1 /* 2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 10 #include <arch_helpers.h> 11 #include <bl31/bl31.h> 12 #include <bl31/ehf.h> 13 #include <bl31/interrupt_mgmt.h> 14 #include <common/debug.h> 15 #include <common/fdt_wrappers.h> 16 #include <common/runtime_svc.h> 17 #include <common/uuid.h> 18 #include <lib/el3_runtime/context_mgmt.h> 19 #include <lib/smccc.h> 20 #include <lib/utils.h> 21 #include <lib/xlat_tables/xlat_tables_v2.h> 22 #include <libfdt.h> 23 #include <plat/common/platform.h> 24 #include <services/el3_spmc_logical_sp.h> 25 #include <services/ffa_svc.h> 26 #include <services/spmc_svc.h> 27 #include <services/spmd_svc.h> 28 #include "spmc.h" 29 #include "spmc_shared_mem.h" 30 31 #include <platform_def.h> 32 33 /* FFA_MEM_PERM_* helpers */ 34 #define FFA_MEM_PERM_MASK U(7) 35 #define FFA_MEM_PERM_DATA_MASK U(3) 36 #define FFA_MEM_PERM_DATA_SHIFT U(0) 37 #define FFA_MEM_PERM_DATA_NA U(0) 38 #define FFA_MEM_PERM_DATA_RW U(1) 39 #define FFA_MEM_PERM_DATA_RES U(2) 40 #define FFA_MEM_PERM_DATA_RO U(3) 41 #define FFA_MEM_PERM_INST_EXEC (U(0) << 2) 42 #define FFA_MEM_PERM_INST_NON_EXEC (U(1) << 2) 43 44 /* Declare the maximum number of SPs and El3 LPs. */ 45 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT 46 47 /* 48 * Allocate a secure partition descriptor to describe each SP in the system that 49 * does not reside at EL3. 50 */ 51 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT]; 52 53 /* 54 * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in 55 * the system that interacts with a SP. It is used to track the Hypervisor 56 * buffer pair, version and ID for now. It could be extended to track VM 57 * properties when the SPMC supports indirect messaging. 58 */ 59 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT]; 60 61 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 62 uint32_t flags, 63 void *handle, 64 void *cookie); 65 66 /* 67 * Helper function to obtain the array storing the EL3 68 * Logical Partition descriptors. 69 */ 70 struct el3_lp_desc *get_el3_lp_array(void) 71 { 72 return (struct el3_lp_desc *) EL3_LP_DESCS_START; 73 } 74 75 /* 76 * Helper function to obtain the descriptor of the last SP to whom control was 77 * handed to on this physical cpu. Currently, we assume there is only one SP. 78 * TODO: Expand to track multiple partitions when required. 79 */ 80 struct secure_partition_desc *spmc_get_current_sp_ctx(void) 81 { 82 return &(sp_desc[ACTIVE_SP_DESC_INDEX]); 83 } 84 85 /* 86 * Helper function to obtain the execution context of an SP on the 87 * current physical cpu. 88 */ 89 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp) 90 { 91 return &(sp->ec[get_ec_index(sp)]); 92 } 93 94 /* Helper function to get pointer to SP context from its ID. */ 95 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id) 96 { 97 /* Check for Secure World Partitions. */ 98 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 99 if (sp_desc[i].sp_id == id) { 100 return &(sp_desc[i]); 101 } 102 } 103 return NULL; 104 } 105 106 /* 107 * Helper function to obtain the descriptor of the Hypervisor or OS kernel. 108 * We assume that the first descriptor is reserved for this entity. 109 */ 110 struct ns_endpoint_desc *spmc_get_hyp_ctx(void) 111 { 112 return &(ns_ep_desc[0]); 113 } 114 115 /* 116 * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor 117 * or OS kernel in the normal world or the last SP that was run. 118 */ 119 struct mailbox *spmc_get_mbox_desc(bool secure_origin) 120 { 121 /* Obtain the RX/TX buffer pair descriptor. */ 122 if (secure_origin) { 123 return &(spmc_get_current_sp_ctx()->mailbox); 124 } else { 125 return &(spmc_get_hyp_ctx()->mailbox); 126 } 127 } 128 129 /****************************************************************************** 130 * This function returns to the place where spmc_sp_synchronous_entry() was 131 * called originally. 132 ******************************************************************************/ 133 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc) 134 { 135 /* 136 * The SPM must have initiated the original request through a 137 * synchronous entry into the secure partition. Jump back to the 138 * original C runtime context with the value of rc in x0; 139 */ 140 spm_secure_partition_exit(ec->c_rt_ctx, rc); 141 142 panic(); 143 } 144 145 /******************************************************************************* 146 * Return FFA_ERROR with specified error code. 147 ******************************************************************************/ 148 uint64_t spmc_ffa_error_return(void *handle, int error_code) 149 { 150 SMC_RET8(handle, FFA_ERROR, 151 FFA_TARGET_INFO_MBZ, error_code, 152 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, 153 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 154 } 155 156 /****************************************************************************** 157 * Helper function to validate a secure partition ID to ensure it does not 158 * conflict with any other FF-A component and follows the convention to 159 * indicate it resides within the secure world. 160 ******************************************************************************/ 161 bool is_ffa_secure_id_valid(uint16_t partition_id) 162 { 163 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 164 165 /* Ensure the ID is not the invalid partition ID. */ 166 if (partition_id == INV_SP_ID) { 167 return false; 168 } 169 170 /* Ensure the ID is not the SPMD ID. */ 171 if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) { 172 return false; 173 } 174 175 /* 176 * Ensure the ID follows the convention to indicate it resides 177 * in the secure world. 178 */ 179 if (!ffa_is_secure_world_id(partition_id)) { 180 return false; 181 } 182 183 /* Ensure we don't conflict with the SPMC partition ID. */ 184 if (partition_id == FFA_SPMC_ID) { 185 return false; 186 } 187 188 /* Ensure we do not already have an SP context with this ID. */ 189 if (spmc_get_sp_ctx(partition_id)) { 190 return false; 191 } 192 193 /* Ensure we don't clash with any Logical SP's. */ 194 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 195 if (el3_lp_descs[i].sp_id == partition_id) { 196 return false; 197 } 198 } 199 200 return true; 201 } 202 203 /******************************************************************************* 204 * This function either forwards the request to the other world or returns 205 * with an ERET depending on the source of the call. 206 * We can assume that the destination is for an entity at a lower exception 207 * level as any messages destined for a logical SP resident in EL3 will have 208 * already been taken care of by the SPMC before entering this function. 209 ******************************************************************************/ 210 static uint64_t spmc_smc_return(uint32_t smc_fid, 211 bool secure_origin, 212 uint64_t x1, 213 uint64_t x2, 214 uint64_t x3, 215 uint64_t x4, 216 void *handle, 217 void *cookie, 218 uint64_t flags, 219 uint16_t dst_id) 220 { 221 /* If the destination is in the normal world always go via the SPMD. */ 222 if (ffa_is_normal_world_id(dst_id)) { 223 return spmd_smc_handler(smc_fid, x1, x2, x3, x4, 224 cookie, handle, flags); 225 } 226 /* 227 * If the caller is secure and we want to return to the secure world, 228 * ERET directly. 229 */ 230 else if (secure_origin && ffa_is_secure_world_id(dst_id)) { 231 SMC_RET5(handle, smc_fid, x1, x2, x3, x4); 232 } 233 /* If we originated in the normal world then switch contexts. */ 234 else if (!secure_origin && ffa_is_secure_world_id(dst_id)) { 235 return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, 236 x3, x4, handle); 237 } else { 238 /* Unknown State. */ 239 panic(); 240 } 241 242 /* Shouldn't be Reached. */ 243 return 0; 244 } 245 246 /******************************************************************************* 247 * FF-A ABI Handlers. 248 ******************************************************************************/ 249 250 /******************************************************************************* 251 * Helper function to validate arg2 as part of a direct message. 252 ******************************************************************************/ 253 static inline bool direct_msg_validate_arg2(uint64_t x2) 254 { 255 /* Check message type. */ 256 if (x2 & FFA_FWK_MSG_BIT) { 257 /* We have a framework message, ensure it is a known message. */ 258 if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) { 259 VERBOSE("Invalid message format 0x%lx.\n", x2); 260 return false; 261 } 262 } else { 263 /* We have a partition messages, ensure x2 is not set. */ 264 if (x2 != (uint64_t) 0) { 265 VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n", 266 x2); 267 return false; 268 } 269 } 270 return true; 271 } 272 273 /******************************************************************************* 274 * Helper function to validate the destination ID of a direct response. 275 ******************************************************************************/ 276 static bool direct_msg_validate_dst_id(uint16_t dst_id) 277 { 278 struct secure_partition_desc *sp; 279 280 /* Check if we're targeting a normal world partition. */ 281 if (ffa_is_normal_world_id(dst_id)) { 282 return true; 283 } 284 285 /* Or directed to the SPMC itself.*/ 286 if (dst_id == FFA_SPMC_ID) { 287 return true; 288 } 289 290 /* Otherwise ensure the SP exists. */ 291 sp = spmc_get_sp_ctx(dst_id); 292 if (sp != NULL) { 293 return true; 294 } 295 296 return false; 297 } 298 299 /******************************************************************************* 300 * Helper function to validate the response from a Logical Partition. 301 ******************************************************************************/ 302 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id, 303 void *handle) 304 { 305 /* Retrieve populated Direct Response Arguments. */ 306 uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1); 307 uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2); 308 uint16_t src_id = ffa_endpoint_source(x1); 309 uint16_t dst_id = ffa_endpoint_destination(x1); 310 311 if (src_id != lp_id) { 312 ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id); 313 return false; 314 } 315 316 /* 317 * Check the destination ID is valid and ensure the LP is responding to 318 * the original request. 319 */ 320 if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) { 321 ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id); 322 return false; 323 } 324 325 if (!direct_msg_validate_arg2(x2)) { 326 ERROR("Invalid EL3 LP message encoding.\n"); 327 return false; 328 } 329 return true; 330 } 331 332 /******************************************************************************* 333 * Handle direct request messages and route to the appropriate destination. 334 ******************************************************************************/ 335 static uint64_t direct_req_smc_handler(uint32_t smc_fid, 336 bool secure_origin, 337 uint64_t x1, 338 uint64_t x2, 339 uint64_t x3, 340 uint64_t x4, 341 void *cookie, 342 void *handle, 343 uint64_t flags) 344 { 345 uint16_t src_id = ffa_endpoint_source(x1); 346 uint16_t dst_id = ffa_endpoint_destination(x1); 347 struct el3_lp_desc *el3_lp_descs; 348 struct secure_partition_desc *sp; 349 unsigned int idx; 350 351 /* Check if arg2 has been populated correctly based on message type. */ 352 if (!direct_msg_validate_arg2(x2)) { 353 return spmc_ffa_error_return(handle, 354 FFA_ERROR_INVALID_PARAMETER); 355 } 356 357 /* Validate Sender is either the current SP or from the normal world. */ 358 if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) || 359 (!secure_origin && !ffa_is_normal_world_id(src_id))) { 360 ERROR("Invalid direct request source ID (0x%x).\n", src_id); 361 return spmc_ffa_error_return(handle, 362 FFA_ERROR_INVALID_PARAMETER); 363 } 364 365 el3_lp_descs = get_el3_lp_array(); 366 367 /* Check if the request is destined for a Logical Partition. */ 368 for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) { 369 if (el3_lp_descs[i].sp_id == dst_id) { 370 uint64_t ret = el3_lp_descs[i].direct_req( 371 smc_fid, secure_origin, x1, x2, 372 x3, x4, cookie, handle, flags); 373 if (!direct_msg_validate_lp_resp(src_id, dst_id, 374 handle)) { 375 panic(); 376 } 377 378 /* Message checks out. */ 379 return ret; 380 } 381 } 382 383 /* 384 * If the request was not targeted to a LSP and from the secure world 385 * then it is invalid since a SP cannot call into the Normal world and 386 * there is no other SP to call into. If there are other SPs in future 387 * then the partition runtime model would need to be validated as well. 388 */ 389 if (secure_origin) { 390 VERBOSE("Direct request not supported to the Normal World.\n"); 391 return spmc_ffa_error_return(handle, 392 FFA_ERROR_INVALID_PARAMETER); 393 } 394 395 /* Check if the SP ID is valid. */ 396 sp = spmc_get_sp_ctx(dst_id); 397 if (sp == NULL) { 398 VERBOSE("Direct request to unknown partition ID (0x%x).\n", 399 dst_id); 400 return spmc_ffa_error_return(handle, 401 FFA_ERROR_INVALID_PARAMETER); 402 } 403 404 /* 405 * Check that the target execution context is in a waiting state before 406 * forwarding the direct request to it. 407 */ 408 idx = get_ec_index(sp); 409 if (sp->ec[idx].rt_state != RT_STATE_WAITING) { 410 VERBOSE("SP context on core%u is not waiting (%u).\n", 411 idx, sp->ec[idx].rt_model); 412 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 413 } 414 415 /* 416 * Everything checks out so forward the request to the SP after updating 417 * its state and runtime model. 418 */ 419 sp->ec[idx].rt_state = RT_STATE_RUNNING; 420 sp->ec[idx].rt_model = RT_MODEL_DIR_REQ; 421 sp->ec[idx].dir_req_origin_id = src_id; 422 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 423 handle, cookie, flags, dst_id); 424 } 425 426 /******************************************************************************* 427 * Handle direct response messages and route to the appropriate destination. 428 ******************************************************************************/ 429 static uint64_t direct_resp_smc_handler(uint32_t smc_fid, 430 bool secure_origin, 431 uint64_t x1, 432 uint64_t x2, 433 uint64_t x3, 434 uint64_t x4, 435 void *cookie, 436 void *handle, 437 uint64_t flags) 438 { 439 uint16_t dst_id = ffa_endpoint_destination(x1); 440 struct secure_partition_desc *sp; 441 unsigned int idx; 442 443 /* Check if arg2 has been populated correctly based on message type. */ 444 if (!direct_msg_validate_arg2(x2)) { 445 return spmc_ffa_error_return(handle, 446 FFA_ERROR_INVALID_PARAMETER); 447 } 448 449 /* Check that the response did not originate from the Normal world. */ 450 if (!secure_origin) { 451 VERBOSE("Direct Response not supported from Normal World.\n"); 452 return spmc_ffa_error_return(handle, 453 FFA_ERROR_INVALID_PARAMETER); 454 } 455 456 /* 457 * Check that the response is either targeted to the Normal world or the 458 * SPMC e.g. a PM response. 459 */ 460 if (!direct_msg_validate_dst_id(dst_id)) { 461 VERBOSE("Direct response to invalid partition ID (0x%x).\n", 462 dst_id); 463 return spmc_ffa_error_return(handle, 464 FFA_ERROR_INVALID_PARAMETER); 465 } 466 467 /* Obtain the SP descriptor and update its runtime state. */ 468 sp = spmc_get_sp_ctx(ffa_endpoint_source(x1)); 469 if (sp == NULL) { 470 VERBOSE("Direct response to unknown partition ID (0x%x).\n", 471 dst_id); 472 return spmc_ffa_error_return(handle, 473 FFA_ERROR_INVALID_PARAMETER); 474 } 475 476 /* Sanity check state is being tracked correctly in the SPMC. */ 477 idx = get_ec_index(sp); 478 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 479 480 /* Ensure SP execution context was in the right runtime model. */ 481 if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) { 482 VERBOSE("SP context on core%u not handling direct req (%u).\n", 483 idx, sp->ec[idx].rt_model); 484 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 485 } 486 487 if (sp->ec[idx].dir_req_origin_id != dst_id) { 488 WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n", 489 dst_id, sp->ec[idx].dir_req_origin_id, idx); 490 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 491 } 492 493 /* Update the state of the SP execution context. */ 494 sp->ec[idx].rt_state = RT_STATE_WAITING; 495 496 /* Clear the ongoing direct request ID. */ 497 sp->ec[idx].dir_req_origin_id = INV_SP_ID; 498 499 /* 500 * If the receiver is not the SPMC then forward the response to the 501 * Normal world. 502 */ 503 if (dst_id == FFA_SPMC_ID) { 504 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 505 /* Should not get here. */ 506 panic(); 507 } 508 509 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 510 handle, cookie, flags, dst_id); 511 } 512 513 /******************************************************************************* 514 * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its 515 * cycles. 516 ******************************************************************************/ 517 static uint64_t msg_wait_handler(uint32_t smc_fid, 518 bool secure_origin, 519 uint64_t x1, 520 uint64_t x2, 521 uint64_t x3, 522 uint64_t x4, 523 void *cookie, 524 void *handle, 525 uint64_t flags) 526 { 527 struct secure_partition_desc *sp; 528 unsigned int idx; 529 530 /* 531 * Check that the response did not originate from the Normal world as 532 * only the secure world can call this ABI. 533 */ 534 if (!secure_origin) { 535 VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n"); 536 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 537 } 538 539 /* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */ 540 sp = spmc_get_current_sp_ctx(); 541 if (sp == NULL) { 542 return spmc_ffa_error_return(handle, 543 FFA_ERROR_INVALID_PARAMETER); 544 } 545 546 /* 547 * Get the execution context of the SP that invoked FFA_MSG_WAIT. 548 */ 549 idx = get_ec_index(sp); 550 551 /* Ensure SP execution context was in the right runtime model. */ 552 if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 553 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 554 } 555 556 /* Sanity check the state is being tracked correctly in the SPMC. */ 557 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 558 559 /* 560 * Perform a synchronous exit if the partition was initialising. The 561 * state is updated after the exit. 562 */ 563 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 564 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 565 /* Should not get here */ 566 panic(); 567 } 568 569 /* Update the state of the SP execution context. */ 570 sp->ec[idx].rt_state = RT_STATE_WAITING; 571 572 /* Resume normal world if a secure interrupt was handled. */ 573 if (sp->ec[idx].rt_model == RT_MODEL_INTR) { 574 /* FFA_MSG_WAIT can only be called from the secure world. */ 575 unsigned int secure_state_in = SECURE; 576 unsigned int secure_state_out = NON_SECURE; 577 578 cm_el1_sysregs_context_save(secure_state_in); 579 cm_el1_sysregs_context_restore(secure_state_out); 580 cm_set_next_eret_context(secure_state_out); 581 SMC_RET0(cm_get_context(secure_state_out)); 582 } 583 584 /* Forward the response to the Normal world. */ 585 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 586 handle, cookie, flags, FFA_NWD_ID); 587 } 588 589 static uint64_t ffa_error_handler(uint32_t smc_fid, 590 bool secure_origin, 591 uint64_t x1, 592 uint64_t x2, 593 uint64_t x3, 594 uint64_t x4, 595 void *cookie, 596 void *handle, 597 uint64_t flags) 598 { 599 struct secure_partition_desc *sp; 600 unsigned int idx; 601 602 /* Check that the response did not originate from the Normal world. */ 603 if (!secure_origin) { 604 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 605 } 606 607 /* Get the descriptor of the SP that invoked FFA_ERROR. */ 608 sp = spmc_get_current_sp_ctx(); 609 if (sp == NULL) { 610 return spmc_ffa_error_return(handle, 611 FFA_ERROR_INVALID_PARAMETER); 612 } 613 614 /* Get the execution context of the SP that invoked FFA_ERROR. */ 615 idx = get_ec_index(sp); 616 617 /* 618 * We only expect FFA_ERROR to be received during SP initialisation 619 * otherwise this is an invalid call. 620 */ 621 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 622 ERROR("SP 0x%x failed to initialize.\n", sp->sp_id); 623 spmc_sp_synchronous_exit(&sp->ec[idx], x2); 624 /* Should not get here. */ 625 panic(); 626 } 627 628 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 629 } 630 631 static uint64_t ffa_version_handler(uint32_t smc_fid, 632 bool secure_origin, 633 uint64_t x1, 634 uint64_t x2, 635 uint64_t x3, 636 uint64_t x4, 637 void *cookie, 638 void *handle, 639 uint64_t flags) 640 { 641 uint32_t requested_version = x1 & FFA_VERSION_MASK; 642 643 if (requested_version & FFA_VERSION_BIT31_MASK) { 644 /* Invalid encoding, return an error. */ 645 SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED); 646 /* Execution stops here. */ 647 } 648 649 /* Determine the caller to store the requested version. */ 650 if (secure_origin) { 651 /* 652 * Ensure that the SP is reporting the same version as 653 * specified in its manifest. If these do not match there is 654 * something wrong with the SP. 655 * TODO: Should we abort the SP? For now assert this is not 656 * case. 657 */ 658 assert(requested_version == 659 spmc_get_current_sp_ctx()->ffa_version); 660 } else { 661 /* 662 * If this is called by the normal world, record this 663 * information in its descriptor. 664 */ 665 spmc_get_hyp_ctx()->ffa_version = requested_version; 666 } 667 668 SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR, 669 FFA_VERSION_MINOR)); 670 } 671 672 /******************************************************************************* 673 * Helper function to obtain the FF-A version of the calling partition. 674 ******************************************************************************/ 675 uint32_t get_partition_ffa_version(bool secure_origin) 676 { 677 if (secure_origin) { 678 return spmc_get_current_sp_ctx()->ffa_version; 679 } else { 680 return spmc_get_hyp_ctx()->ffa_version; 681 } 682 } 683 684 static uint64_t rxtx_map_handler(uint32_t smc_fid, 685 bool secure_origin, 686 uint64_t x1, 687 uint64_t x2, 688 uint64_t x3, 689 uint64_t x4, 690 void *cookie, 691 void *handle, 692 uint64_t flags) 693 { 694 int ret; 695 uint32_t error_code; 696 uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS; 697 struct mailbox *mbox; 698 uintptr_t tx_address = x1; 699 uintptr_t rx_address = x2; 700 uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */ 701 uint32_t buf_size = page_count * FFA_PAGE_SIZE; 702 703 /* 704 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 705 * indirect messaging with SPs. Check if the Hypervisor has invoked this 706 * ABI on behalf of a VM and reject it if this is the case. 707 */ 708 if (tx_address == 0 || rx_address == 0) { 709 WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n"); 710 return spmc_ffa_error_return(handle, 711 FFA_ERROR_INVALID_PARAMETER); 712 } 713 714 /* Ensure the specified buffers are not the same. */ 715 if (tx_address == rx_address) { 716 WARN("TX Buffer must not be the same as RX Buffer.\n"); 717 return spmc_ffa_error_return(handle, 718 FFA_ERROR_INVALID_PARAMETER); 719 } 720 721 /* Ensure the buffer size is not 0. */ 722 if (buf_size == 0U) { 723 WARN("Buffer size must not be 0\n"); 724 return spmc_ffa_error_return(handle, 725 FFA_ERROR_INVALID_PARAMETER); 726 } 727 728 /* 729 * Ensure the buffer size is a multiple of the translation granule size 730 * in TF-A. 731 */ 732 if (buf_size % PAGE_SIZE != 0U) { 733 WARN("Buffer size must be aligned to translation granule.\n"); 734 return spmc_ffa_error_return(handle, 735 FFA_ERROR_INVALID_PARAMETER); 736 } 737 738 /* Obtain the RX/TX buffer pair descriptor. */ 739 mbox = spmc_get_mbox_desc(secure_origin); 740 741 spin_lock(&mbox->lock); 742 743 /* Check if buffers have already been mapped. */ 744 if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) { 745 WARN("RX/TX Buffers already mapped (%p/%p)\n", 746 (void *) mbox->rx_buffer, (void *)mbox->tx_buffer); 747 error_code = FFA_ERROR_DENIED; 748 goto err; 749 } 750 751 /* memmap the TX buffer as read only. */ 752 ret = mmap_add_dynamic_region(tx_address, /* PA */ 753 tx_address, /* VA */ 754 buf_size, /* size */ 755 mem_atts | MT_RO_DATA); /* attrs */ 756 if (ret != 0) { 757 /* Return the correct error code. */ 758 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 759 FFA_ERROR_INVALID_PARAMETER; 760 WARN("Unable to map TX buffer: %d\n", error_code); 761 goto err; 762 } 763 764 /* memmap the RX buffer as read write. */ 765 ret = mmap_add_dynamic_region(rx_address, /* PA */ 766 rx_address, /* VA */ 767 buf_size, /* size */ 768 mem_atts | MT_RW_DATA); /* attrs */ 769 770 if (ret != 0) { 771 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 772 FFA_ERROR_INVALID_PARAMETER; 773 WARN("Unable to map RX buffer: %d\n", error_code); 774 /* Unmap the TX buffer again. */ 775 mmap_remove_dynamic_region(tx_address, buf_size); 776 goto err; 777 } 778 779 mbox->tx_buffer = (void *) tx_address; 780 mbox->rx_buffer = (void *) rx_address; 781 mbox->rxtx_page_count = page_count; 782 spin_unlock(&mbox->lock); 783 784 SMC_RET1(handle, FFA_SUCCESS_SMC32); 785 /* Execution stops here. */ 786 err: 787 spin_unlock(&mbox->lock); 788 return spmc_ffa_error_return(handle, error_code); 789 } 790 791 static uint64_t rxtx_unmap_handler(uint32_t smc_fid, 792 bool secure_origin, 793 uint64_t x1, 794 uint64_t x2, 795 uint64_t x3, 796 uint64_t x4, 797 void *cookie, 798 void *handle, 799 uint64_t flags) 800 { 801 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 802 uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 803 804 /* 805 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 806 * indirect messaging with SPs. Check if the Hypervisor has invoked this 807 * ABI on behalf of a VM and reject it if this is the case. 808 */ 809 if (x1 != 0UL) { 810 return spmc_ffa_error_return(handle, 811 FFA_ERROR_INVALID_PARAMETER); 812 } 813 814 spin_lock(&mbox->lock); 815 816 /* Check if buffers are currently mapped. */ 817 if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) { 818 spin_unlock(&mbox->lock); 819 return spmc_ffa_error_return(handle, 820 FFA_ERROR_INVALID_PARAMETER); 821 } 822 823 /* Unmap RX Buffer */ 824 if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer, 825 buf_size) != 0) { 826 WARN("Unable to unmap RX buffer!\n"); 827 } 828 829 mbox->rx_buffer = 0; 830 831 /* Unmap TX Buffer */ 832 if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer, 833 buf_size) != 0) { 834 WARN("Unable to unmap TX buffer!\n"); 835 } 836 837 mbox->tx_buffer = 0; 838 mbox->rxtx_page_count = 0; 839 840 spin_unlock(&mbox->lock); 841 SMC_RET1(handle, FFA_SUCCESS_SMC32); 842 } 843 844 /* 845 * Helper function to populate the properties field of a Partition Info Get 846 * descriptor. 847 */ 848 static uint32_t 849 partition_info_get_populate_properties(uint32_t sp_properties, 850 enum sp_execution_state sp_ec_state) 851 { 852 uint32_t properties = sp_properties; 853 uint32_t ec_state; 854 855 /* Determine the execution state of the SP. */ 856 ec_state = sp_ec_state == SP_STATE_AARCH64 ? 857 FFA_PARTITION_INFO_GET_AARCH64_STATE : 858 FFA_PARTITION_INFO_GET_AARCH32_STATE; 859 860 properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT; 861 862 return properties; 863 } 864 865 /* 866 * Collate the partition information in a v1.1 partition information 867 * descriptor format, this will be converter later if required. 868 */ 869 static int partition_info_get_handler_v1_1(uint32_t *uuid, 870 struct ffa_partition_info_v1_1 871 *partitions, 872 uint32_t max_partitions, 873 uint32_t *partition_count) 874 { 875 uint32_t index; 876 struct ffa_partition_info_v1_1 *desc; 877 bool null_uuid = is_null_uuid(uuid); 878 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 879 880 /* Deal with Logical Partitions. */ 881 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 882 if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) { 883 /* Found a matching UUID, populate appropriately. */ 884 if (*partition_count >= max_partitions) { 885 return FFA_ERROR_NO_MEMORY; 886 } 887 888 desc = &partitions[*partition_count]; 889 desc->ep_id = el3_lp_descs[index].sp_id; 890 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 891 /* LSPs must be AArch64. */ 892 desc->properties = 893 partition_info_get_populate_properties( 894 el3_lp_descs[index].properties, 895 SP_STATE_AARCH64); 896 897 if (null_uuid) { 898 copy_uuid(desc->uuid, el3_lp_descs[index].uuid); 899 } 900 (*partition_count)++; 901 } 902 } 903 904 /* Deal with physical SP's. */ 905 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 906 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 907 /* Found a matching UUID, populate appropriately. */ 908 if (*partition_count >= max_partitions) { 909 return FFA_ERROR_NO_MEMORY; 910 } 911 912 desc = &partitions[*partition_count]; 913 desc->ep_id = sp_desc[index].sp_id; 914 /* 915 * Execution context count must match No. cores for 916 * S-EL1 SPs. 917 */ 918 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 919 desc->properties = 920 partition_info_get_populate_properties( 921 sp_desc[index].properties, 922 sp_desc[index].execution_state); 923 924 if (null_uuid) { 925 copy_uuid(desc->uuid, sp_desc[index].uuid); 926 } 927 (*partition_count)++; 928 } 929 } 930 return 0; 931 } 932 933 /* 934 * Handle the case where that caller only wants the count of partitions 935 * matching a given UUID and does not want the corresponding descriptors 936 * populated. 937 */ 938 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid) 939 { 940 uint32_t index = 0; 941 uint32_t partition_count = 0; 942 bool null_uuid = is_null_uuid(uuid); 943 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 944 945 /* Deal with Logical Partitions. */ 946 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 947 if (null_uuid || 948 uuid_match(uuid, el3_lp_descs[index].uuid)) { 949 (partition_count)++; 950 } 951 } 952 953 /* Deal with physical SP's. */ 954 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 955 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 956 (partition_count)++; 957 } 958 } 959 return partition_count; 960 } 961 962 /* 963 * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate 964 * the corresponding descriptor format from the v1.1 descriptor array. 965 */ 966 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1 967 *partitions, 968 struct mailbox *mbox, 969 int partition_count) 970 { 971 uint32_t index; 972 uint32_t buf_size; 973 uint32_t descriptor_size; 974 struct ffa_partition_info_v1_0 *v1_0_partitions = 975 (struct ffa_partition_info_v1_0 *) mbox->rx_buffer; 976 977 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 978 descriptor_size = partition_count * 979 sizeof(struct ffa_partition_info_v1_0); 980 981 if (descriptor_size > buf_size) { 982 return FFA_ERROR_NO_MEMORY; 983 } 984 985 for (index = 0U; index < partition_count; index++) { 986 v1_0_partitions[index].ep_id = partitions[index].ep_id; 987 v1_0_partitions[index].execution_ctx_count = 988 partitions[index].execution_ctx_count; 989 /* Only report v1.0 properties. */ 990 v1_0_partitions[index].properties = 991 (partitions[index].properties & 992 FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK); 993 } 994 return 0; 995 } 996 997 /* 998 * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and 999 * v1.0 implementations. 1000 */ 1001 static uint64_t partition_info_get_handler(uint32_t smc_fid, 1002 bool secure_origin, 1003 uint64_t x1, 1004 uint64_t x2, 1005 uint64_t x3, 1006 uint64_t x4, 1007 void *cookie, 1008 void *handle, 1009 uint64_t flags) 1010 { 1011 int ret; 1012 uint32_t partition_count = 0; 1013 uint32_t size = 0; 1014 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1015 struct mailbox *mbox; 1016 uint64_t info_get_flags; 1017 bool count_only; 1018 uint32_t uuid[4]; 1019 1020 uuid[0] = x1; 1021 uuid[1] = x2; 1022 uuid[2] = x3; 1023 uuid[3] = x4; 1024 1025 /* Determine if the Partition descriptors should be populated. */ 1026 info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5); 1027 count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK); 1028 1029 /* Handle the case where we don't need to populate the descriptors. */ 1030 if (count_only) { 1031 partition_count = partition_info_get_handler_count_only(uuid); 1032 if (partition_count == 0) { 1033 return spmc_ffa_error_return(handle, 1034 FFA_ERROR_INVALID_PARAMETER); 1035 } 1036 } else { 1037 struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS]; 1038 1039 /* 1040 * Handle the case where the partition descriptors are required, 1041 * check we have the buffers available and populate the 1042 * appropriate structure version. 1043 */ 1044 1045 /* Obtain the v1.1 format of the descriptors. */ 1046 ret = partition_info_get_handler_v1_1(uuid, partitions, 1047 MAX_SP_LP_PARTITIONS, 1048 &partition_count); 1049 1050 /* Check if an error occurred during discovery. */ 1051 if (ret != 0) { 1052 goto err; 1053 } 1054 1055 /* If we didn't find any matches the UUID is unknown. */ 1056 if (partition_count == 0) { 1057 ret = FFA_ERROR_INVALID_PARAMETER; 1058 goto err; 1059 } 1060 1061 /* Obtain the partition mailbox RX/TX buffer pair descriptor. */ 1062 mbox = spmc_get_mbox_desc(secure_origin); 1063 1064 /* 1065 * If the caller has not bothered registering its RX/TX pair 1066 * then return an error code. 1067 */ 1068 spin_lock(&mbox->lock); 1069 if (mbox->rx_buffer == NULL) { 1070 ret = FFA_ERROR_BUSY; 1071 goto err_unlock; 1072 } 1073 1074 /* Ensure the RX buffer is currently free. */ 1075 if (mbox->state != MAILBOX_STATE_EMPTY) { 1076 ret = FFA_ERROR_BUSY; 1077 goto err_unlock; 1078 } 1079 1080 /* Zero the RX buffer before populating. */ 1081 (void)memset(mbox->rx_buffer, 0, 1082 mbox->rxtx_page_count * FFA_PAGE_SIZE); 1083 1084 /* 1085 * Depending on the FF-A version of the requesting partition 1086 * we may need to convert to a v1.0 format otherwise we can copy 1087 * directly. 1088 */ 1089 if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) { 1090 ret = partition_info_populate_v1_0(partitions, 1091 mbox, 1092 partition_count); 1093 if (ret != 0) { 1094 goto err_unlock; 1095 } 1096 } else { 1097 uint32_t buf_size = mbox->rxtx_page_count * 1098 FFA_PAGE_SIZE; 1099 1100 /* Ensure the descriptor will fit in the buffer. */ 1101 size = sizeof(struct ffa_partition_info_v1_1); 1102 if (partition_count * size > buf_size) { 1103 ret = FFA_ERROR_NO_MEMORY; 1104 goto err_unlock; 1105 } 1106 memcpy(mbox->rx_buffer, partitions, 1107 partition_count * size); 1108 } 1109 1110 mbox->state = MAILBOX_STATE_FULL; 1111 spin_unlock(&mbox->lock); 1112 } 1113 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size); 1114 1115 err_unlock: 1116 spin_unlock(&mbox->lock); 1117 err: 1118 return spmc_ffa_error_return(handle, ret); 1119 } 1120 1121 static uint64_t ffa_feature_success(void *handle, uint32_t arg2) 1122 { 1123 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2); 1124 } 1125 1126 static uint64_t ffa_features_retrieve_request(bool secure_origin, 1127 uint32_t input_properties, 1128 void *handle) 1129 { 1130 /* 1131 * If we're called by the normal world we don't support any 1132 * additional features. 1133 */ 1134 if (!secure_origin) { 1135 if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) { 1136 return spmc_ffa_error_return(handle, 1137 FFA_ERROR_NOT_SUPPORTED); 1138 } 1139 1140 } else { 1141 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1142 /* 1143 * If v1.1 the NS bit must be set otherwise it is an invalid 1144 * call. If v1.0 check and store whether the SP has requested 1145 * the use of the NS bit. 1146 */ 1147 if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) { 1148 if ((input_properties & 1149 FFA_FEATURES_RET_REQ_NS_BIT) == 0U) { 1150 return spmc_ffa_error_return(handle, 1151 FFA_ERROR_NOT_SUPPORTED); 1152 } 1153 return ffa_feature_success(handle, 1154 FFA_FEATURES_RET_REQ_NS_BIT); 1155 } else { 1156 sp->ns_bit_requested = (input_properties & 1157 FFA_FEATURES_RET_REQ_NS_BIT) != 1158 0U; 1159 } 1160 if (sp->ns_bit_requested) { 1161 return ffa_feature_success(handle, 1162 FFA_FEATURES_RET_REQ_NS_BIT); 1163 } 1164 } 1165 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1166 } 1167 1168 static uint64_t ffa_features_handler(uint32_t smc_fid, 1169 bool secure_origin, 1170 uint64_t x1, 1171 uint64_t x2, 1172 uint64_t x3, 1173 uint64_t x4, 1174 void *cookie, 1175 void *handle, 1176 uint64_t flags) 1177 { 1178 uint32_t function_id = (uint32_t) x1; 1179 uint32_t input_properties = (uint32_t) x2; 1180 1181 /* Check if a Feature ID was requested. */ 1182 if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) { 1183 /* We currently don't support any additional features. */ 1184 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1185 } 1186 1187 /* 1188 * Handle the cases where we have separate handlers due to additional 1189 * properties. 1190 */ 1191 switch (function_id) { 1192 case FFA_MEM_RETRIEVE_REQ_SMC32: 1193 case FFA_MEM_RETRIEVE_REQ_SMC64: 1194 return ffa_features_retrieve_request(secure_origin, 1195 input_properties, 1196 handle); 1197 } 1198 1199 /* 1200 * We don't currently support additional input properties for these 1201 * other ABIs therefore ensure this value is set to 0. 1202 */ 1203 if (input_properties != 0U) { 1204 return spmc_ffa_error_return(handle, 1205 FFA_ERROR_NOT_SUPPORTED); 1206 } 1207 1208 /* Report if any other FF-A ABI is supported. */ 1209 switch (function_id) { 1210 /* Supported features from both worlds. */ 1211 case FFA_ERROR: 1212 case FFA_SUCCESS_SMC32: 1213 case FFA_INTERRUPT: 1214 case FFA_SPM_ID_GET: 1215 case FFA_ID_GET: 1216 case FFA_FEATURES: 1217 case FFA_VERSION: 1218 case FFA_RX_RELEASE: 1219 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1220 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1221 case FFA_PARTITION_INFO_GET: 1222 case FFA_RXTX_MAP_SMC32: 1223 case FFA_RXTX_MAP_SMC64: 1224 case FFA_RXTX_UNMAP: 1225 case FFA_MEM_FRAG_TX: 1226 case FFA_MSG_RUN: 1227 1228 /* 1229 * We are relying on the fact that the other registers 1230 * will be set to 0 as these values align with the 1231 * currently implemented features of the SPMC. If this 1232 * changes this function must be extended to handle 1233 * reporting the additional functionality. 1234 */ 1235 1236 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1237 /* Execution stops here. */ 1238 1239 /* Supported ABIs only from the secure world. */ 1240 case FFA_SECONDARY_EP_REGISTER_SMC64: 1241 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1242 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1243 case FFA_MEM_RELINQUISH: 1244 case FFA_MSG_WAIT: 1245 1246 if (!secure_origin) { 1247 return spmc_ffa_error_return(handle, 1248 FFA_ERROR_NOT_SUPPORTED); 1249 } 1250 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1251 /* Execution stops here. */ 1252 1253 /* Supported features only from the normal world. */ 1254 case FFA_MEM_SHARE_SMC32: 1255 case FFA_MEM_SHARE_SMC64: 1256 case FFA_MEM_LEND_SMC32: 1257 case FFA_MEM_LEND_SMC64: 1258 case FFA_MEM_RECLAIM: 1259 case FFA_MEM_FRAG_RX: 1260 1261 if (secure_origin) { 1262 return spmc_ffa_error_return(handle, 1263 FFA_ERROR_NOT_SUPPORTED); 1264 } 1265 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1266 /* Execution stops here. */ 1267 1268 default: 1269 return spmc_ffa_error_return(handle, 1270 FFA_ERROR_NOT_SUPPORTED); 1271 } 1272 } 1273 1274 static uint64_t ffa_id_get_handler(uint32_t smc_fid, 1275 bool secure_origin, 1276 uint64_t x1, 1277 uint64_t x2, 1278 uint64_t x3, 1279 uint64_t x4, 1280 void *cookie, 1281 void *handle, 1282 uint64_t flags) 1283 { 1284 if (secure_origin) { 1285 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1286 spmc_get_current_sp_ctx()->sp_id); 1287 } else { 1288 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1289 spmc_get_hyp_ctx()->ns_ep_id); 1290 } 1291 } 1292 1293 /* 1294 * Enable an SP to query the ID assigned to the SPMC. 1295 */ 1296 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid, 1297 bool secure_origin, 1298 uint64_t x1, 1299 uint64_t x2, 1300 uint64_t x3, 1301 uint64_t x4, 1302 void *cookie, 1303 void *handle, 1304 uint64_t flags) 1305 { 1306 assert(x1 == 0UL); 1307 assert(x2 == 0UL); 1308 assert(x3 == 0UL); 1309 assert(x4 == 0UL); 1310 assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL); 1311 assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL); 1312 assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL); 1313 1314 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID); 1315 } 1316 1317 static uint64_t ffa_run_handler(uint32_t smc_fid, 1318 bool secure_origin, 1319 uint64_t x1, 1320 uint64_t x2, 1321 uint64_t x3, 1322 uint64_t x4, 1323 void *cookie, 1324 void *handle, 1325 uint64_t flags) 1326 { 1327 struct secure_partition_desc *sp; 1328 uint16_t target_id = FFA_RUN_EP_ID(x1); 1329 uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1); 1330 unsigned int idx; 1331 unsigned int *rt_state; 1332 unsigned int *rt_model; 1333 1334 /* Can only be called from the normal world. */ 1335 if (secure_origin) { 1336 ERROR("FFA_RUN can only be called from NWd.\n"); 1337 return spmc_ffa_error_return(handle, 1338 FFA_ERROR_INVALID_PARAMETER); 1339 } 1340 1341 /* Cannot run a Normal world partition. */ 1342 if (ffa_is_normal_world_id(target_id)) { 1343 ERROR("Cannot run a NWd partition (0x%x).\n", target_id); 1344 return spmc_ffa_error_return(handle, 1345 FFA_ERROR_INVALID_PARAMETER); 1346 } 1347 1348 /* Check that the target SP exists. */ 1349 sp = spmc_get_sp_ctx(target_id); 1350 ERROR("Unknown partition ID (0x%x).\n", target_id); 1351 if (sp == NULL) { 1352 return spmc_ffa_error_return(handle, 1353 FFA_ERROR_INVALID_PARAMETER); 1354 } 1355 1356 idx = get_ec_index(sp); 1357 if (idx != vcpu_id) { 1358 ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id); 1359 return spmc_ffa_error_return(handle, 1360 FFA_ERROR_INVALID_PARAMETER); 1361 } 1362 rt_state = &((sp->ec[idx]).rt_state); 1363 rt_model = &((sp->ec[idx]).rt_model); 1364 if (*rt_state == RT_STATE_RUNNING) { 1365 ERROR("Partition (0x%x) is already running.\n", target_id); 1366 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 1367 } 1368 1369 /* 1370 * Sanity check that if the execution context was not waiting then it 1371 * was either in the direct request or the run partition runtime model. 1372 */ 1373 if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) { 1374 assert(*rt_model == RT_MODEL_RUN || 1375 *rt_model == RT_MODEL_DIR_REQ); 1376 } 1377 1378 /* 1379 * If the context was waiting then update the partition runtime model. 1380 */ 1381 if (*rt_state == RT_STATE_WAITING) { 1382 *rt_model = RT_MODEL_RUN; 1383 } 1384 1385 /* 1386 * Forward the request to the correct SP vCPU after updating 1387 * its state. 1388 */ 1389 *rt_state = RT_STATE_RUNNING; 1390 1391 return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0, 1392 handle, cookie, flags, target_id); 1393 } 1394 1395 static uint64_t rx_release_handler(uint32_t smc_fid, 1396 bool secure_origin, 1397 uint64_t x1, 1398 uint64_t x2, 1399 uint64_t x3, 1400 uint64_t x4, 1401 void *cookie, 1402 void *handle, 1403 uint64_t flags) 1404 { 1405 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1406 1407 spin_lock(&mbox->lock); 1408 1409 if (mbox->state != MAILBOX_STATE_FULL) { 1410 spin_unlock(&mbox->lock); 1411 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1412 } 1413 1414 mbox->state = MAILBOX_STATE_EMPTY; 1415 spin_unlock(&mbox->lock); 1416 1417 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1418 } 1419 1420 /* 1421 * Perform initial validation on the provided secondary entry point. 1422 * For now ensure it does not lie within the BL31 Image or the SP's 1423 * RX/TX buffers as these are mapped within EL3. 1424 * TODO: perform validation for additional invalid memory regions. 1425 */ 1426 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp) 1427 { 1428 struct mailbox *mb; 1429 uintptr_t buffer_size; 1430 uintptr_t sp_rx_buffer; 1431 uintptr_t sp_tx_buffer; 1432 uintptr_t sp_rx_buffer_limit; 1433 uintptr_t sp_tx_buffer_limit; 1434 1435 mb = &sp->mailbox; 1436 buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE); 1437 sp_rx_buffer = (uintptr_t) mb->rx_buffer; 1438 sp_tx_buffer = (uintptr_t) mb->tx_buffer; 1439 sp_rx_buffer_limit = sp_rx_buffer + buffer_size; 1440 sp_tx_buffer_limit = sp_tx_buffer + buffer_size; 1441 1442 /* 1443 * Check if the entry point lies within BL31, or the 1444 * SP's RX or TX buffer. 1445 */ 1446 if ((ep >= BL31_BASE && ep < BL31_LIMIT) || 1447 (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) || 1448 (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) { 1449 return -EINVAL; 1450 } 1451 return 0; 1452 } 1453 1454 /******************************************************************************* 1455 * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to 1456 * register an entry point for initialization during a secondary cold boot. 1457 ******************************************************************************/ 1458 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid, 1459 bool secure_origin, 1460 uint64_t x1, 1461 uint64_t x2, 1462 uint64_t x3, 1463 uint64_t x4, 1464 void *cookie, 1465 void *handle, 1466 uint64_t flags) 1467 { 1468 struct secure_partition_desc *sp; 1469 struct sp_exec_ctx *sp_ctx; 1470 1471 /* This request cannot originate from the Normal world. */ 1472 if (!secure_origin) { 1473 WARN("%s: Can only be called from SWd.\n", __func__); 1474 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1475 } 1476 1477 /* Get the context of the current SP. */ 1478 sp = spmc_get_current_sp_ctx(); 1479 if (sp == NULL) { 1480 WARN("%s: Cannot find SP context.\n", __func__); 1481 return spmc_ffa_error_return(handle, 1482 FFA_ERROR_INVALID_PARAMETER); 1483 } 1484 1485 /* Only an S-EL1 SP should be invoking this ABI. */ 1486 if (sp->runtime_el != S_EL1) { 1487 WARN("%s: Can only be called for a S-EL1 SP.\n", __func__); 1488 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1489 } 1490 1491 /* Ensure the SP is in its initialization state. */ 1492 sp_ctx = spmc_get_sp_ec(sp); 1493 if (sp_ctx->rt_model != RT_MODEL_INIT) { 1494 WARN("%s: Can only be called during SP initialization.\n", 1495 __func__); 1496 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1497 } 1498 1499 /* Perform initial validation of the secondary entry point. */ 1500 if (validate_secondary_ep(x1, sp)) { 1501 WARN("%s: Invalid entry point provided (0x%lx).\n", 1502 __func__, x1); 1503 return spmc_ffa_error_return(handle, 1504 FFA_ERROR_INVALID_PARAMETER); 1505 } 1506 1507 /* 1508 * Update the secondary entrypoint in SP context. 1509 * We don't need a lock here as during partition initialization there 1510 * will only be a single core online. 1511 */ 1512 sp->secondary_ep = x1; 1513 VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep); 1514 1515 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1516 } 1517 1518 /******************************************************************************* 1519 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1520 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1521 * function converts a permission value from the FF-A format to the mmap_attr_t 1522 * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and 1523 * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are 1524 * ignored by the function xlat_change_mem_attributes_ctx(). 1525 ******************************************************************************/ 1526 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms) 1527 { 1528 unsigned int tf_attr = 0U; 1529 unsigned int access; 1530 1531 /* Deal with data access permissions first. */ 1532 access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT; 1533 1534 switch (access) { 1535 case FFA_MEM_PERM_DATA_RW: 1536 /* Return 0 if the execute is set with RW. */ 1537 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) { 1538 tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER; 1539 } 1540 break; 1541 1542 case FFA_MEM_PERM_DATA_RO: 1543 tf_attr |= MT_RO | MT_USER; 1544 /* Deal with the instruction access permissions next. */ 1545 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) { 1546 tf_attr |= MT_EXECUTE; 1547 } else { 1548 tf_attr |= MT_EXECUTE_NEVER; 1549 } 1550 break; 1551 1552 case FFA_MEM_PERM_DATA_NA: 1553 default: 1554 return tf_attr; 1555 } 1556 1557 return tf_attr; 1558 } 1559 1560 /******************************************************************************* 1561 * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP 1562 ******************************************************************************/ 1563 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid, 1564 bool secure_origin, 1565 uint64_t x1, 1566 uint64_t x2, 1567 uint64_t x3, 1568 uint64_t x4, 1569 void *cookie, 1570 void *handle, 1571 uint64_t flags) 1572 { 1573 struct secure_partition_desc *sp; 1574 unsigned int idx; 1575 uintptr_t base_va = (uintptr_t) x1; 1576 size_t size = (size_t)(x2 * PAGE_SIZE); 1577 uint32_t tf_attr; 1578 int ret; 1579 1580 /* This request cannot originate from the Normal world. */ 1581 if (!secure_origin) { 1582 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1583 } 1584 1585 if (size == 0) { 1586 return spmc_ffa_error_return(handle, 1587 FFA_ERROR_INVALID_PARAMETER); 1588 } 1589 1590 /* Get the context of the current SP. */ 1591 sp = spmc_get_current_sp_ctx(); 1592 if (sp == NULL) { 1593 return spmc_ffa_error_return(handle, 1594 FFA_ERROR_INVALID_PARAMETER); 1595 } 1596 1597 /* A S-EL1 SP has no business invoking this ABI. */ 1598 if (sp->runtime_el == S_EL1) { 1599 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1600 } 1601 1602 if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) { 1603 return spmc_ffa_error_return(handle, 1604 FFA_ERROR_INVALID_PARAMETER); 1605 } 1606 1607 /* Get the execution context of the calling SP. */ 1608 idx = get_ec_index(sp); 1609 1610 /* 1611 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1612 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1613 * and can only be initialising on this cpu. 1614 */ 1615 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1616 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1617 } 1618 1619 VERBOSE("Setting memory permissions:\n"); 1620 VERBOSE(" Start address : 0x%lx\n", base_va); 1621 VERBOSE(" Number of pages: %lu (%zu bytes)\n", x2, size); 1622 VERBOSE(" Attributes : 0x%x\n", (uint32_t)x3); 1623 1624 /* Convert inbound permissions to TF-A permission attributes */ 1625 tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3); 1626 if (tf_attr == 0U) { 1627 return spmc_ffa_error_return(handle, 1628 FFA_ERROR_INVALID_PARAMETER); 1629 } 1630 1631 /* Request the change in permissions */ 1632 ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle, 1633 base_va, size, tf_attr); 1634 if (ret != 0) { 1635 return spmc_ffa_error_return(handle, 1636 FFA_ERROR_INVALID_PARAMETER); 1637 } 1638 1639 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1640 } 1641 1642 /******************************************************************************* 1643 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1644 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1645 * function converts a permission value from the mmap_attr_t format to the FF-A 1646 * format. 1647 ******************************************************************************/ 1648 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr) 1649 { 1650 unsigned int perms = 0U; 1651 unsigned int data_access; 1652 1653 if ((attr & MT_USER) == 0) { 1654 /* No access from EL0. */ 1655 data_access = FFA_MEM_PERM_DATA_NA; 1656 } else { 1657 if ((attr & MT_RW) != 0) { 1658 data_access = FFA_MEM_PERM_DATA_RW; 1659 } else { 1660 data_access = FFA_MEM_PERM_DATA_RO; 1661 } 1662 } 1663 1664 perms |= (data_access & FFA_MEM_PERM_DATA_MASK) 1665 << FFA_MEM_PERM_DATA_SHIFT; 1666 1667 if ((attr & MT_EXECUTE_NEVER) != 0U) { 1668 perms |= FFA_MEM_PERM_INST_NON_EXEC; 1669 } 1670 1671 return perms; 1672 } 1673 1674 /******************************************************************************* 1675 * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP 1676 ******************************************************************************/ 1677 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid, 1678 bool secure_origin, 1679 uint64_t x1, 1680 uint64_t x2, 1681 uint64_t x3, 1682 uint64_t x4, 1683 void *cookie, 1684 void *handle, 1685 uint64_t flags) 1686 { 1687 struct secure_partition_desc *sp; 1688 unsigned int idx; 1689 uintptr_t base_va = (uintptr_t)x1; 1690 uint32_t tf_attr = 0; 1691 int ret; 1692 1693 /* This request cannot originate from the Normal world. */ 1694 if (!secure_origin) { 1695 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1696 } 1697 1698 /* Get the context of the current SP. */ 1699 sp = spmc_get_current_sp_ctx(); 1700 if (sp == NULL) { 1701 return spmc_ffa_error_return(handle, 1702 FFA_ERROR_INVALID_PARAMETER); 1703 } 1704 1705 /* A S-EL1 SP has no business invoking this ABI. */ 1706 if (sp->runtime_el == S_EL1) { 1707 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1708 } 1709 1710 /* Get the execution context of the calling SP. */ 1711 idx = get_ec_index(sp); 1712 1713 /* 1714 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1715 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1716 * and can only be initialising on this cpu. 1717 */ 1718 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1719 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1720 } 1721 1722 /* Request the permissions */ 1723 ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr); 1724 if (ret != 0) { 1725 return spmc_ffa_error_return(handle, 1726 FFA_ERROR_INVALID_PARAMETER); 1727 } 1728 1729 /* Convert TF-A permission to FF-A permissions attributes. */ 1730 x2 = mmap_perm_to_ffa_perm(tf_attr); 1731 1732 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2); 1733 } 1734 1735 /******************************************************************************* 1736 * This function will parse the Secure Partition Manifest. From manifest, it 1737 * will fetch details for preparing Secure partition image context and secure 1738 * partition image boot arguments if any. 1739 ******************************************************************************/ 1740 static int sp_manifest_parse(void *sp_manifest, int offset, 1741 struct secure_partition_desc *sp, 1742 entry_point_info_t *ep_info, 1743 int32_t *boot_info_reg) 1744 { 1745 int32_t ret, node; 1746 uint32_t config_32; 1747 1748 /* 1749 * Look for the mandatory fields that are expected to be present in 1750 * the SP manifests. 1751 */ 1752 node = fdt_path_offset(sp_manifest, "/"); 1753 if (node < 0) { 1754 ERROR("Did not find root node.\n"); 1755 return node; 1756 } 1757 1758 ret = fdt_read_uint32_array(sp_manifest, node, "uuid", 1759 ARRAY_SIZE(sp->uuid), sp->uuid); 1760 if (ret != 0) { 1761 ERROR("Missing Secure Partition UUID.\n"); 1762 return ret; 1763 } 1764 1765 ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32); 1766 if (ret != 0) { 1767 ERROR("Missing SP Exception Level information.\n"); 1768 return ret; 1769 } 1770 1771 sp->runtime_el = config_32; 1772 1773 ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32); 1774 if (ret != 0) { 1775 ERROR("Missing Secure Partition FF-A Version.\n"); 1776 return ret; 1777 } 1778 1779 sp->ffa_version = config_32; 1780 1781 ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32); 1782 if (ret != 0) { 1783 ERROR("Missing Secure Partition Execution State.\n"); 1784 return ret; 1785 } 1786 1787 sp->execution_state = config_32; 1788 1789 ret = fdt_read_uint32(sp_manifest, node, 1790 "messaging-method", &config_32); 1791 if (ret != 0) { 1792 ERROR("Missing Secure Partition messaging method.\n"); 1793 return ret; 1794 } 1795 1796 /* Validate this entry, we currently only support direct messaging. */ 1797 if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV | 1798 FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) { 1799 WARN("Invalid Secure Partition messaging method (0x%x)\n", 1800 config_32); 1801 return -EINVAL; 1802 } 1803 1804 sp->properties = config_32; 1805 1806 ret = fdt_read_uint32(sp_manifest, node, 1807 "execution-ctx-count", &config_32); 1808 1809 if (ret != 0) { 1810 ERROR("Missing SP Execution Context Count.\n"); 1811 return ret; 1812 } 1813 1814 /* 1815 * Ensure this field is set correctly in the manifest however 1816 * since this is currently a hardcoded value for S-EL1 partitions 1817 * we don't need to save it here, just validate. 1818 */ 1819 if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) { 1820 ERROR("SP Execution Context Count (%u) must be %u.\n", 1821 config_32, PLATFORM_CORE_COUNT); 1822 return -EINVAL; 1823 } 1824 1825 /* 1826 * Look for the optional fields that are expected to be present in 1827 * an SP manifest. 1828 */ 1829 ret = fdt_read_uint32(sp_manifest, node, "id", &config_32); 1830 if (ret != 0) { 1831 WARN("Missing Secure Partition ID.\n"); 1832 } else { 1833 if (!is_ffa_secure_id_valid(config_32)) { 1834 ERROR("Invalid Secure Partition ID (0x%x).\n", 1835 config_32); 1836 return -EINVAL; 1837 } 1838 sp->sp_id = config_32; 1839 } 1840 1841 ret = fdt_read_uint32(sp_manifest, node, 1842 "power-management-messages", &config_32); 1843 if (ret != 0) { 1844 WARN("Missing Power Management Messages entry.\n"); 1845 } else { 1846 /* 1847 * Ensure only the currently supported power messages have 1848 * been requested. 1849 */ 1850 if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF | 1851 FFA_PM_MSG_SUB_CPU_SUSPEND | 1852 FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) { 1853 ERROR("Requested unsupported PM messages (%x)\n", 1854 config_32); 1855 return -EINVAL; 1856 } 1857 sp->pwr_mgmt_msgs = config_32; 1858 } 1859 1860 ret = fdt_read_uint32(sp_manifest, node, 1861 "gp-register-num", &config_32); 1862 if (ret != 0) { 1863 WARN("Missing boot information register.\n"); 1864 } else { 1865 /* Check if a register number between 0-3 is specified. */ 1866 if (config_32 < 4) { 1867 *boot_info_reg = config_32; 1868 } else { 1869 WARN("Incorrect boot information register (%u).\n", 1870 config_32); 1871 } 1872 } 1873 1874 return 0; 1875 } 1876 1877 /******************************************************************************* 1878 * This function gets the Secure Partition Manifest base and maps the manifest 1879 * region. 1880 * Currently only one Secure Partition manifest is considered which is used to 1881 * prepare the context for the single Secure Partition. 1882 ******************************************************************************/ 1883 static int find_and_prepare_sp_context(void) 1884 { 1885 void *sp_manifest; 1886 uintptr_t manifest_base; 1887 uintptr_t manifest_base_align; 1888 entry_point_info_t *next_image_ep_info; 1889 int32_t ret, boot_info_reg = -1; 1890 struct secure_partition_desc *sp; 1891 1892 next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 1893 if (next_image_ep_info == NULL) { 1894 WARN("No Secure Partition image provided by BL2.\n"); 1895 return -ENOENT; 1896 } 1897 1898 sp_manifest = (void *)next_image_ep_info->args.arg0; 1899 if (sp_manifest == NULL) { 1900 WARN("Secure Partition manifest absent.\n"); 1901 return -ENOENT; 1902 } 1903 1904 manifest_base = (uintptr_t)sp_manifest; 1905 manifest_base_align = page_align(manifest_base, DOWN); 1906 1907 /* 1908 * Map the secure partition manifest region in the EL3 translation 1909 * regime. 1910 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base 1911 * alignment the region of 1 PAGE_SIZE from manifest align base may 1912 * not completely accommodate the secure partition manifest region. 1913 */ 1914 ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align, 1915 manifest_base_align, 1916 PAGE_SIZE * 2, 1917 MT_RO_DATA); 1918 if (ret != 0) { 1919 ERROR("Error while mapping SP manifest (%d).\n", ret); 1920 return ret; 1921 } 1922 1923 ret = fdt_node_offset_by_compatible(sp_manifest, -1, 1924 "arm,ffa-manifest-1.0"); 1925 if (ret < 0) { 1926 ERROR("Error happened in SP manifest reading.\n"); 1927 return -EINVAL; 1928 } 1929 1930 /* 1931 * Store the size of the manifest so that it can be used later to pass 1932 * the manifest as boot information later. 1933 */ 1934 next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest); 1935 INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base, 1936 next_image_ep_info->args.arg1); 1937 1938 /* 1939 * Select an SP descriptor for initialising the partition's execution 1940 * context on the primary CPU. 1941 */ 1942 sp = spmc_get_current_sp_ctx(); 1943 1944 #if SPMC_AT_EL3_SEL0_SP 1945 /* Assign translation tables context. */ 1946 sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context(); 1947 1948 #endif /* SPMC_AT_EL3_SEL0_SP */ 1949 /* Initialize entry point information for the SP */ 1950 SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1, 1951 SECURE | EP_ST_ENABLE); 1952 1953 /* Parse the SP manifest. */ 1954 ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info, 1955 &boot_info_reg); 1956 if (ret != 0) { 1957 ERROR("Error in Secure Partition manifest parsing.\n"); 1958 return ret; 1959 } 1960 1961 /* Check that the runtime EL in the manifest was correct. */ 1962 if (sp->runtime_el != S_EL0 && sp->runtime_el != S_EL1) { 1963 ERROR("Unexpected runtime EL: %d\n", sp->runtime_el); 1964 return -EINVAL; 1965 } 1966 1967 /* Perform any common initialisation. */ 1968 spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg); 1969 1970 /* Perform any initialisation specific to S-EL1 SPs. */ 1971 if (sp->runtime_el == S_EL1) { 1972 spmc_el1_sp_setup(sp, next_image_ep_info); 1973 } 1974 1975 #if SPMC_AT_EL3_SEL0_SP 1976 /* Setup spsr in endpoint info for common context management routine. */ 1977 if (sp->runtime_el == S_EL0) { 1978 spmc_el0_sp_spsr_setup(next_image_ep_info); 1979 } 1980 #endif /* SPMC_AT_EL3_SEL0_SP */ 1981 1982 /* Initialize the SP context with the required ep info. */ 1983 spmc_sp_common_ep_commit(sp, next_image_ep_info); 1984 1985 #if SPMC_AT_EL3_SEL0_SP 1986 /* 1987 * Perform any initialisation specific to S-EL0 not set by common 1988 * context management routine. 1989 */ 1990 if (sp->runtime_el == S_EL0) { 1991 spmc_el0_sp_setup(sp, boot_info_reg); 1992 } 1993 #endif /* SPMC_AT_EL3_SEL0_SP */ 1994 return 0; 1995 } 1996 1997 /******************************************************************************* 1998 * This function takes an SP context pointer and performs a synchronous entry 1999 * into it. 2000 ******************************************************************************/ 2001 static int32_t logical_sp_init(void) 2002 { 2003 int32_t rc = 0; 2004 struct el3_lp_desc *el3_lp_descs; 2005 2006 /* Perform initial validation of the Logical Partitions. */ 2007 rc = el3_sp_desc_validate(); 2008 if (rc != 0) { 2009 ERROR("Logical Partition validation failed!\n"); 2010 return rc; 2011 } 2012 2013 el3_lp_descs = get_el3_lp_array(); 2014 2015 INFO("Logical Secure Partition init start.\n"); 2016 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 2017 rc = el3_lp_descs[i].init(); 2018 if (rc != 0) { 2019 ERROR("Logical SP (0x%x) Failed to Initialize\n", 2020 el3_lp_descs[i].sp_id); 2021 return rc; 2022 } 2023 VERBOSE("Logical SP (0x%x) Initialized\n", 2024 el3_lp_descs[i].sp_id); 2025 } 2026 2027 INFO("Logical Secure Partition init completed.\n"); 2028 2029 return rc; 2030 } 2031 2032 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec) 2033 { 2034 uint64_t rc; 2035 2036 assert(ec != NULL); 2037 2038 /* Assign the context of the SP to this CPU */ 2039 cm_set_context(&(ec->cpu_ctx), SECURE); 2040 2041 /* Restore the context assigned above */ 2042 cm_el1_sysregs_context_restore(SECURE); 2043 cm_set_next_eret_context(SECURE); 2044 2045 /* Invalidate TLBs at EL1. */ 2046 tlbivmalle1(); 2047 dsbish(); 2048 2049 /* Enter Secure Partition */ 2050 rc = spm_secure_partition_enter(&ec->c_rt_ctx); 2051 2052 /* Save secure state */ 2053 cm_el1_sysregs_context_save(SECURE); 2054 2055 return rc; 2056 } 2057 2058 /******************************************************************************* 2059 * SPMC Helper Functions. 2060 ******************************************************************************/ 2061 static int32_t sp_init(void) 2062 { 2063 uint64_t rc; 2064 struct secure_partition_desc *sp; 2065 struct sp_exec_ctx *ec; 2066 2067 sp = spmc_get_current_sp_ctx(); 2068 ec = spmc_get_sp_ec(sp); 2069 ec->rt_model = RT_MODEL_INIT; 2070 ec->rt_state = RT_STATE_RUNNING; 2071 2072 INFO("Secure Partition (0x%x) init start.\n", sp->sp_id); 2073 2074 rc = spmc_sp_synchronous_entry(ec); 2075 if (rc != 0) { 2076 /* Indicate SP init was not successful. */ 2077 ERROR("SP (0x%x) failed to initialize (%lu).\n", 2078 sp->sp_id, rc); 2079 return 0; 2080 } 2081 2082 ec->rt_state = RT_STATE_WAITING; 2083 INFO("Secure Partition initialized.\n"); 2084 2085 return 1; 2086 } 2087 2088 static void initalize_sp_descs(void) 2089 { 2090 struct secure_partition_desc *sp; 2091 2092 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 2093 sp = &sp_desc[i]; 2094 sp->sp_id = INV_SP_ID; 2095 sp->mailbox.rx_buffer = NULL; 2096 sp->mailbox.tx_buffer = NULL; 2097 sp->mailbox.state = MAILBOX_STATE_EMPTY; 2098 sp->secondary_ep = 0; 2099 } 2100 } 2101 2102 static void initalize_ns_ep_descs(void) 2103 { 2104 struct ns_endpoint_desc *ns_ep; 2105 2106 for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) { 2107 ns_ep = &ns_ep_desc[i]; 2108 /* 2109 * Clashes with the Hypervisor ID but will not be a 2110 * problem in practice. 2111 */ 2112 ns_ep->ns_ep_id = 0; 2113 ns_ep->ffa_version = 0; 2114 ns_ep->mailbox.rx_buffer = NULL; 2115 ns_ep->mailbox.tx_buffer = NULL; 2116 ns_ep->mailbox.state = MAILBOX_STATE_EMPTY; 2117 } 2118 } 2119 2120 /******************************************************************************* 2121 * Initialize SPMC attributes for the SPMD. 2122 ******************************************************************************/ 2123 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs) 2124 { 2125 spmc_attrs->major_version = FFA_VERSION_MAJOR; 2126 spmc_attrs->minor_version = FFA_VERSION_MINOR; 2127 spmc_attrs->exec_state = MODE_RW_64; 2128 spmc_attrs->spmc_id = FFA_SPMC_ID; 2129 } 2130 2131 /******************************************************************************* 2132 * Initialize contexts of all Secure Partitions. 2133 ******************************************************************************/ 2134 int32_t spmc_setup(void) 2135 { 2136 int32_t ret; 2137 uint32_t flags; 2138 2139 /* Initialize endpoint descriptors */ 2140 initalize_sp_descs(); 2141 initalize_ns_ep_descs(); 2142 2143 /* 2144 * Retrieve the information of the datastore for tracking shared memory 2145 * requests allocated by platform code and zero the region if available. 2146 */ 2147 ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data, 2148 &spmc_shmem_obj_state.data_size); 2149 if (ret != 0) { 2150 ERROR("Failed to obtain memory descriptor backing store!\n"); 2151 return ret; 2152 } 2153 memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size); 2154 2155 /* Setup logical SPs. */ 2156 ret = logical_sp_init(); 2157 if (ret != 0) { 2158 ERROR("Failed to initialize Logical Partitions.\n"); 2159 return ret; 2160 } 2161 2162 /* Perform physical SP setup. */ 2163 2164 /* Disable MMU at EL1 (initialized by BL2) */ 2165 disable_mmu_icache_el1(); 2166 2167 /* Initialize context of the SP */ 2168 INFO("Secure Partition context setup start.\n"); 2169 2170 ret = find_and_prepare_sp_context(); 2171 if (ret != 0) { 2172 ERROR("Error in SP finding and context preparation.\n"); 2173 return ret; 2174 } 2175 2176 /* Register power management hooks with PSCI */ 2177 psci_register_spd_pm_hook(&spmc_pm); 2178 2179 /* 2180 * Register an interrupt handler for S-EL1 interrupts 2181 * when generated during code executing in the 2182 * non-secure state. 2183 */ 2184 flags = 0; 2185 set_interrupt_rm_flag(flags, NON_SECURE); 2186 ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, 2187 spmc_sp_interrupt_handler, 2188 flags); 2189 if (ret != 0) { 2190 ERROR("Failed to register interrupt handler! (%d)\n", ret); 2191 panic(); 2192 } 2193 2194 /* Register init function for deferred init. */ 2195 bl31_register_bl32_init(&sp_init); 2196 2197 INFO("Secure Partition setup done.\n"); 2198 2199 return 0; 2200 } 2201 2202 /******************************************************************************* 2203 * Secure Partition Manager SMC handler. 2204 ******************************************************************************/ 2205 uint64_t spmc_smc_handler(uint32_t smc_fid, 2206 bool secure_origin, 2207 uint64_t x1, 2208 uint64_t x2, 2209 uint64_t x3, 2210 uint64_t x4, 2211 void *cookie, 2212 void *handle, 2213 uint64_t flags) 2214 { 2215 switch (smc_fid) { 2216 2217 case FFA_VERSION: 2218 return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3, 2219 x4, cookie, handle, flags); 2220 2221 case FFA_SPM_ID_GET: 2222 return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2, 2223 x3, x4, cookie, handle, flags); 2224 2225 case FFA_ID_GET: 2226 return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3, 2227 x4, cookie, handle, flags); 2228 2229 case FFA_FEATURES: 2230 return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3, 2231 x4, cookie, handle, flags); 2232 2233 case FFA_SECONDARY_EP_REGISTER_SMC64: 2234 return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1, 2235 x2, x3, x4, cookie, handle, 2236 flags); 2237 2238 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 2239 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 2240 return direct_req_smc_handler(smc_fid, secure_origin, x1, x2, 2241 x3, x4, cookie, handle, flags); 2242 2243 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 2244 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 2245 return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2, 2246 x3, x4, cookie, handle, flags); 2247 2248 case FFA_RXTX_MAP_SMC32: 2249 case FFA_RXTX_MAP_SMC64: 2250 return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2251 cookie, handle, flags); 2252 2253 case FFA_RXTX_UNMAP: 2254 return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3, 2255 x4, cookie, handle, flags); 2256 2257 case FFA_PARTITION_INFO_GET: 2258 return partition_info_get_handler(smc_fid, secure_origin, x1, 2259 x2, x3, x4, cookie, handle, 2260 flags); 2261 2262 case FFA_RX_RELEASE: 2263 return rx_release_handler(smc_fid, secure_origin, x1, x2, x3, 2264 x4, cookie, handle, flags); 2265 2266 case FFA_MSG_WAIT: 2267 return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2268 cookie, handle, flags); 2269 2270 case FFA_ERROR: 2271 return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2272 cookie, handle, flags); 2273 2274 case FFA_MSG_RUN: 2275 return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2276 cookie, handle, flags); 2277 2278 case FFA_MEM_SHARE_SMC32: 2279 case FFA_MEM_SHARE_SMC64: 2280 case FFA_MEM_LEND_SMC32: 2281 case FFA_MEM_LEND_SMC64: 2282 return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4, 2283 cookie, handle, flags); 2284 2285 case FFA_MEM_FRAG_TX: 2286 return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3, 2287 x4, cookie, handle, flags); 2288 2289 case FFA_MEM_FRAG_RX: 2290 return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3, 2291 x4, cookie, handle, flags); 2292 2293 case FFA_MEM_RETRIEVE_REQ_SMC32: 2294 case FFA_MEM_RETRIEVE_REQ_SMC64: 2295 return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2, 2296 x3, x4, cookie, handle, flags); 2297 2298 case FFA_MEM_RELINQUISH: 2299 return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2, 2300 x3, x4, cookie, handle, flags); 2301 2302 case FFA_MEM_RECLAIM: 2303 return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3, 2304 x4, cookie, handle, flags); 2305 2306 case FFA_MEM_PERM_GET: 2307 return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2, 2308 x3, x4, cookie, handle, flags); 2309 2310 case FFA_MEM_PERM_SET: 2311 return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2, 2312 x3, x4, cookie, handle, flags); 2313 2314 default: 2315 WARN("Unsupported FF-A call 0x%08x.\n", smc_fid); 2316 break; 2317 } 2318 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 2319 } 2320 2321 /******************************************************************************* 2322 * This function is the handler registered for S-EL1 interrupts by the SPMC. It 2323 * validates the interrupt and upon success arranges entry into the SP for 2324 * handling the interrupt. 2325 ******************************************************************************/ 2326 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 2327 uint32_t flags, 2328 void *handle, 2329 void *cookie) 2330 { 2331 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 2332 struct sp_exec_ctx *ec; 2333 uint32_t linear_id = plat_my_core_pos(); 2334 2335 /* Sanity check for a NULL pointer dereference. */ 2336 assert(sp != NULL); 2337 2338 /* Check the security state when the exception was generated. */ 2339 assert(get_interrupt_src_ss(flags) == NON_SECURE); 2340 2341 /* Panic if not an S-EL1 Partition. */ 2342 if (sp->runtime_el != S_EL1) { 2343 ERROR("Interrupt received for a non S-EL1 SP on core%u.\n", 2344 linear_id); 2345 panic(); 2346 } 2347 2348 /* Obtain a reference to the SP execution context. */ 2349 ec = spmc_get_sp_ec(sp); 2350 2351 /* Ensure that the execution context is in waiting state else panic. */ 2352 if (ec->rt_state != RT_STATE_WAITING) { 2353 ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n", 2354 linear_id, RT_STATE_WAITING, ec->rt_state); 2355 panic(); 2356 } 2357 2358 /* Update the runtime model and state of the partition. */ 2359 ec->rt_model = RT_MODEL_INTR; 2360 ec->rt_state = RT_STATE_RUNNING; 2361 2362 VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id); 2363 2364 /* 2365 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not 2366 * populated as the SP can determine this by itself. 2367 */ 2368 return spmd_smc_switch_state(FFA_INTERRUPT, false, 2369 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2370 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2371 handle); 2372 } 2373