t x4, 626 void *cookie, 627 void *handle, 628 uint64_t flags) 629 { 630 uint32_t requested_version = x1 & FFA_VERSION_MASK; 631 632 if (requested_version & FFA_VERSION_BIT31_MASK) { 633 /* Invalid encoding, return an error. */ 634 SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED); 635 /* Execution stops here. */ 636 } 637 638 /* Determine the caller to store the requested version. */ 639 if (secure_origin) { 640 /* 641 * Ensure that the SP is reporting the same version as 642 * specified in its manifest. If these do not match there is 643 * something wrong with the SP. 644 * TODO: Should we abort the SP? For now assert this is not 645 * case. 646 */ 647 assert(requested_version == 648 spmc_get_current_sp_ctx()->ffa_version); 649 } else { 650 /* 651 * If this is called by the normal world, record this 652 * information in its descriptor. 653 */ 654 spmc_get_hyp_ctx()->ffa_version = requested_version; 655 } 656 657 SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR, 658 FFA_VERSION_MINOR)); 659 } 660 661 /******************************************************************************* 662 * Helper function to obtain the FF-A version of the calling partition. 663 ******************************************************************************/ 664 uint32_t get_partition_ffa_version(bool secure_origin) 665 { 666 if (secure_origin) { 667 return spmc_get_current_sp_ctx()->ffa_version; 668 } else { 669 return spmc_get_hyp_ctx()->ffa_version; 670 } 671 } 672 673 static uint64_t rxtx_map_handler(uint32_t smc_fid, 674 bool secure_origin, 675 uint64_t x1, 676 uint64_t x2, 677 uint64_t x3, 678 uint64_t x4, 679 void *cookie, 680 void *handle, 681 uint64_t flags) 682 { 683 int ret; 684 uint32_t error_code; 685 uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS; 686 struct mailbox *mbox; 687 uintptr_t tx_address = x1; 688 uintptr_t rx_address = x2; 689 uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */ 690 uint32_t buf_size = page_count * FFA_PAGE_SIZE; 691 692 /* 693 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 694 * indirect messaging with SPs. Check if the Hypervisor has invoked this 695 * ABI on behalf of a VM and reject it if this is the case. 696 */ 697 if (tx_address == 0 || rx_address == 0) { 698 WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n"); 699 return spmc_ffa_error_return(handle, 700 FFA_ERROR_INVALID_PARAMETER); 701 } 702 703 /* Ensure the specified buffers are not the same. */ 704 if (tx_address == rx_address) { 705 WARN("TX Buffer must not be the same as RX Buffer.\n"); 706 return spmc_ffa_error_return(handle, 707 FFA_ERROR_INVALID_PARAMETER); 708 } 709 710 /* Ensure the buffer size is not 0. */ 711 if (buf_size == 0U) { 712 WARN("Buffer size must not be 0\n"); 713 return spmc_ffa_error_return(handle, 714 FFA_ERROR_INVALID_PARAMETER); 715 } 716 717 /* 718 * Ensure the buffer size is a multiple of the translation granule size 719 * in TF-A. 720 */ 721 if (buf_size % PAGE_SIZE != 0U) { 722 WARN("Buffer size must be aligned to translation granule.\n"); 723 return spmc_ffa_error_return(handle, 724 FFA_ERROR_INVALID_PARAMETER); 725 } 726 727 /* Obtain the RX/TX buffer pair descriptor. */ 728 mbox = spmc_get_mbox_desc(secure_origin); 729 730 spin_lock(&mbox->lock); 731 732 /* Check if buffers have already been mapped. */ 733 if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) { 734 WARN("RX/TX Buffers already mapped (%p/%p)\n", 735 (void *) mbox->rx_buffer, (void *)mbox->tx_buffer); 736 error_code = FFA_ERROR_DENIED; 737 goto err; 738 } 739 740 /* memmap the TX buffer as read only. */ 741 ret = mmap_add_dynamic_region(tx_address, /* PA */ 742 tx_address, /* VA */ 743 buf_size, /* size */ 744 mem_atts | MT_RO_DATA); /* attrs */ 745 if (ret != 0) { 746 /* Return the correct error code. */ 747 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 748 FFA_ERROR_INVALID_PARAMETER; 749 WARN("Unable to map TX buffer: %d\n", error_code); 750 goto err; 751 } 752 753 /* memmap the RX buffer as read write. */ 754 ret = mmap_add_dynamic_region(rx_address, /* PA */ 755 rx_address, /* VA */ 756 buf_size, /* size */ 757 mem_atts | MT_RW_DATA); /* attrs */ 758 759 if (ret != 0) { 760 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 761 FFA_ERROR_INVALID_PARAMETER; 762 WARN("Unable to map RX buffer: %d\n", error_code); 763 /* Unmap the TX buffer again. */ 764 mmap_remove_dynamic_region(tx_address, buf_size); 765 goto err; 766 } 767 768 mbox->tx_buffer = (void *) tx_address; 769 mbox->rx_buffer = (void *) rx_address; 770 mbox->rxtx_page_count = page_count; 771 spin_unlock(&mbox->lock); 772 773 SMC_RET1(handle, FFA_SUCCESS_SMC32); 774 /* Execution stops here. */ 775 err: 776 spin_unlock(&mbox->lock); 777 return spmc_ffa_error_return(handle, error_code); 778 } 779 780 static uint64_t rxtx_unmap_handler(uint32_t smc_fid, 781 bool secure_origin, 782 uint64_t x1, 783 uint64_t x2, 784 uint64_t x3, 785 uint64_t x4, 786 void *cookie, 787 void *handle, 788 uint64_t flags) 789 { 790 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 791 uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 792 793 /* 794 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 795 * indirect messaging with SPs. Check if the Hypervisor has invoked this 796 * ABI on behalf of a VM and reject it if this is the case. 797 */ 798 if (x1 != 0UL) { 799 return spmc_ffa_error_return(handle, 800 FFA_ERROR_INVALID_PARAMETER); 801 } 802 803 spin_lock(&mbox->lock); 804 805 /* Check if buffers are currently mapped. */ 806 if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) { 807 spin_unlock(&mbox->lock); 808 return spmc_ffa_error_return(handle, 809 FFA_ERROR_INVALID_PARAMETER); 810 } 811 812 /* Unmap RX Buffer */ 813 if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer, 814 buf_size) != 0) { 815 WARN("Unable to unmap RX buffer!\n"); 816 } 817 818 mbox->rx_buffer = 0; 819 820 /* Unmap TX Buffer */ 821 if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer, 822 buf_size) != 0) { 823 WARN("Unable to unmap TX buffer!\n"); 824 } 825 826 mbox->tx_buffer = 0; 827 mbox->rxtx_page_count = 0; 828 829 spin_unlock(&mbox->lock); 830 SMC_RET1(handle, FFA_SUCCESS_SMC32); 831 } 832 833 /* 834 * Helper function to populate the properties field of a Partition Info Get 835 * descriptor. 836 */ 837 static uint32_t 838 partition_info_get_populate_properties(uint32_t sp_properties, 839 enum sp_execution_state sp_ec_state) 840 { 841 uint32_t properties = sp_properties; 842 uint32_t ec_state; 843 844 /* Determine the execution state of the SP. */ 845 ec_state = sp_ec_state == SP_STATE_AARCH64 ? 846 FFA_PARTITION_INFO_GET_AARCH64_STATE : 847 FFA_PARTITION_INFO_GET_AARCH32_STATE; 848 849 properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT; 850 851 return properties; 852 } 853 854 /* 855 * Collate the partition information in a v1.1 partition information 856 * descriptor format, this will be converter later if required. 857 */ 858 static int partition_info_get_handler_v1_1(uint32_t *uuid, 859 struct ffa_partition_info_v1_1 860 *partitions, 861 uint32_t max_partitions, 862 uint32_t *partition_count) 863 { 864 uint32_t index; 865 struct ffa_partition_info_v1_1 *desc; 866 bool null_uuid = is_null_uuid(uuid); 867 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 868 869 /* Deal with Logical Partitions. */ 870 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 871 if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) { 872 /* Found a matching UUID, populate appropriately. */ 873 if (*partition_count >= max_partitions) { 874 return FFA_ERROR_NO_MEMORY; 875 } 876 877 desc = &partitions[*partition_count]; 878 desc->ep_id = el3_lp_descs[index].sp_id; 879 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 880 /* LSPs must be AArch64. */ 881 desc->properties = 882 partition_info_get_populate_properties( 883 el3_lp_descs[index].properties, 884 SP_STATE_AARCH64); 885 886 if (null_uuid) { 887 copy_uuid(desc->uuid, el3_lp_descs[index].uuid); 888 } 889 (*partition_count)++; 890 } 891 } 892 893 /* Deal with physical SP's. */ 894 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 895 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 896 /* Found a matching UUID, populate appropriately. */ 897 if (*partition_count >= max_partitions) { 898 return FFA_ERROR_NO_MEMORY; 899 } 900 901 desc = &partitions[*partition_count]; 902 desc->ep_id = sp_desc[index].sp_id; 903 /* 904 * Execution context count must match No. cores for 905 * S-EL1 SPs. 906 */ 907 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 908 desc->properties = 909 partition_info_get_populate_properties( 910 sp_desc[index].properties, 911 sp_desc[index].execution_state); 912 913 if (null_uuid) { 914 copy_uuid(desc->uuid, sp_desc[index].uuid); 915 } 916 (*partition_count)++; 917 } 918 } 919 return 0; 920 } 921 922 /* 923 * Handle the case where that caller only wants the count of partitions 924 * matching a given UUID and does not want the corresponding descriptors 925 * populated. 926 */ 927 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid) 928 { 929 uint32_t index = 0; 930 uint32_t partition_count = 0; 931 bool null_uuid = is_null_uuid(uuid); 932 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 933 934 /* Deal with Logical Partitions. */ 935 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 936 if (null_uuid || 937 uuid_match(uuid, el3_lp_descs[index].uuid)) { 938 (partition_count)++; 939 } 940 } 941 942 /* Deal with physical SP's. */ 943 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 944 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 945 (partition_count)++; 946 } 947 } 948 return partition_count; 949 } 950 951 /* 952 * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate 953 * the corresponding descriptor format from the v1.1 descriptor array. 954 */ 955 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1 956 *partitions, 957 struct mailbox *mbox, 958 int partition_count) 959 { 960 uint32_t index; 961 uint32_t buf_size; 962 uint32_t descriptor_size; 963 struct ffa_partition_info_v1_0 *v1_0_partitions = 964 (struct ffa_partition_info_v1_0 *) mbox->rx_buffer; 965 966 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 967 descriptor_size = partition_count * 968 sizeof(struct ffa_partition_info_v1_0); 969 970 if (descriptor_size > buf_size) { 971 return FFA_ERROR_NO_MEMORY; 972 } 973 974 for (index = 0U; index < partition_count; index++) { 975 v1_0_partitions[index].ep_id = partitions[index].ep_id; 976 v1_0_partitions[index].execution_ctx_count = 977 partitions[index].execution_ctx_count; 978 /* Only report v1.0 properties. */ 979 v1_0_partitions[index].properties = 980 (partitions[index].properties & 981 FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK); 982 } 983 return 0; 984 } 985 986 /* 987 * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and 988 * v1.0 implementations. 989 */ 990 static uint64_t partition_info_get_handler(uint32_t smc_fid, 991 bool secure_origin, 992 uint64_t x1, 993 uint64_t x2, 994 uint64_t x3, 995 uint64_t x4, 996 void *cookie, 997 void *handle, 998 uint64_t flags) 999 { 1000 int ret; 1001 uint32_t partition_count = 0; 1002 uint32_t size = 0; 1003 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1004 struct mailbox *mbox; 1005 uint64_t info_get_flags; 1006 bool count_only; 1007 uint32_t uuid[4]; 1008 1009 uuid[0] = x1; 1010 uuid[1] = x2; 1011 uuid[2] = x3; 1012 uuid[3] = x4; 1013 1014 /* Determine if the Partition descriptors should be populated. */ 1015 info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5); 1016 count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK); 1017 1018 /* Handle the case where we don't need to populate the descriptors. */ 1019 if (count_only) { 1020 partition_count = partition_info_get_handler_count_only(uuid); 1021 if (partition_count == 0) { 1022 return spmc_ffa_error_return(handle, 1023 FFA_ERROR_INVALID_PARAMETER); 1024 } 1025 } else { 1026 struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS]; 1027 1028 /* 1029 * Handle the case where the partition descriptors are required, 1030 * check we have the buffers available and populate the 1031 * appropriate structure version. 1032 */ 1033 1034 /* Obtain the v1.1 format of the descriptors. */ 1035 ret = partition_info_get_handler_v1_1(uuid, partitions, 1036 MAX_SP_LP_PARTITIONS, 1037 &partition_count); 1038 1039 /* Check if an error occurred during discovery. */ 1040 if (ret != 0) { 1041 goto err; 1042 } 1043 1044 /* If we didn't find any matches the UUID is unknown. */ 1045 if (partition_count == 0) { 1046 ret = FFA_ERROR_INVALID_PARAMETER; 1047 goto err; 1048 } 1049 1050 /* Obtain the partition mailbox RX/TX buffer pair descriptor. */ 1051 mbox = spmc_get_mbox_desc(secure_origin); 1052 1053 /* 1054 * If the caller has not bothered registering its RX/TX pair 1055 * then return an error code. 1056 */ 1057 spin_lock(&mbox->lock); 1058 if (mbox->rx_buffer == NULL) { 1059 ret = FFA_ERROR_BUSY; 1060 goto err_unlock; 1061 } 1062 1063 /* Ensure the RX buffer is currently free. */ 1064 if (mbox->state != MAILBOX_STATE_EMPTY) { 1065 ret = FFA_ERROR_BUSY; 1066 goto err_unlock; 1067 } 1068 1069 /* Zero the RX buffer before populating. */ 1070 (void)memset(mbox->rx_buffer, 0, 1071 mbox->rxtx_page_count * FFA_PAGE_SIZE); 1072 1073 /* 1074 * Depending on the FF-A version of the requesting partition 1075 * we may need to convert to a v1.0 format otherwise we can copy 1076 * directly. 1077 */ 1078 if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) { 1079 ret = partition_info_populate_v1_0(partitions, 1080 mbox, 1081 partition_count); 1082 if (ret != 0) { 1083 goto err_unlock; 1084 } 1085 } else { 1086 uint32_t buf_size = mbox->rxtx_page_count * 1087 FFA_PAGE_SIZE; 1088 1089 /* Ensure the descriptor will fit in the buffer. */ 1090 size = sizeof(struct ffa_partition_info_v1_1); 1091 if (partition_count * size > buf_size) { 1092 ret = FFA_ERROR_NO_MEMORY; 1093 goto err_unlock; 1094 } 1095 memcpy(mbox->rx_buffer, partitions, 1096 partition_count * size); 1097 } 1098 1099 mbox->state = MAILBOX_STATE_FULL; 1100 spin_unlock(&mbox->lock); 1101 } 1102 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size); 1103 1104 err_unlock: 1105 spin_unlock(&mbox->lock); 1106 err: 1107 return spmc_ffa_error_return(handle, ret); 1108 } 1109 1110 static uint64_t ffa_feature_success(void *handle, uint32_t arg2) 1111 { 1112 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2); 1113 } 1114 1115 static uint64_t ffa_features_retrieve_request(bool secure_origin, 1116 uint32_t input_properties, 1117 void *handle) 1118 { 1119 /* 1120 * If we're called by the normal world we don't support any 1121 * additional features. 1122 */ 1123 if (!secure_origin) { 1124 if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) { 1125 return spmc_ffa_error_return(handle, 1126 FFA_ERROR_NOT_SUPPORTED); 1127 } 1128 1129 } else { 1130 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1131 /* 1132 * If v1.1 the NS bit must be set otherwise it is an invalid 1133 * call. If v1.0 check and store whether the SP has requested 1134 * the use of the NS bit. 1135 */ 1136 if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) { 1137 if ((input_properties & 1138 FFA_FEATURES_RET_REQ_NS_BIT) == 0U) { 1139 return spmc_ffa_error_return(handle, 1140 FFA_ERROR_NOT_SUPPORTED); 1141 } 1142 return ffa_feature_success(handle, 1143 FFA_FEATURES_RET_REQ_NS_BIT); 1144 } else { 1145 sp->ns_bit_requested = (input_properties & 1146 FFA_FEATURES_RET_REQ_NS_BIT) != 1147 0U; 1148 } 1149 if (sp->ns_bit_requested) { 1150 return ffa_feature_success(handle, 1151 FFA_FEATURES_RET_REQ_NS_BIT); 1152 } 1153 } 1154 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1155 } 1156 1157 static uint64_t ffa_features_handler(uint32_t smc_fid, 1158 bool secure_origin, 1159 uint64_t x1, 1160 uint64_t x2, 1161 uint64_t x3, 1162 uint64_t x4, 1163 void *cookie, 1164 void *handle, 1165 uint64_t flags) 1166 { 1167 uint32_t function_id = (uint32_t) x1; 1168 uint32_t input_properties = (uint32_t) x2; 1169 1170 /* Check if a Feature ID was requested. */ 1171 if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) { 1172 /* We currently don't support any additional features. */ 1173 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1174 } 1175 1176 /* 1177 * Handle the cases where we have separate handlers due to additional 1178 * properties. 1179 */ 1180 switch (function_id) { 1181 case FFA_MEM_RETRIEVE_REQ_SMC32: 1182 case FFA_MEM_RETRIEVE_REQ_SMC64: 1183 return ffa_features_retrieve_request(secure_origin, 1184 input_properties, 1185 handle); 1186 } 1187 1188 /* 1189 * We don't currently support additional input properties for these 1190 * other ABIs therefore ensure this value is set to 0. 1191 */ 1192 if (input_properties != 0U) { 1193 return spmc_ffa_error_return(handle, 1194 FFA_ERROR_NOT_SUPPORTED); 1195 } 1196 1197 /* Report if any other FF-A ABI is supported. */ 1198 switch (function_id) { 1199 /* Supported features from both worlds. */ 1200 case FFA_ERROR: 1201 case FFA_SUCCESS_SMC32: 1202 case FFA_INTERRUPT: 1203 case FFA_SPM_ID_GET: 1204 case FFA_ID_GET: 1205 case FFA_FEATURES: 1206 case FFA_VERSION: 1207 case FFA_RX_RELEASE: 1208 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1209 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1210 case FFA_PARTITION_INFO_GET: 1211 case FFA_RXTX_MAP_SMC32: 1212 case FFA_RXTX_MAP_SMC64: 1213 case FFA_RXTX_UNMAP: 1214 case FFA_MEM_FRAG_TX: 1215 case FFA_MSG_RUN: 1216 1217 /* 1218 * We are relying on the fact that the other registers 1219 * will be set to 0 as these values align with the 1220 * currently implemented features of the SPMC. If this 1221 * changes this function must be extended to handle 1222 * reporting the additional functionality. 1223 */ 1224 1225 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1226 /* Execution stops here. */ 1227 1228 /* Supported ABIs only from the secure world. */ 1229 case FFA_SECONDARY_EP_REGISTER_SMC64: 1230 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1231 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1232 case FFA_MEM_RELINQUISH: 1233 case FFA_MSG_WAIT: 1234 1235 if (!secure_origin) { 1236 return spmc_ffa_error_return(handle, 1237 FFA_ERROR_NOT_SUPPORTED); 1238 } 1239 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1240 /* Execution stops here. */ 1241 1242 /* Supported features only from the normal world. */ 1243 case FFA_MEM_SHARE_SMC32: 1244 case FFA_MEM_SHARE_SMC64: 1245 case FFA_MEM_LEND_SMC32: 1246 case FFA_MEM_LEND_SMC64: 1247 case FFA_MEM_RECLAIM: 1248 case FFA_MEM_FRAG_RX: 1249 1250 if (secure_origin) { 1251 return spmc_ffa_error_return(handle, 1252 FFA_ERROR_NOT_SUPPORTED); 1253 } 1254 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1255 /* Execution stops here. */ 1256 1257 default: 1258 return spmc_ffa_error_return(handle, 1259 FFA_ERROR_NOT_SUPPORTED); 1260 } 1261 } 1262 1263 static uint64_t ffa_id_get_handler(uint32_t smc_fid, 1264 bool secure_origin, 1265 uint64_t x1, 1266 uint64_t x2, 1267 uint64_t x3, 1268 uint64_t x4, 1269 void *cookie, 1270 void *handle, 1271 uint64_t flags) 1272 { 1273 if (secure_origin) { 1274 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1275 spmc_get_current_sp_ctx()->sp_id); 1276 } else { 1277 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1278 spmc_get_hyp_ctx()->ns_ep_id); 1279 } 1280 } 1281 1282 /* 1283 * Enable an SP to query the ID assigned to the SPMC. 1284 */ 1285 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid, 1286 bool secure_origin, 1287 uint64_t x1, 1288 uint64_t x2, 1289 uint64_t x3, 1290 uint64_t x4, 1291 void *cookie, 1292 void *handle, 1293 uint64_t flags) 1294 { 1295 assert(x1 == 0UL); 1296 assert(x2 == 0UL); 1297 assert(x3 == 0UL); 1298 assert(x4 == 0UL); 1299 assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL); 1300 assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL); 1301 assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL); 1302 1303 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID); 1304 } 1305 1306 static uint64_t ffa_run_handler(uint32_t smc_fid, 1307 bool secure_origin, 1308 uint64_t x1, 1309 uint64_t x2, 1310 uint64_t x3, 1311 uint64_t x4, 1312 void *cookie, 1313 void *handle, 1314 uint64_t flags) 1315 { 1316 struct secure_partition_desc *sp; 1317 uint16_t target_id = FFA_RUN_EP_ID(x1); 1318 uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1); 1319 unsigned int idx; 1320 unsigned int *rt_state; 1321 unsigned int *rt_model; 1322 1323 /* Can only be called from the normal world. */ 1324 if (secure_origin) { 1325 ERROR("FFA_RUN can only be called from NWd.\n"); 1326 return spmc_ffa_error_return(handle, 1327 FFA_ERROR_INVALID_PARAMETER); 1328 } 1329 1330 /* Cannot run a Normal world partition. */ 1331 if (ffa_is_normal_world_id(target_id)) { 1332 ERROR("Cannot run a NWd partition (0x%x).\n", target_id); 1333 return spmc_ffa_error_return(handle, 1334 FFA_ERROR_INVALID_PARAMETER); 1335 } 1336 1337 /* Check that the target SP exists. */ 1338 sp = spmc_get_sp_ctx(target_id); 1339 ERROR("Unknown partition ID (0x%x).\n", target_id); 1340 if (sp == NULL) { 1341 return spmc_ffa_error_return(handle, 1342 FFA_ERROR_INVALID_PARAMETER); 1343 } 1344 1345 idx = get_ec_index(sp); 1346 if (idx != vcpu_id) { 1347 ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id); 1348 return spmc_ffa_error_return(handle, 1349 FFA_ERROR_INVALID_PARAMETER); 1350 } 1351 rt_state = &((sp->ec[idx]).rt_state); 1352 rt_model = &((sp->ec[idx]).rt_model); 1353 if (*rt_state == RT_STATE_RUNNING) { 1354 ERROR("Partition (0x%x) is already running.\n", target_id); 1355 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 1356 } 1357 1358 /* 1359 * Sanity check that if the execution context was not waiting then it 1360 * was either in the direct request or the run partition runtime model. 1361 */ 1362 if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) { 1363 assert(*rt_model == RT_MODEL_RUN || 1364 *rt_model == RT_MODEL_DIR_REQ); 1365 } 1366 1367 /* 1368 * If the context was waiting then update the partition runtime model. 1369 */ 1370 if (*rt_state == RT_STATE_WAITING) { 1371 *rt_model = RT_MODEL_RUN; 1372 } 1373 1374 /* 1375 * Forward the request to the correct SP vCPU after updating 1376 * its state. 1377 */ 1378 *rt_state = RT_STATE_RUNNING; 1379 1380 return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0, 1381 handle, cookie, flags, target_id); 1382 } 1383 1384 static uint64_t rx_release_handler(uint32_t smc_fid, 1385 bool secure_origin, 1386 uint64_t x1, 1387 uint64_t x2, 1388 uint64_t x3, 1389 uint64_t x4, 1390 void *cookie, 1391 void *handle, 1392 uint64_t flags) 1393 { 1394 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1395 1396 spin_lock(&mbox->lock); 1397 1398 if (mbox->state != MAILBOX_STATE_FULL) { 1399 spin_unlock(&mbox->lock); 1400 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1401 } 1402 1403 mbox->state = MAILBOX_STATE_EMPTY; 1404 spin_unlock(&mbox->lock); 1405 1406 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1407 } 1408 1409 /* 1410 * Perform initial validation on the provided secondary entry point. 1411 * For now ensure it does not lie within the BL31 Image or the SP's 1412 * RX/TX buffers as these are mapped within EL3. 1413 * TODO: perform validation for additional invalid memory regions. 1414 */ 1415 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp) 1416 { 1417 struct mailbox *mb; 1418 uintptr_t buffer_size; 1419 uintptr_t sp_rx_buffer; 1420 uintptr_t sp_tx_buffer; 1421 uintptr_t sp_rx_buffer_limit; 1422 uintptr_t sp_tx_buffer_limit; 1423 1424 mb = &sp->mailbox; 1425 buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE); 1426 sp_rx_buffer = (uintptr_t) mb->rx_buffer; 1427 sp_tx_buffer = (uintptr_t) mb->tx_buffer; 1428 sp_rx_buffer_limit = sp_rx_buffer + buffer_size; 1429 sp_tx_buffer_limit = sp_tx_buffer + buffer_size; 1430 1431 /* 1432 * Check if the entry point lies within BL31, or the 1433 * SP's RX or TX buffer. 1434 */ 1435 if ((ep >= BL31_BASE && ep < BL31_LIMIT) || 1436 (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) || 1437 (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) { 1438 return -EINVAL; 1439 } 1440 return 0; 1441 } 1442 1443 /******************************************************************************* 1444 * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to 1445 * register an entry point for initialization during a secondary cold boot. 1446 ******************************************************************************/ 1447 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid, 1448 bool secure_origin, 1449 uint64_t x1, 1450 uint64_t x2, 1451 uint64_t x3, 1452 uint64_t x4, 1453 void *cookie, 1454 void *handle, 1455 uint64_t flags) 1456 { 1457 struct secure_partition_desc *sp; 1458 struct sp_exec_ctx *sp_ctx; 1459 1460 /* This request cannot originate from the Normal world. */ 1461 if (!secure_origin) { 1462 WARN("%s: Can only be called from SWd.\n", __func__); 1463 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1464 } 1465 1466 /* Get the context of the current SP. */ 1467 sp = spmc_get_current_sp_ctx(); 1468 if (sp == NULL) { 1469 WARN("%s: Cannot find SP context.\n", __func__); 1470 return spmc_ffa_error_return(handle, 1471 FFA_ERROR_INVALID_PARAMETER); 1472 } 1473 1474 /* Only an S-EL1 SP should be invoking this ABI. */ 1475 if (sp->runtime_el != S_EL1) { 1476 WARN("%s: Can only be called for a S-EL1 SP.\n", __func__); 1477 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1478 } 1479 1480 /* Ensure the SP is in its initialization state. */ 1481 sp_ctx = spmc_get_sp_ec(sp); 1482 if (sp_ctx->rt_model != RT_MODEL_INIT) { 1483 WARN("%s: Can only be called during SP initialization.\n", 1484 __func__); 1485 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1486 } 1487 1488 /* Perform initial validation of the secondary entry point. */ 1489 if (validate_secondary_ep(x1, sp)) { 1490 WARN("%s: Invalid entry point provided (0x%lx).\n", 1491 __func__, x1); 1492 return spmc_ffa_error_return(handle, 1493 FFA_ERROR_INVALID_PARAMETER); 1494 } 1495 1496 /* 1497 * Update the secondary entrypoint in SP context. 1498 * We don't need a lock here as during partition initialization there 1499 * will only be a single core online. 1500 */ 1501 sp->secondary_ep = x1; 1502 VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep); 1503 1504 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1505 } 1506 1507 /******************************************************************************* 1508 * This function will parse the Secure Partition Manifest. From manifest, it 1509 * will fetch details for preparing Secure partition image context and secure 1510 * partition image boot arguments if any. 1511 ******************************************************************************/ 1512 static int sp_manifest_parse(void *sp_manifest, int offset, 1513 struct secure_partition_desc *sp, 1514 entry_point_info_t *ep_info, 1515 int32_t *boot_info_reg) 1516 { 1517 int32_t ret, node; 1518 uint32_t config_32; 1519 1520 /* 1521 * Look for the mandatory fields that are expected to be present in 1522 * the SP manifests. 1523 */ 1524 node = fdt_path_offset(sp_manifest, "/"); 1525 if (node < 0) { 1526 ERROR("Did not find root node.\n"); 1527 return node; 1528 } 1529 1530 ret = fdt_read_uint32_array(sp_manifest, node, "uuid", 1531 ARRAY_SIZE(sp->uuid), sp->uuid); 1532 if (ret != 0) { 1533 ERROR("Missing Secure Partition UUID.\n"); 1534 return ret; 1535 } 1536 1537 ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32); 1538 if (ret != 0) { 1539 ERROR("Missing SP Exception Level information.\n"); 1540 return ret; 1541 } 1542 1543 sp->runtime_el = config_32; 1544 1545 ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32); 1546 if (ret != 0) { 1547 ERROR("Missing Secure Partition FF-A Version.\n"); 1548 return ret; 1549 } 1550 1551 sp->ffa_version = config_32; 1552 1553 ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32); 1554 if (ret != 0) { 1555 ERROR("Missing Secure Partition Execution State.\n"); 1556 return ret; 1557 } 1558 1559 sp->execution_state = config_32; 1560 1561 ret = fdt_read_uint32(sp_manifest, node, 1562 "messaging-method", &config_32); 1563 if (ret != 0) { 1564 ERROR("Missing Secure Partition messaging method.\n"); 1565 return ret; 1566 } 1567 1568 /* Validate this entry, we currently only support direct messaging. */ 1569 if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV | 1570 FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) { 1571 WARN("Invalid Secure Partition messaging method (0x%x)\n", 1572 config_32); 1573 return -EINVAL; 1574 } 1575 1576 sp->properties = config_32; 1577 1578 ret = fdt_read_uint32(sp_manifest, node, 1579 "execution-ctx-count", &config_32); 1580 1581 if (ret != 0) { 1582 ERROR("Missing SP Execution Context Count.\n"); 1583 return ret; 1584 } 1585 1586 /* 1587 * Ensure this field is set correctly in the manifest however 1588 * since this is currently a hardcoded value for S-EL1 partitions 1589 * we don't need to save it here, just validate. 1590 */ 1591 if (config_32 != PLATFORM_CORE_COUNT) { 1592 ERROR("SP Execution Context Count (%u) must be %u.\n", 1593 config_32, PLATFORM_CORE_COUNT); 1594 return -EINVAL; 1595 } 1596 1597 /* 1598 * Look for the optional fields that are expected to be present in 1599 * an SP manifest. 1600 */ 1601 ret = fdt_read_uint32(sp_manifest, node, "id", &config_32); 1602 if (ret != 0) { 1603 WARN("Missing Secure Partition ID.\n"); 1604 } else { 1605 if (!is_ffa_secure_id_valid(config_32)) { 1606 ERROR("Invalid Secure Partition ID (0x%x).\n", 1607 config_32); 1608 return -EINVAL; 1609 } 1610 sp->sp_id = config_32; 1611 } 1612 1613 ret = fdt_read_uint32(sp_manifest, node, 1614 "power-management-messages", &config_32); 1615 if (ret != 0) { 1616 WARN("Missing Power Management Messages entry.\n"); 1617 } else { 1618 /* 1619 * Ensure only the currently supported power messages have 1620 * been requested. 1621 */ 1622 if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF | 1623 FFA_PM_MSG_SUB_CPU_SUSPEND | 1624 FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) { 1625 ERROR("Requested unsupported PM messages (%x)\n", 1626 config_32); 1627 return -EINVAL; 1628 } 1629 sp->pwr_mgmt_msgs = config_32; 1630 } 1631 1632 ret = fdt_read_uint32(sp_manifest, node, 1633 "gp-register-num", &config_32); 1634 if (ret != 0) { 1635 WARN("Missing boot information register.\n"); 1636 } else { 1637 /* Check if a register number between 0-3 is specified. */ 1638 if (config_32 < 4) { 1639 *boot_info_reg = config_32; 1640 } else { 1641 WARN("Incorrect boot information register (%u).\n", 1642 config_32); 1643 } 1644 } 1645 1646 return 0; 1647 } 1648 1649 /******************************************************************************* 1650 * This function gets the Secure Partition Manifest base and maps the manifest 1651 * region. 1652 * Currently only one Secure Partition manifest is considered which is used to 1653 * prepare the context for the single Secure Partition. 1654 ******************************************************************************/ 1655 static int find_and_prepare_sp_context(void) 1656 { 1657 void *sp_manifest; 1658 uintptr_t manifest_base; 1659 uintptr_t manifest_base_align; 1660 entry_point_info_t *next_image_ep_info; 1661 int32_t ret, boot_info_reg = -1; 1662 struct secure_partition_desc *sp; 1663 1664 next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 1665 if (next_image_ep_info == NULL) { 1666 WARN("No Secure Partition image provided by BL2.\n"); 1667 return -ENOENT; 1668 } 1669 1670 sp_manifest = (void *)next_image_ep_info->args.arg0; 1671 if (sp_manifest == NULL) { 1672 WARN("Secure Partition manifest absent.\n"); 1673 return -ENOENT; 1674 } 1675 1676 manifest_base = (uintptr_t)sp_manifest; 1677 manifest_base_align = page_align(manifest_base, DOWN); 1678 1679 /* 1680 * Map the secure partition manifest region in the EL3 translation 1681 * regime. 1682 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base 1683 * alignment the region of 1 PAGE_SIZE from manifest align base may 1684 * not completely accommodate the secure partition manifest region. 1685 */ 1686 ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align, 1687 manifest_base_align, 1688 PAGE_SIZE * 2, 1689 MT_RO_DATA); 1690 if (ret != 0) { 1691 ERROR("Error while mapping SP manifest (%d).\n", ret); 1692 return ret; 1693 } 1694 1695 ret = fdt_node_offset_by_compatible(sp_manifest, -1, 1696 "arm,ffa-manifest-1.0"); 1697 if (ret < 0) { 1698 ERROR("Error happened in SP manifest reading.\n"); 1699 return -EINVAL; 1700 } 1701 1702 /* 1703 * Store the size of the manifest so that it can be used later to pass 1704 * the manifest as boot information later. 1705 */ 1706 next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest); 1707 INFO("Manifest size = %lu bytes.\n", next_image_ep_info->args.arg1); 1708 1709 /* 1710 * Select an SP descriptor for initialising the partition's execution 1711 * context on the primary CPU. 1712 */ 1713 sp = spmc_get_current_sp_ctx(); 1714 1715 /* Initialize entry point information for the SP */ 1716 SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1, 1717 SECURE | EP_ST_ENABLE); 1718 1719 /* Parse the SP manifest. */ 1720 ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info, 1721 &boot_info_reg); 1722 if (ret != 0) { 1723 ERROR("Error in Secure Partition manifest parsing.\n"); 1724 return ret; 1725 } 1726 1727 /* Check that the runtime EL in the manifest was correct. */ 1728 if (sp->runtime_el != S_EL1) { 1729 ERROR("Unexpected runtime EL: %d\n", sp->runtime_el); 1730 return -EINVAL; 1731 } 1732 1733 /* Perform any common initialisation. */ 1734 spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg); 1735 1736 /* Perform any initialisation specific to S-EL1 SPs. */ 1737 spmc_el1_sp_setup(sp, next_image_ep_info); 1738 1739 /* Initialize the SP context with the required ep info. */ 1740 spmc_sp_common_ep_commit(sp, next_image_ep_info); 1741 1742 return 0; 1743 } 1744 1745 /******************************************************************************* 1746 * This function takes an SP context pointer and performs a synchronous entry 1747 * into it. 1748 ******************************************************************************/ 1749 static int32_t logical_sp_init(void) 1750 { 1751 int32_t rc = 0; 1752 struct el3_lp_desc *el3_lp_descs; 1753 1754 /* Perform initial validation of the Logical Partitions. */ 1755 rc = el3_sp_desc_validate(); 1756 if (rc != 0) { 1757 ERROR("Logical Partition validation failed!\n"); 1758 return rc; 1759 } 1760 1761 el3_lp_descs = get_el3_lp_array(); 1762 1763 INFO("Logical Secure Partition init start.\n"); 1764 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 1765 rc = el3_lp_descs[i].init(); 1766 if (rc != 0) { 1767 ERROR("Logical SP (0x%x) Failed to Initialize\n", 1768 el3_lp_descs[i].sp_id); 1769 return rc; 1770 } 1771 VERBOSE("Logical SP (0x%x) Initialized\n", 1772 el3_lp_descs[i].sp_id); 1773 } 1774 1775 INFO("Logical Secure Partition init completed.\n"); 1776 1777 return rc; 1778 } 1779 1780 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec) 1781 { 1782 uint64_t rc; 1783 1784 assert(ec != NULL); 1785 1786 /* Assign the context of the SP to this CPU */ 1787 cm_set_context(&(ec->cpu_ctx), SECURE); 1788 1789 /* Restore the context assigned above */ 1790 cm_el1_sysregs_context_restore(SECURE); 1791 cm_set_next_eret_context(SECURE); 1792 1793 /* Invalidate TLBs at EL1. */ 1794 tlbivmalle1(); 1795 dsbish(); 1796 1797 /* Enter Secure Partition */ 1798 rc = spm_secure_partition_enter(&ec->c_rt_ctx); 1799 1800 /* Save secure state */ 1801 cm_el1_sysregs_context_save(SECURE); 1802 1803 return rc; 1804 } 1805 1806 /******************************************************************************* 1807 * SPMC Helper Functions. 1808 ******************************************************************************/ 1809 static int32_t sp_init(void) 1810 { 1811 uint64_t rc; 1812 struct secure_partition_desc *sp; 1813 struct sp_exec_ctx *ec; 1814 1815 sp = spmc_get_current_sp_ctx(); 1816 ec = spmc_get_sp_ec(sp); 1817 ec->rt_model = RT_MODEL_INIT; 1818 ec->rt_state = RT_STATE_RUNNING; 1819 1820 INFO("Secure Partition (0x%x) init start.\n", sp->sp_id); 1821 1822 rc = spmc_sp_synchronous_entry(ec); 1823 if (rc != 0) { 1824 /* Indicate SP init was not successful. */ 1825 ERROR("SP (0x%x) failed to initialize (%lu).\n", 1826 sp->sp_id, rc); 1827 return 0; 1828 } 1829 1830 ec->rt_state = RT_STATE_WAITING; 1831 INFO("Secure Partition initialized.\n"); 1832 1833 return 1; 1834 } 1835 1836 static void initalize_sp_descs(void) 1837 { 1838 struct secure_partition_desc *sp; 1839 1840 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 1841 sp = &sp_desc[i]; 1842 sp->sp_id = INV_SP_ID; 1843 sp->mailbox.rx_buffer = NULL; 1844 sp->mailbox.tx_buffer = NULL; 1845 sp->mailbox.state = MAILBOX_STATE_EMPTY; 1846 sp->secondary_ep = 0; 1847 } 1848 } 1849 1850 static void initalize_ns_ep_descs(void) 1851 { 1852 struct ns_endpoint_desc *ns_ep; 1853 1854 for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) { 1855 ns_ep = &ns_ep_desc[i]; 1856 /* 1857 * Clashes with the Hypervisor ID but will not be a 1858 * problem in practice. 1859 */ 1860 ns_ep->ns_ep_id = 0; 1861 ns_ep->ffa_version = 0; 1862 ns_ep->mailbox.rx_buffer = NULL; 1863 ns_ep->mailbox.tx_buffer = NULL; 1864 ns_ep->mailbox.state = MAILBOX_STATE_EMPTY; 1865 } 1866 } 1867 1868 /******************************************************************************* 1869 * Initialize SPMC attributes for the SPMD. 1870 ******************************************************************************/ 1871 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs) 1872 { 1873 spmc_attrs->major_version = FFA_VERSION_MAJOR; 1874 spmc_attrs->minor_version = FFA_VERSION_MINOR; 1875 spmc_attrs->exec_state = MODE_RW_64; 1876 spmc_attrs->spmc_id = FFA_SPMC_ID; 1877 } 1878 1879 /******************************************************************************* 1880 * Initialize contexts of all Secure Partitions. 1881 ******************************************************************************/ 1882 int32_t spmc_setup(void) 1883 { 1884 int32_t ret; 1885 uint32_t flags; 1886 1887 /* Initialize endpoint descriptors */ 1888 initalize_sp_descs(); 1889 initalize_ns_ep_descs(); 1890 1891 /* 1892 * Retrieve the information of the datastore for tracking shared memory 1893 * requests allocated by platform code and zero the region if available. 1894 */ 1895 ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data, 1896 &spmc_shmem_obj_state.data_size); 1897 if (ret != 0) { 1898 ERROR("Failed to obtain memory descriptor backing store!\n"); 1899 return ret; 1900 } 1901 memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size); 1902 1903 /* Setup logical SPs. */ 1904 ret = logical_sp_init(); 1905 if (ret != 0) { 1906 ERROR("Failed to initialize Logical Partitions.\n"); 1907 return ret; 1908 } 1909 1910 /* Perform physical SP setup. */ 1911 1912 /* Disable MMU at EL1 (initialized by BL2) */ 1913 disable_mmu_icache_el1(); 1914 1915 /* Initialize context of the SP */ 1916 INFO("Secure Partition context setup start.\n"); 1917 1918 ret = find_and_prepare_sp_context(); 1919 if (ret != 0) { 1920 ERROR("Error in SP finding and context preparation.\n"); 1921 return ret; 1922 } 1923 1924 /* Register power management hooks with PSCI */ 1925 psci_register_spd_pm_hook(&spmc_pm); 1926 1927 /* 1928 * Register an interrupt handler for S-EL1 interrupts 1929 * when generated during code executing in the 1930 * non-secure state. 1931 */ 1932 flags = 0; 1933 set_interrupt_rm_flag(flags, NON_SECURE); 1934 ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, 1935 spmc_sp_interrupt_handler, 1936 flags); 1937 if (ret != 0) { 1938 ERROR("Failed to register interrupt handler! (%d)\n", ret); 1939 panic(); 1940 } 1941 1942 /* Register init function for deferred init. */ 1943 bl31_register_bl32_init(&sp_init); 1944 1945 INFO("Secure Partition setup done.\n"); 1946 1947 return 0; 1948 } 1949 1950 /******************************************************************************* 1951 * Secure Partition Manager SMC handler. 1952 ******************************************************************************/ 1953 uint64_t spmc_smc_handler(uint32_t smc_fid, 1954 bool secure_origin, 1955 uint64_t x1, 1956 uint64_t x2, 1957 uint64_t x3, 1958 uint64_t x4, 1959 void *cookie, 1960 void *handle, 1961 uint64_t flags) 1962 { 1963 switch (smc_fid) { 1964 1965 case FFA_VERSION: 1966 return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3, 1967 x4, cookie, handle, flags); 1968 1969 case FFA_SPM_ID_GET: 1970 return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2, 1971 x3, x4, cookie, handle, flags); 1972 1973 case FFA_ID_GET: 1974 return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3, 1975 x4, cookie, handle, flags); 1976 1977 case FFA_FEATURES: 1978 return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3, 1979 x4, cookie, handle, flags); 1980 1981 case FFA_SECONDARY_EP_REGISTER_SMC64: 1982 return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1, 1983 x2, x3, x4, cookie, handle, 1984 flags); 1985 1986 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1987 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1988 return direct_req_smc_handler(smc_fid, secure_origin, x1, x2, 1989 x3, x4, cookie, handle, flags); 1990 1991 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1992 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1993 return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2, 1994 x3, x4, cookie, handle, flags); 1995 1996 case FFA_RXTX_MAP_SMC32: 1997 case FFA_RXTX_MAP_SMC64: 1998 return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4, 1999 cookie, handle, flags); 2000 2001 case FFA_RXTX_UNMAP: 2002 return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3, 2003 x4, cookie, handle, flags); 2004 2005 case FFA_PARTITION_INFO_GET: 2006 return partition_info_get_handler(smc_fid, secure_origin, x1, 2007 x2, x3, x4, cookie, handle, 2008 flags); 2009 2010 case FFA_RX_RELEASE: 2011 return rx_release_handler(smc_fid, secure_origin, x1, x2, x3, 2012 x4, cookie, handle, flags); 2013 2014 case FFA_MSG_WAIT: 2015 return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2016 cookie, handle, flags); 2017 2018 case FFA_ERROR: 2019 return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2020 cookie, handle, flags); 2021 2022 case FFA_MSG_RUN: 2023 return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2024 cookie, handle, flags); 2025 2026 case FFA_MEM_SHARE_SMC32: 2027 case FFA_MEM_SHARE_SMC64: 2028 case FFA_MEM_LEND_SMC32: 2029 case FFA_MEM_LEND_SMC64: 2030 return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4, 2031 cookie, handle, flags); 2032 2033 case FFA_MEM_FRAG_TX: 2034 return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3, 2035 x4, cookie, handle, flags); 2036 2037 case FFA_MEM_FRAG_RX: 2038 return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3, 2039 x4, cookie, handle, flags); 2040 2041 case FFA_MEM_RETRIEVE_REQ_SMC32: 2042 case FFA_MEM_RETRIEVE_REQ_SMC64: 2043 return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2, 2044 x3, x4, cookie, handle, flags); 2045 2046 case FFA_MEM_RELINQUISH: 2047 return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2, 2048 x3, x4, cookie, handle, flags); 2049 2050 case FFA_MEM_RECLAIM: 2051 return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3, 2052 x4, cookie, handle, flags); 2053 2054 default: 2055 WARN("Unsupported FF-A call 0x%08x.\n", smc_fid); 2056 break; 2057 } 2058 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 2059 } 2060 2061 /******************************************************************************* 2062 * This function is the handler registered for S-EL1 interrupts by the SPMC. It 2063 * validates the interrupt and upon success arranges entry into the SP for 2064 * handling the interrupt. 2065 ******************************************************************************/ 2066 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 2067 uint32_t flags, 2068 void *handle, 2069 void *cookie) 2070 { 2071 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 2072 struct sp_exec_ctx *ec; 2073 uint32_t linear_id = plat_my_core_pos(); 2074 2075 /* Sanity check for a NULL pointer dereference. */ 2076 assert(sp != NULL); 2077 2078 /* Check the security state when the exception was generated. */ 2079 assert(get_interrupt_src_ss(flags) == NON_SECURE); 2080 2081 /* Panic if not an S-EL1 Partition. */ 2082 if (sp->runtime_el != S_EL1) { 2083 ERROR("Interrupt received for a non S-EL1 SP on core%u.\n", 2084 linear_id); 2085 panic(); 2086 } 2087 2088 /* Obtain a reference to the SP execution context. */ 2089 ec = spmc_get_sp_ec(sp); 2090 2091 /* Ensure that the execution context is in waiting state else panic. */ 2092 if (ec->rt_state != RT_STATE_WAITING) { 2093 ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n", 2094 linear_id, RT_STATE_WAITING, ec->rt_state); 2095 panic(); 2096 } 2097 2098 /* Update the runtime model and state of the partition. */ 2099 ec->rt_model = RT_MODEL_INTR; 2100 ec->rt_state = RT_STATE_RUNNING; 2101 2102 VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id); 2103 2104 /* 2105 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not 2106 * populated as the SP can determine this by itself. 2107 */ 2108 return spmd_smc_switch_state(FFA_INTERRUPT, false, 2109 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2110 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2111 handle); 2112 } 2113