xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc_main.c (revision 09a580b7961827501f94dd3dafbc27c7c5b69237)
1 /*
2  * Copyright (c) 2022-2024, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdio.h>
10 
11 #include <arch_helpers.h>
12 #include <bl31/bl31.h>
13 #include <bl31/ehf.h>
14 #include <bl31/interrupt_mgmt.h>
15 #include <common/debug.h>
16 #include <common/fdt_wrappers.h>
17 #include <common/runtime_svc.h>
18 #include <common/uuid.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/smccc.h>
21 #include <lib/utils.h>
22 #include <lib/xlat_tables/xlat_tables_v2.h>
23 #include <libfdt.h>
24 #include <plat/common/platform.h>
25 #include <services/el3_spmc_logical_sp.h>
26 #include <services/ffa_svc.h>
27 #include <services/spmc_svc.h>
28 #include <services/spmd_svc.h>
29 #include "spmc.h"
30 #include "spmc_shared_mem.h"
31 
32 #include <platform_def.h>
33 
34 /* FFA_MEM_PERM_* helpers */
35 #define FFA_MEM_PERM_MASK		U(7)
36 #define FFA_MEM_PERM_DATA_MASK		U(3)
37 #define FFA_MEM_PERM_DATA_SHIFT		U(0)
38 #define FFA_MEM_PERM_DATA_NA		U(0)
39 #define FFA_MEM_PERM_DATA_RW		U(1)
40 #define FFA_MEM_PERM_DATA_RES		U(2)
41 #define FFA_MEM_PERM_DATA_RO		U(3)
42 #define FFA_MEM_PERM_INST_EXEC          (U(0) << 2)
43 #define FFA_MEM_PERM_INST_NON_EXEC      (U(1) << 2)
44 
45 /* Declare the maximum number of SPs and El3 LPs. */
46 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT
47 
48 /*
49  * Allocate a secure partition descriptor to describe each SP in the system that
50  * does not reside at EL3.
51  */
52 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
53 
54 /*
55  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
56  * the system that interacts with a SP. It is used to track the Hypervisor
57  * buffer pair, version and ID for now. It could be extended to track VM
58  * properties when the SPMC supports indirect messaging.
59  */
60 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
61 
62 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
63 					  uint32_t flags,
64 					  void *handle,
65 					  void *cookie);
66 
67 /*
68  * Helper function to obtain the array storing the EL3
69  * Logical Partition descriptors.
70  */
71 struct el3_lp_desc *get_el3_lp_array(void)
72 {
73 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
74 }
75 
76 /*
77  * Helper function to obtain the descriptor of the last SP to whom control was
78  * handed to on this physical cpu. Currently, we assume there is only one SP.
79  * TODO: Expand to track multiple partitions when required.
80  */
81 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
82 {
83 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
84 }
85 
86 /*
87  * Helper function to obtain the execution context of an SP on the
88  * current physical cpu.
89  */
90 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
91 {
92 	return &(sp->ec[get_ec_index(sp)]);
93 }
94 
95 /* Helper function to get pointer to SP context from its ID. */
96 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
97 {
98 	/* Check for Secure World Partitions. */
99 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
100 		if (sp_desc[i].sp_id == id) {
101 			return &(sp_desc[i]);
102 		}
103 	}
104 	return NULL;
105 }
106 
107 /*
108  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
109  * We assume that the first descriptor is reserved for this entity.
110  */
111 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
112 {
113 	return &(ns_ep_desc[0]);
114 }
115 
116 /*
117  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
118  * or OS kernel in the normal world or the last SP that was run.
119  */
120 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
121 {
122 	/* Obtain the RX/TX buffer pair descriptor. */
123 	if (secure_origin) {
124 		return &(spmc_get_current_sp_ctx()->mailbox);
125 	} else {
126 		return &(spmc_get_hyp_ctx()->mailbox);
127 	}
128 }
129 
130 /******************************************************************************
131  * This function returns to the place where spmc_sp_synchronous_entry() was
132  * called originally.
133  ******************************************************************************/
134 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
135 {
136 	/*
137 	 * The SPM must have initiated the original request through a
138 	 * synchronous entry into the secure partition. Jump back to the
139 	 * original C runtime context with the value of rc in x0;
140 	 */
141 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
142 
143 	panic();
144 }
145 
146 /*******************************************************************************
147  * Return FFA_ERROR with specified error code.
148  ******************************************************************************/
149 uint64_t spmc_ffa_error_return(void *handle, int error_code)
150 {
151 	SMC_RET8(handle, FFA_ERROR,
152 		 FFA_TARGET_INFO_MBZ, error_code,
153 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
154 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
155 }
156 
157 /******************************************************************************
158  * Helper function to validate a secure partition ID to ensure it does not
159  * conflict with any other FF-A component and follows the convention to
160  * indicate it resides within the secure world.
161  ******************************************************************************/
162 bool is_ffa_secure_id_valid(uint16_t partition_id)
163 {
164 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
165 
166 	/* Ensure the ID is not the invalid partition ID. */
167 	if (partition_id == INV_SP_ID) {
168 		return false;
169 	}
170 
171 	/* Ensure the ID is not the SPMD ID. */
172 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
173 		return false;
174 	}
175 
176 	/*
177 	 * Ensure the ID follows the convention to indicate it resides
178 	 * in the secure world.
179 	 */
180 	if (!ffa_is_secure_world_id(partition_id)) {
181 		return false;
182 	}
183 
184 	/* Ensure we don't conflict with the SPMC partition ID. */
185 	if (partition_id == FFA_SPMC_ID) {
186 		return false;
187 	}
188 
189 	/* Ensure we do not already have an SP context with this ID. */
190 	if (spmc_get_sp_ctx(partition_id)) {
191 		return false;
192 	}
193 
194 	/* Ensure we don't clash with any Logical SP's. */
195 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
196 		if (el3_lp_descs[i].sp_id == partition_id) {
197 			return false;
198 		}
199 	}
200 
201 	return true;
202 }
203 
204 /*******************************************************************************
205  * This function either forwards the request to the other world or returns
206  * with an ERET depending on the source of the call.
207  * We can assume that the destination is for an entity at a lower exception
208  * level as any messages destined for a logical SP resident in EL3 will have
209  * already been taken care of by the SPMC before entering this function.
210  ******************************************************************************/
211 static uint64_t spmc_smc_return(uint32_t smc_fid,
212 				bool secure_origin,
213 				uint64_t x1,
214 				uint64_t x2,
215 				uint64_t x3,
216 				uint64_t x4,
217 				void *handle,
218 				void *cookie,
219 				uint64_t flags,
220 				uint16_t dst_id)
221 {
222 	/* If the destination is in the normal world always go via the SPMD. */
223 	if (ffa_is_normal_world_id(dst_id)) {
224 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
225 					cookie, handle, flags);
226 	}
227 	/*
228 	 * If the caller is secure and we want to return to the secure world,
229 	 * ERET directly.
230 	 */
231 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
232 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
233 	}
234 	/* If we originated in the normal world then switch contexts. */
235 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
236 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
237 					     x3, x4, handle, flags);
238 	} else {
239 		/* Unknown State. */
240 		panic();
241 	}
242 
243 	/* Shouldn't be Reached. */
244 	return 0;
245 }
246 
247 /*******************************************************************************
248  * FF-A ABI Handlers.
249  ******************************************************************************/
250 
251 /*******************************************************************************
252  * Helper function to validate arg2 as part of a direct message.
253  ******************************************************************************/
254 static inline bool direct_msg_validate_arg2(uint64_t x2)
255 {
256 	/* Check message type. */
257 	if (x2 & FFA_FWK_MSG_BIT) {
258 		/* We have a framework message, ensure it is a known message. */
259 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
260 			VERBOSE("Invalid message format 0x%lx.\n", x2);
261 			return false;
262 		}
263 	} else {
264 		/* We have a partition messages, ensure x2 is not set. */
265 		if (x2 != (uint64_t) 0) {
266 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
267 				x2);
268 			return false;
269 		}
270 	}
271 	return true;
272 }
273 
274 /*******************************************************************************
275  * Helper function to validate the destination ID of a direct response.
276  ******************************************************************************/
277 static bool direct_msg_validate_dst_id(uint16_t dst_id)
278 {
279 	struct secure_partition_desc *sp;
280 
281 	/* Check if we're targeting a normal world partition. */
282 	if (ffa_is_normal_world_id(dst_id)) {
283 		return true;
284 	}
285 
286 	/* Or directed to the SPMC itself.*/
287 	if (dst_id == FFA_SPMC_ID) {
288 		return true;
289 	}
290 
291 	/* Otherwise ensure the SP exists. */
292 	sp = spmc_get_sp_ctx(dst_id);
293 	if (sp != NULL) {
294 		return true;
295 	}
296 
297 	return false;
298 }
299 
300 /*******************************************************************************
301  * Helper function to validate the response from a Logical Partition.
302  ******************************************************************************/
303 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id,
304 					void *handle)
305 {
306 	/* Retrieve populated Direct Response Arguments. */
307 	uint64_t smc_fid = SMC_GET_GP(handle, CTX_GPREG_X0);
308 	uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1);
309 	uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2);
310 	uint16_t src_id = ffa_endpoint_source(x1);
311 	uint16_t dst_id = ffa_endpoint_destination(x1);
312 
313 	if (src_id != lp_id) {
314 		ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id);
315 		return false;
316 	}
317 
318 	/*
319 	 * Check the destination ID is valid and ensure the LP is responding to
320 	 * the original request.
321 	 */
322 	if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) {
323 		ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id);
324 		return false;
325 	}
326 
327 	if ((smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) &&
328 			!direct_msg_validate_arg2(x2)) {
329 		ERROR("Invalid EL3 LP message encoding.\n");
330 		return false;
331 	}
332 	return true;
333 }
334 
335 /*******************************************************************************
336  * Helper function to check that partition can receive direct msg or not.
337  ******************************************************************************/
338 static bool direct_msg_receivable(uint32_t properties, uint16_t dir_req_fnum)
339 {
340 	if ((dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ &&
341 			((properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0U)) ||
342 			(dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ2 &&
343 			((properties & FFA_PARTITION_DIRECT_REQ2_RECV) == 0U))) {
344 		return false;
345 	}
346 
347 	return true;
348 }
349 
350 /*******************************************************************************
351  * Handle direct request messages and route to the appropriate destination.
352  ******************************************************************************/
353 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
354 				       bool secure_origin,
355 				       uint64_t x1,
356 				       uint64_t x2,
357 				       uint64_t x3,
358 				       uint64_t x4,
359 				       void *cookie,
360 				       void *handle,
361 				       uint64_t flags)
362 {
363 	uint16_t src_id = ffa_endpoint_source(x1);
364 	uint16_t dst_id = ffa_endpoint_destination(x1);
365 	uint16_t dir_req_funcid;
366 	struct el3_lp_desc *el3_lp_descs;
367 	struct secure_partition_desc *sp;
368 	unsigned int idx;
369 
370 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_REQ2_SMC64) ?
371 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
372 
373 	/*
374 	 * Sanity check for DIRECT_REQ:
375 	 * Check if arg2 has been populated correctly based on message type
376 	 */
377 	if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ) &&
378 			!direct_msg_validate_arg2(x2)) {
379 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
380 	}
381 
382 	/* Validate Sender is either the current SP or from the normal world. */
383 	if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) ||
384 		(!secure_origin && !ffa_is_normal_world_id(src_id))) {
385 		ERROR("Invalid direct request source ID (0x%x).\n", src_id);
386 		return spmc_ffa_error_return(handle,
387 					FFA_ERROR_INVALID_PARAMETER);
388 	}
389 
390 	el3_lp_descs = get_el3_lp_array();
391 
392 	/* Check if the request is destined for a Logical Partition. */
393 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
394 		if (el3_lp_descs[i].sp_id == dst_id) {
395 			if (!direct_msg_receivable(el3_lp_descs[i].properties, dir_req_funcid)) {
396 				return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
397 			}
398 
399 			uint64_t ret = el3_lp_descs[i].direct_req(
400 						smc_fid, secure_origin, x1, x2,
401 						x3, x4, cookie, handle, flags);
402 			if (!direct_msg_validate_lp_resp(src_id, dst_id,
403 							 handle)) {
404 				panic();
405 			}
406 
407 			/* Message checks out. */
408 			return ret;
409 		}
410 	}
411 
412 	/*
413 	 * If the request was not targeted to a LSP and from the secure world
414 	 * then it is invalid since a SP cannot call into the Normal world and
415 	 * there is no other SP to call into. If there are other SPs in future
416 	 * then the partition runtime model would need to be validated as well.
417 	 */
418 	if (secure_origin) {
419 		VERBOSE("Direct request not supported to the Normal World.\n");
420 		return spmc_ffa_error_return(handle,
421 					     FFA_ERROR_INVALID_PARAMETER);
422 	}
423 
424 	/* Check if the SP ID is valid. */
425 	sp = spmc_get_sp_ctx(dst_id);
426 	if (sp == NULL) {
427 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
428 			dst_id);
429 		return spmc_ffa_error_return(handle,
430 					     FFA_ERROR_INVALID_PARAMETER);
431 	}
432 
433 	if (!direct_msg_receivable(sp->properties, dir_req_funcid)) {
434 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
435 	}
436 
437 	/* Protect the runtime state of a UP S-EL0 SP with a lock. */
438 	if (sp->runtime_el == S_EL0) {
439 		spin_lock(&sp->rt_state_lock);
440 	}
441 
442 	/*
443 	 * Check that the target execution context is in a waiting state before
444 	 * forwarding the direct request to it.
445 	 */
446 	idx = get_ec_index(sp);
447 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
448 		VERBOSE("SP context on core%u is not waiting (%u).\n",
449 			idx, sp->ec[idx].rt_model);
450 
451 		if (sp->runtime_el == S_EL0) {
452 			spin_unlock(&sp->rt_state_lock);
453 		}
454 
455 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
456 	}
457 
458 	/*
459 	 * Everything checks out so forward the request to the SP after updating
460 	 * its state and runtime model.
461 	 */
462 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
463 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
464 	sp->ec[idx].dir_req_origin_id = src_id;
465 	sp->ec[idx].dir_req_funcid = dir_req_funcid;
466 
467 	if (sp->runtime_el == S_EL0) {
468 		spin_unlock(&sp->rt_state_lock);
469 	}
470 
471 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
472 			       handle, cookie, flags, dst_id);
473 }
474 
475 /*******************************************************************************
476  * Handle direct response messages and route to the appropriate destination.
477  ******************************************************************************/
478 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
479 					bool secure_origin,
480 					uint64_t x1,
481 					uint64_t x2,
482 					uint64_t x3,
483 					uint64_t x4,
484 					void *cookie,
485 					void *handle,
486 					uint64_t flags)
487 {
488 	uint16_t dst_id = ffa_endpoint_destination(x1);
489 	uint16_t dir_req_funcid;
490 	struct secure_partition_desc *sp;
491 	unsigned int idx;
492 
493 	dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) ?
494 		FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2;
495 
496 	/* Check if arg2 has been populated correctly based on message type. */
497 	if (!direct_msg_validate_arg2(x2)) {
498 		return spmc_ffa_error_return(handle,
499 					     FFA_ERROR_INVALID_PARAMETER);
500 	}
501 
502 	/* Check that the response did not originate from the Normal world. */
503 	if (!secure_origin) {
504 		VERBOSE("Direct Response not supported from Normal World.\n");
505 		return spmc_ffa_error_return(handle,
506 					     FFA_ERROR_INVALID_PARAMETER);
507 	}
508 
509 	/*
510 	 * Check that the response is either targeted to the Normal world or the
511 	 * SPMC e.g. a PM response.
512 	 */
513 	if (!direct_msg_validate_dst_id(dst_id)) {
514 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
515 			dst_id);
516 		return spmc_ffa_error_return(handle,
517 					     FFA_ERROR_INVALID_PARAMETER);
518 	}
519 
520 	/* Obtain the SP descriptor and update its runtime state. */
521 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
522 	if (sp == NULL) {
523 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
524 			dst_id);
525 		return spmc_ffa_error_return(handle,
526 					     FFA_ERROR_INVALID_PARAMETER);
527 	}
528 
529 	if (sp->runtime_el == S_EL0) {
530 		spin_lock(&sp->rt_state_lock);
531 	}
532 
533 	/* Sanity check state is being tracked correctly in the SPMC. */
534 	idx = get_ec_index(sp);
535 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
536 
537 	/* Ensure SP execution context was in the right runtime model. */
538 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
539 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
540 			idx, sp->ec[idx].rt_model);
541 		if (sp->runtime_el == S_EL0) {
542 			spin_unlock(&sp->rt_state_lock);
543 		}
544 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
545 	}
546 
547 	if (dir_req_funcid != sp->ec[idx].dir_req_funcid) {
548 		WARN("Unmatched direct req/resp func id. req:%x, resp:%x on core%u.\n",
549 		     sp->ec[idx].dir_req_funcid, (smc_fid & FUNCID_NUM_MASK), idx);
550 		if (sp->runtime_el == S_EL0) {
551 			spin_unlock(&sp->rt_state_lock);
552 		}
553 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
554 	}
555 
556 	if (sp->ec[idx].dir_req_origin_id != dst_id) {
557 		WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n",
558 		     dst_id, sp->ec[idx].dir_req_origin_id, idx);
559 		if (sp->runtime_el == S_EL0) {
560 			spin_unlock(&sp->rt_state_lock);
561 		}
562 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
563 	}
564 
565 	/* Update the state of the SP execution context. */
566 	sp->ec[idx].rt_state = RT_STATE_WAITING;
567 
568 	/* Clear the ongoing direct request ID. */
569 	sp->ec[idx].dir_req_origin_id = INV_SP_ID;
570 
571 	/* Clear the ongoing direct request message version. */
572 	sp->ec[idx].dir_req_funcid = 0U;
573 
574 	if (sp->runtime_el == S_EL0) {
575 		spin_unlock(&sp->rt_state_lock);
576 	}
577 
578 	/*
579 	 * If the receiver is not the SPMC then forward the response to the
580 	 * Normal world.
581 	 */
582 	if (dst_id == FFA_SPMC_ID) {
583 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
584 		/* Should not get here. */
585 		panic();
586 	}
587 
588 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
589 			       handle, cookie, flags, dst_id);
590 }
591 
592 /*******************************************************************************
593  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
594  * cycles.
595  ******************************************************************************/
596 static uint64_t msg_wait_handler(uint32_t smc_fid,
597 				 bool secure_origin,
598 				 uint64_t x1,
599 				 uint64_t x2,
600 				 uint64_t x3,
601 				 uint64_t x4,
602 				 void *cookie,
603 				 void *handle,
604 				 uint64_t flags)
605 {
606 	struct secure_partition_desc *sp;
607 	unsigned int idx;
608 
609 	/*
610 	 * Check that the response did not originate from the Normal world as
611 	 * only the secure world can call this ABI.
612 	 */
613 	if (!secure_origin) {
614 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
615 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
616 	}
617 
618 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
619 	sp = spmc_get_current_sp_ctx();
620 	if (sp == NULL) {
621 		return spmc_ffa_error_return(handle,
622 					     FFA_ERROR_INVALID_PARAMETER);
623 	}
624 
625 	/*
626 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
627 	 */
628 	idx = get_ec_index(sp);
629 	if (sp->runtime_el == S_EL0) {
630 		spin_lock(&sp->rt_state_lock);
631 	}
632 
633 	/* Ensure SP execution context was in the right runtime model. */
634 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
635 		if (sp->runtime_el == S_EL0) {
636 			spin_unlock(&sp->rt_state_lock);
637 		}
638 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
639 	}
640 
641 	/* Sanity check the state is being tracked correctly in the SPMC. */
642 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
643 
644 	/*
645 	 * Perform a synchronous exit if the partition was initialising. The
646 	 * state is updated after the exit.
647 	 */
648 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
649 		if (sp->runtime_el == S_EL0) {
650 			spin_unlock(&sp->rt_state_lock);
651 		}
652 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
653 		/* Should not get here */
654 		panic();
655 	}
656 
657 	/* Update the state of the SP execution context. */
658 	sp->ec[idx].rt_state = RT_STATE_WAITING;
659 
660 	/* Resume normal world if a secure interrupt was handled. */
661 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
662 		/* FFA_MSG_WAIT can only be called from the secure world. */
663 		unsigned int secure_state_in = SECURE;
664 		unsigned int secure_state_out = NON_SECURE;
665 
666 		cm_el1_sysregs_context_save(secure_state_in);
667 		cm_el1_sysregs_context_restore(secure_state_out);
668 		cm_set_next_eret_context(secure_state_out);
669 
670 		if (sp->runtime_el == S_EL0) {
671 			spin_unlock(&sp->rt_state_lock);
672 		}
673 
674 		SMC_RET0(cm_get_context(secure_state_out));
675 	}
676 
677 	/* Protect the runtime state of a S-EL0 SP with a lock. */
678 	if (sp->runtime_el == S_EL0) {
679 		spin_unlock(&sp->rt_state_lock);
680 	}
681 
682 	/* Forward the response to the Normal world. */
683 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
684 			       handle, cookie, flags, FFA_NWD_ID);
685 }
686 
687 static uint64_t ffa_error_handler(uint32_t smc_fid,
688 				 bool secure_origin,
689 				 uint64_t x1,
690 				 uint64_t x2,
691 				 uint64_t x3,
692 				 uint64_t x4,
693 				 void *cookie,
694 				 void *handle,
695 				 uint64_t flags)
696 {
697 	struct secure_partition_desc *sp;
698 	unsigned int idx;
699 
700 	/* Check that the response did not originate from the Normal world. */
701 	if (!secure_origin) {
702 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
703 	}
704 
705 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
706 	sp = spmc_get_current_sp_ctx();
707 	if (sp == NULL) {
708 		return spmc_ffa_error_return(handle,
709 					     FFA_ERROR_INVALID_PARAMETER);
710 	}
711 
712 	/* Get the execution context of the SP that invoked FFA_ERROR. */
713 	idx = get_ec_index(sp);
714 
715 	/*
716 	 * We only expect FFA_ERROR to be received during SP initialisation
717 	 * otherwise this is an invalid call.
718 	 */
719 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
720 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
721 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
722 		/* Should not get here. */
723 		panic();
724 	}
725 
726 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
727 }
728 
729 static uint64_t ffa_version_handler(uint32_t smc_fid,
730 				    bool secure_origin,
731 				    uint64_t x1,
732 				    uint64_t x2,
733 				    uint64_t x3,
734 				    uint64_t x4,
735 				    void *cookie,
736 				    void *handle,
737 				    uint64_t flags)
738 {
739 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
740 
741 	if (requested_version & FFA_VERSION_BIT31_MASK) {
742 		/* Invalid encoding, return an error. */
743 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
744 		/* Execution stops here. */
745 	}
746 
747 	/* Determine the caller to store the requested version. */
748 	if (secure_origin) {
749 		/*
750 		 * Ensure that the SP is reporting the same version as
751 		 * specified in its manifest. If these do not match there is
752 		 * something wrong with the SP.
753 		 * TODO: Should we abort the SP? For now assert this is not
754 		 *       case.
755 		 */
756 		assert(requested_version ==
757 		       spmc_get_current_sp_ctx()->ffa_version);
758 	} else {
759 		/*
760 		 * If this is called by the normal world, record this
761 		 * information in its descriptor.
762 		 */
763 		spmc_get_hyp_ctx()->ffa_version = requested_version;
764 	}
765 
766 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
767 					  FFA_VERSION_MINOR));
768 }
769 
770 /*******************************************************************************
771  * Helper function to obtain the FF-A version of the calling partition.
772  ******************************************************************************/
773 uint32_t get_partition_ffa_version(bool secure_origin)
774 {
775 	if (secure_origin) {
776 		return spmc_get_current_sp_ctx()->ffa_version;
777 	} else {
778 		return spmc_get_hyp_ctx()->ffa_version;
779 	}
780 }
781 
782 static uint64_t rxtx_map_handler(uint32_t smc_fid,
783 				 bool secure_origin,
784 				 uint64_t x1,
785 				 uint64_t x2,
786 				 uint64_t x3,
787 				 uint64_t x4,
788 				 void *cookie,
789 				 void *handle,
790 				 uint64_t flags)
791 {
792 	int ret;
793 	uint32_t error_code;
794 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
795 	struct mailbox *mbox;
796 	uintptr_t tx_address = x1;
797 	uintptr_t rx_address = x2;
798 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
799 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
800 
801 	/*
802 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
803 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
804 	 * ABI on behalf of a VM and reject it if this is the case.
805 	 */
806 	if (tx_address == 0 || rx_address == 0) {
807 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
808 		return spmc_ffa_error_return(handle,
809 					     FFA_ERROR_INVALID_PARAMETER);
810 	}
811 
812 	/* Ensure the specified buffers are not the same. */
813 	if (tx_address == rx_address) {
814 		WARN("TX Buffer must not be the same as RX Buffer.\n");
815 		return spmc_ffa_error_return(handle,
816 					     FFA_ERROR_INVALID_PARAMETER);
817 	}
818 
819 	/* Ensure the buffer size is not 0. */
820 	if (buf_size == 0U) {
821 		WARN("Buffer size must not be 0\n");
822 		return spmc_ffa_error_return(handle,
823 					     FFA_ERROR_INVALID_PARAMETER);
824 	}
825 
826 	/*
827 	 * Ensure the buffer size is a multiple of the translation granule size
828 	 * in TF-A.
829 	 */
830 	if (buf_size % PAGE_SIZE != 0U) {
831 		WARN("Buffer size must be aligned to translation granule.\n");
832 		return spmc_ffa_error_return(handle,
833 					     FFA_ERROR_INVALID_PARAMETER);
834 	}
835 
836 	/* Obtain the RX/TX buffer pair descriptor. */
837 	mbox = spmc_get_mbox_desc(secure_origin);
838 
839 	spin_lock(&mbox->lock);
840 
841 	/* Check if buffers have already been mapped. */
842 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
843 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
844 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
845 		error_code = FFA_ERROR_DENIED;
846 		goto err;
847 	}
848 
849 	/* memmap the TX buffer as read only. */
850 	ret = mmap_add_dynamic_region(tx_address, /* PA */
851 			tx_address, /* VA */
852 			buf_size, /* size */
853 			mem_atts | MT_RO_DATA); /* attrs */
854 	if (ret != 0) {
855 		/* Return the correct error code. */
856 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
857 						FFA_ERROR_INVALID_PARAMETER;
858 		WARN("Unable to map TX buffer: %d\n", error_code);
859 		goto err;
860 	}
861 
862 	/* memmap the RX buffer as read write. */
863 	ret = mmap_add_dynamic_region(rx_address, /* PA */
864 			rx_address, /* VA */
865 			buf_size, /* size */
866 			mem_atts | MT_RW_DATA); /* attrs */
867 
868 	if (ret != 0) {
869 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
870 						FFA_ERROR_INVALID_PARAMETER;
871 		WARN("Unable to map RX buffer: %d\n", error_code);
872 		/* Unmap the TX buffer again. */
873 		mmap_remove_dynamic_region(tx_address, buf_size);
874 		goto err;
875 	}
876 
877 	mbox->tx_buffer = (void *) tx_address;
878 	mbox->rx_buffer = (void *) rx_address;
879 	mbox->rxtx_page_count = page_count;
880 	spin_unlock(&mbox->lock);
881 
882 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
883 	/* Execution stops here. */
884 err:
885 	spin_unlock(&mbox->lock);
886 	return spmc_ffa_error_return(handle, error_code);
887 }
888 
889 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
890 				   bool secure_origin,
891 				   uint64_t x1,
892 				   uint64_t x2,
893 				   uint64_t x3,
894 				   uint64_t x4,
895 				   void *cookie,
896 				   void *handle,
897 				   uint64_t flags)
898 {
899 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
900 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
901 
902 	/*
903 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
904 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
905 	 * ABI on behalf of a VM and reject it if this is the case.
906 	 */
907 	if (x1 != 0UL) {
908 		return spmc_ffa_error_return(handle,
909 					     FFA_ERROR_INVALID_PARAMETER);
910 	}
911 
912 	spin_lock(&mbox->lock);
913 
914 	/* Check if buffers are currently mapped. */
915 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
916 		spin_unlock(&mbox->lock);
917 		return spmc_ffa_error_return(handle,
918 					     FFA_ERROR_INVALID_PARAMETER);
919 	}
920 
921 	/* Unmap RX Buffer */
922 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
923 				       buf_size) != 0) {
924 		WARN("Unable to unmap RX buffer!\n");
925 	}
926 
927 	mbox->rx_buffer = 0;
928 
929 	/* Unmap TX Buffer */
930 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
931 				       buf_size) != 0) {
932 		WARN("Unable to unmap TX buffer!\n");
933 	}
934 
935 	mbox->tx_buffer = 0;
936 	mbox->rxtx_page_count = 0;
937 
938 	spin_unlock(&mbox->lock);
939 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
940 }
941 
942 /*
943  * Helper function to populate the properties field of a Partition Info Get
944  * descriptor.
945  */
946 static uint32_t
947 partition_info_get_populate_properties(uint32_t sp_properties,
948 				       enum sp_execution_state sp_ec_state)
949 {
950 	uint32_t properties = sp_properties;
951 	uint32_t ec_state;
952 
953 	/* Determine the execution state of the SP. */
954 	ec_state = sp_ec_state == SP_STATE_AARCH64 ?
955 		   FFA_PARTITION_INFO_GET_AARCH64_STATE :
956 		   FFA_PARTITION_INFO_GET_AARCH32_STATE;
957 
958 	properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT;
959 
960 	return properties;
961 }
962 
963 /*
964  * Collate the partition information in a v1.1 partition information
965  * descriptor format, this will be converter later if required.
966  */
967 static int partition_info_get_handler_v1_1(uint32_t *uuid,
968 					   struct ffa_partition_info_v1_1
969 						  *partitions,
970 					   uint32_t max_partitions,
971 					   uint32_t *partition_count)
972 {
973 	uint32_t index;
974 	struct ffa_partition_info_v1_1 *desc;
975 	bool null_uuid = is_null_uuid(uuid);
976 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
977 
978 	/* Deal with Logical Partitions. */
979 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
980 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
981 			/* Found a matching UUID, populate appropriately. */
982 			if (*partition_count >= max_partitions) {
983 				return FFA_ERROR_NO_MEMORY;
984 			}
985 
986 			desc = &partitions[*partition_count];
987 			desc->ep_id = el3_lp_descs[index].sp_id;
988 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
989 			/* LSPs must be AArch64. */
990 			desc->properties =
991 				partition_info_get_populate_properties(
992 					el3_lp_descs[index].properties,
993 					SP_STATE_AARCH64);
994 
995 			if (null_uuid) {
996 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
997 			}
998 			(*partition_count)++;
999 		}
1000 	}
1001 
1002 	/* Deal with physical SP's. */
1003 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1004 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
1005 			/* Found a matching UUID, populate appropriately. */
1006 			if (*partition_count >= max_partitions) {
1007 				return FFA_ERROR_NO_MEMORY;
1008 			}
1009 
1010 			desc = &partitions[*partition_count];
1011 			desc->ep_id = sp_desc[index].sp_id;
1012 			/*
1013 			 * Execution context count must match No. cores for
1014 			 * S-EL1 SPs.
1015 			 */
1016 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
1017 			desc->properties =
1018 				partition_info_get_populate_properties(
1019 					sp_desc[index].properties,
1020 					sp_desc[index].execution_state);
1021 
1022 			if (null_uuid) {
1023 				copy_uuid(desc->uuid, sp_desc[index].uuid);
1024 			}
1025 			(*partition_count)++;
1026 		}
1027 	}
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Handle the case where that caller only wants the count of partitions
1033  * matching a given UUID and does not want the corresponding descriptors
1034  * populated.
1035  */
1036 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
1037 {
1038 	uint32_t index = 0;
1039 	uint32_t partition_count = 0;
1040 	bool null_uuid = is_null_uuid(uuid);
1041 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
1042 
1043 	/* Deal with Logical Partitions. */
1044 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
1045 		if (null_uuid ||
1046 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
1047 			(partition_count)++;
1048 		}
1049 	}
1050 
1051 	/* Deal with physical SP's. */
1052 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1053 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
1054 			(partition_count)++;
1055 		}
1056 	}
1057 	return partition_count;
1058 }
1059 
1060 /*
1061  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
1062  * the corresponding descriptor format from the v1.1 descriptor array.
1063  */
1064 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
1065 					     *partitions,
1066 					     struct mailbox *mbox,
1067 					     int partition_count)
1068 {
1069 	uint32_t index;
1070 	uint32_t buf_size;
1071 	uint32_t descriptor_size;
1072 	struct ffa_partition_info_v1_0 *v1_0_partitions =
1073 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
1074 
1075 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1076 	descriptor_size = partition_count *
1077 			  sizeof(struct ffa_partition_info_v1_0);
1078 
1079 	if (descriptor_size > buf_size) {
1080 		return FFA_ERROR_NO_MEMORY;
1081 	}
1082 
1083 	for (index = 0U; index < partition_count; index++) {
1084 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
1085 		v1_0_partitions[index].execution_ctx_count =
1086 			partitions[index].execution_ctx_count;
1087 		/* Only report v1.0 properties. */
1088 		v1_0_partitions[index].properties =
1089 			(partitions[index].properties &
1090 			FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK);
1091 	}
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
1097  * v1.0 implementations.
1098  */
1099 static uint64_t partition_info_get_handler(uint32_t smc_fid,
1100 					   bool secure_origin,
1101 					   uint64_t x1,
1102 					   uint64_t x2,
1103 					   uint64_t x3,
1104 					   uint64_t x4,
1105 					   void *cookie,
1106 					   void *handle,
1107 					   uint64_t flags)
1108 {
1109 	int ret;
1110 	uint32_t partition_count = 0;
1111 	uint32_t size = 0;
1112 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1113 	struct mailbox *mbox;
1114 	uint64_t info_get_flags;
1115 	bool count_only;
1116 	uint32_t uuid[4];
1117 
1118 	uuid[0] = x1;
1119 	uuid[1] = x2;
1120 	uuid[2] = x3;
1121 	uuid[3] = x4;
1122 
1123 	/* Determine if the Partition descriptors should be populated. */
1124 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
1125 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
1126 
1127 	/* Handle the case where we don't need to populate the descriptors. */
1128 	if (count_only) {
1129 		partition_count = partition_info_get_handler_count_only(uuid);
1130 		if (partition_count == 0) {
1131 			return spmc_ffa_error_return(handle,
1132 						FFA_ERROR_INVALID_PARAMETER);
1133 		}
1134 	} else {
1135 		struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS];
1136 
1137 		/*
1138 		 * Handle the case where the partition descriptors are required,
1139 		 * check we have the buffers available and populate the
1140 		 * appropriate structure version.
1141 		 */
1142 
1143 		/* Obtain the v1.1 format of the descriptors. */
1144 		ret = partition_info_get_handler_v1_1(uuid, partitions,
1145 						      MAX_SP_LP_PARTITIONS,
1146 						      &partition_count);
1147 
1148 		/* Check if an error occurred during discovery. */
1149 		if (ret != 0) {
1150 			goto err;
1151 		}
1152 
1153 		/* If we didn't find any matches the UUID is unknown. */
1154 		if (partition_count == 0) {
1155 			ret = FFA_ERROR_INVALID_PARAMETER;
1156 			goto err;
1157 		}
1158 
1159 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
1160 		mbox = spmc_get_mbox_desc(secure_origin);
1161 
1162 		/*
1163 		 * If the caller has not bothered registering its RX/TX pair
1164 		 * then return an error code.
1165 		 */
1166 		spin_lock(&mbox->lock);
1167 		if (mbox->rx_buffer == NULL) {
1168 			ret = FFA_ERROR_BUSY;
1169 			goto err_unlock;
1170 		}
1171 
1172 		/* Ensure the RX buffer is currently free. */
1173 		if (mbox->state != MAILBOX_STATE_EMPTY) {
1174 			ret = FFA_ERROR_BUSY;
1175 			goto err_unlock;
1176 		}
1177 
1178 		/* Zero the RX buffer before populating. */
1179 		(void)memset(mbox->rx_buffer, 0,
1180 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
1181 
1182 		/*
1183 		 * Depending on the FF-A version of the requesting partition
1184 		 * we may need to convert to a v1.0 format otherwise we can copy
1185 		 * directly.
1186 		 */
1187 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
1188 			ret = partition_info_populate_v1_0(partitions,
1189 							   mbox,
1190 							   partition_count);
1191 			if (ret != 0) {
1192 				goto err_unlock;
1193 			}
1194 		} else {
1195 			uint32_t buf_size = mbox->rxtx_page_count *
1196 					    FFA_PAGE_SIZE;
1197 
1198 			/* Ensure the descriptor will fit in the buffer. */
1199 			size = sizeof(struct ffa_partition_info_v1_1);
1200 			if (partition_count * size  > buf_size) {
1201 				ret = FFA_ERROR_NO_MEMORY;
1202 				goto err_unlock;
1203 			}
1204 			memcpy(mbox->rx_buffer, partitions,
1205 			       partition_count * size);
1206 		}
1207 
1208 		mbox->state = MAILBOX_STATE_FULL;
1209 		spin_unlock(&mbox->lock);
1210 	}
1211 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
1212 
1213 err_unlock:
1214 	spin_unlock(&mbox->lock);
1215 err:
1216 	return spmc_ffa_error_return(handle, ret);
1217 }
1218 
1219 static uint64_t ffa_feature_success(void *handle, uint32_t arg2)
1220 {
1221 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2);
1222 }
1223 
1224 static uint64_t ffa_features_retrieve_request(bool secure_origin,
1225 					      uint32_t input_properties,
1226 					      void *handle)
1227 {
1228 	/*
1229 	 * If we're called by the normal world we don't support any
1230 	 * additional features.
1231 	 */
1232 	if (!secure_origin) {
1233 		if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) {
1234 			return spmc_ffa_error_return(handle,
1235 						     FFA_ERROR_NOT_SUPPORTED);
1236 		}
1237 
1238 	} else {
1239 		struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1240 		/*
1241 		 * If v1.1 the NS bit must be set otherwise it is an invalid
1242 		 * call. If v1.0 check and store whether the SP has requested
1243 		 * the use of the NS bit.
1244 		 */
1245 		if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) {
1246 			if ((input_properties &
1247 			     FFA_FEATURES_RET_REQ_NS_BIT) == 0U) {
1248 				return spmc_ffa_error_return(handle,
1249 						       FFA_ERROR_NOT_SUPPORTED);
1250 			}
1251 			return ffa_feature_success(handle,
1252 						   FFA_FEATURES_RET_REQ_NS_BIT);
1253 		} else {
1254 			sp->ns_bit_requested = (input_properties &
1255 					       FFA_FEATURES_RET_REQ_NS_BIT) !=
1256 					       0U;
1257 		}
1258 		if (sp->ns_bit_requested) {
1259 			return ffa_feature_success(handle,
1260 						   FFA_FEATURES_RET_REQ_NS_BIT);
1261 		}
1262 	}
1263 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1264 }
1265 
1266 static uint64_t ffa_features_handler(uint32_t smc_fid,
1267 				     bool secure_origin,
1268 				     uint64_t x1,
1269 				     uint64_t x2,
1270 				     uint64_t x3,
1271 				     uint64_t x4,
1272 				     void *cookie,
1273 				     void *handle,
1274 				     uint64_t flags)
1275 {
1276 	uint32_t function_id = (uint32_t) x1;
1277 	uint32_t input_properties = (uint32_t) x2;
1278 
1279 	/* Check if a Feature ID was requested. */
1280 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1281 		/* We currently don't support any additional features. */
1282 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1283 	}
1284 
1285 	/*
1286 	 * Handle the cases where we have separate handlers due to additional
1287 	 * properties.
1288 	 */
1289 	switch (function_id) {
1290 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1291 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1292 		return ffa_features_retrieve_request(secure_origin,
1293 						     input_properties,
1294 						     handle);
1295 	}
1296 
1297 	/*
1298 	 * We don't currently support additional input properties for these
1299 	 * other ABIs therefore ensure this value is set to 0.
1300 	 */
1301 	if (input_properties != 0U) {
1302 		return spmc_ffa_error_return(handle,
1303 					     FFA_ERROR_NOT_SUPPORTED);
1304 	}
1305 
1306 	/* Report if any other FF-A ABI is supported. */
1307 	switch (function_id) {
1308 	/* Supported features from both worlds. */
1309 	case FFA_ERROR:
1310 	case FFA_SUCCESS_SMC32:
1311 	case FFA_INTERRUPT:
1312 	case FFA_SPM_ID_GET:
1313 	case FFA_ID_GET:
1314 	case FFA_FEATURES:
1315 	case FFA_VERSION:
1316 	case FFA_RX_RELEASE:
1317 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1318 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1319 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
1320 	case FFA_PARTITION_INFO_GET:
1321 	case FFA_RXTX_MAP_SMC32:
1322 	case FFA_RXTX_MAP_SMC64:
1323 	case FFA_RXTX_UNMAP:
1324 	case FFA_MEM_FRAG_TX:
1325 	case FFA_MSG_RUN:
1326 
1327 		/*
1328 		 * We are relying on the fact that the other registers
1329 		 * will be set to 0 as these values align with the
1330 		 * currently implemented features of the SPMC. If this
1331 		 * changes this function must be extended to handle
1332 		 * reporting the additional functionality.
1333 		 */
1334 
1335 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1336 		/* Execution stops here. */
1337 
1338 	/* Supported ABIs only from the secure world. */
1339 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1340 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1341 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1342 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
1343 	case FFA_MEM_RELINQUISH:
1344 	case FFA_MSG_WAIT:
1345 	case FFA_CONSOLE_LOG_SMC32:
1346 	case FFA_CONSOLE_LOG_SMC64:
1347 
1348 		if (!secure_origin) {
1349 			return spmc_ffa_error_return(handle,
1350 				FFA_ERROR_NOT_SUPPORTED);
1351 		}
1352 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1353 		/* Execution stops here. */
1354 
1355 	/* Supported features only from the normal world. */
1356 	case FFA_MEM_SHARE_SMC32:
1357 	case FFA_MEM_SHARE_SMC64:
1358 	case FFA_MEM_LEND_SMC32:
1359 	case FFA_MEM_LEND_SMC64:
1360 	case FFA_MEM_RECLAIM:
1361 	case FFA_MEM_FRAG_RX:
1362 
1363 		if (secure_origin) {
1364 			return spmc_ffa_error_return(handle,
1365 					FFA_ERROR_NOT_SUPPORTED);
1366 		}
1367 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1368 		/* Execution stops here. */
1369 
1370 	default:
1371 		return spmc_ffa_error_return(handle,
1372 					FFA_ERROR_NOT_SUPPORTED);
1373 	}
1374 }
1375 
1376 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1377 				   bool secure_origin,
1378 				   uint64_t x1,
1379 				   uint64_t x2,
1380 				   uint64_t x3,
1381 				   uint64_t x4,
1382 				   void *cookie,
1383 				   void *handle,
1384 				   uint64_t flags)
1385 {
1386 	if (secure_origin) {
1387 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1388 			 spmc_get_current_sp_ctx()->sp_id);
1389 	} else {
1390 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1391 			 spmc_get_hyp_ctx()->ns_ep_id);
1392 	}
1393 }
1394 
1395 /*
1396  * Enable an SP to query the ID assigned to the SPMC.
1397  */
1398 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid,
1399 				       bool secure_origin,
1400 				       uint64_t x1,
1401 				       uint64_t x2,
1402 				       uint64_t x3,
1403 				       uint64_t x4,
1404 				       void *cookie,
1405 				       void *handle,
1406 				       uint64_t flags)
1407 {
1408 	assert(x1 == 0UL);
1409 	assert(x2 == 0UL);
1410 	assert(x3 == 0UL);
1411 	assert(x4 == 0UL);
1412 	assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL);
1413 	assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL);
1414 	assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL);
1415 
1416 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID);
1417 }
1418 
1419 static uint64_t ffa_run_handler(uint32_t smc_fid,
1420 				bool secure_origin,
1421 				uint64_t x1,
1422 				uint64_t x2,
1423 				uint64_t x3,
1424 				uint64_t x4,
1425 				void *cookie,
1426 				void *handle,
1427 				uint64_t flags)
1428 {
1429 	struct secure_partition_desc *sp;
1430 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1431 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1432 	unsigned int idx;
1433 	unsigned int *rt_state;
1434 	unsigned int *rt_model;
1435 
1436 	/* Can only be called from the normal world. */
1437 	if (secure_origin) {
1438 		ERROR("FFA_RUN can only be called from NWd.\n");
1439 		return spmc_ffa_error_return(handle,
1440 					     FFA_ERROR_INVALID_PARAMETER);
1441 	}
1442 
1443 	/* Cannot run a Normal world partition. */
1444 	if (ffa_is_normal_world_id(target_id)) {
1445 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1446 		return spmc_ffa_error_return(handle,
1447 					     FFA_ERROR_INVALID_PARAMETER);
1448 	}
1449 
1450 	/* Check that the target SP exists. */
1451 	sp = spmc_get_sp_ctx(target_id);
1452 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1453 	if (sp == NULL) {
1454 		return spmc_ffa_error_return(handle,
1455 					     FFA_ERROR_INVALID_PARAMETER);
1456 	}
1457 
1458 	idx = get_ec_index(sp);
1459 
1460 	if (idx != vcpu_id) {
1461 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1462 		return spmc_ffa_error_return(handle,
1463 					     FFA_ERROR_INVALID_PARAMETER);
1464 	}
1465 	if (sp->runtime_el == S_EL0) {
1466 		spin_lock(&sp->rt_state_lock);
1467 	}
1468 	rt_state = &((sp->ec[idx]).rt_state);
1469 	rt_model = &((sp->ec[idx]).rt_model);
1470 	if (*rt_state == RT_STATE_RUNNING) {
1471 		if (sp->runtime_el == S_EL0) {
1472 			spin_unlock(&sp->rt_state_lock);
1473 		}
1474 		ERROR("Partition (0x%x) is already running.\n", target_id);
1475 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1476 	}
1477 
1478 	/*
1479 	 * Sanity check that if the execution context was not waiting then it
1480 	 * was either in the direct request or the run partition runtime model.
1481 	 */
1482 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1483 		assert(*rt_model == RT_MODEL_RUN ||
1484 		       *rt_model == RT_MODEL_DIR_REQ);
1485 	}
1486 
1487 	/*
1488 	 * If the context was waiting then update the partition runtime model.
1489 	 */
1490 	if (*rt_state == RT_STATE_WAITING) {
1491 		*rt_model = RT_MODEL_RUN;
1492 	}
1493 
1494 	/*
1495 	 * Forward the request to the correct SP vCPU after updating
1496 	 * its state.
1497 	 */
1498 	*rt_state = RT_STATE_RUNNING;
1499 
1500 	if (sp->runtime_el == S_EL0) {
1501 		spin_unlock(&sp->rt_state_lock);
1502 	}
1503 
1504 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1505 			       handle, cookie, flags, target_id);
1506 }
1507 
1508 static uint64_t rx_release_handler(uint32_t smc_fid,
1509 				   bool secure_origin,
1510 				   uint64_t x1,
1511 				   uint64_t x2,
1512 				   uint64_t x3,
1513 				   uint64_t x4,
1514 				   void *cookie,
1515 				   void *handle,
1516 				   uint64_t flags)
1517 {
1518 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1519 
1520 	spin_lock(&mbox->lock);
1521 
1522 	if (mbox->state != MAILBOX_STATE_FULL) {
1523 		spin_unlock(&mbox->lock);
1524 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1525 	}
1526 
1527 	mbox->state = MAILBOX_STATE_EMPTY;
1528 	spin_unlock(&mbox->lock);
1529 
1530 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1531 }
1532 
1533 static uint64_t spmc_ffa_console_log(uint32_t smc_fid,
1534 				     bool secure_origin,
1535 				     uint64_t x1,
1536 				     uint64_t x2,
1537 				     uint64_t x3,
1538 				     uint64_t x4,
1539 				     void *cookie,
1540 				     void *handle,
1541 				     uint64_t flags)
1542 {
1543 	/* Maximum number of characters is 48: 6 registers of 8 bytes each. */
1544 	char chars[48] = {0};
1545 	size_t chars_max;
1546 	size_t chars_count = x1;
1547 
1548 	/* Does not support request from Nwd. */
1549 	if (!secure_origin) {
1550 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1551 	}
1552 
1553 	assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64);
1554 	if (smc_fid == FFA_CONSOLE_LOG_SMC32) {
1555 		uint32_t *registers = (uint32_t *)chars;
1556 		registers[0] = (uint32_t)x2;
1557 		registers[1] = (uint32_t)x3;
1558 		registers[2] = (uint32_t)x4;
1559 		registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5);
1560 		registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6);
1561 		registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7);
1562 		chars_max = 6 * sizeof(uint32_t);
1563 	} else {
1564 		uint64_t *registers = (uint64_t *)chars;
1565 		registers[0] = x2;
1566 		registers[1] = x3;
1567 		registers[2] = x4;
1568 		registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5);
1569 		registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6);
1570 		registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7);
1571 		chars_max = 6 * sizeof(uint64_t);
1572 	}
1573 
1574 	if ((chars_count == 0) || (chars_count > chars_max)) {
1575 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1576 	}
1577 
1578 	for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) {
1579 		putchar(chars[i]);
1580 	}
1581 
1582 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1583 }
1584 
1585 /*
1586  * Perform initial validation on the provided secondary entry point.
1587  * For now ensure it does not lie within the BL31 Image or the SP's
1588  * RX/TX buffers as these are mapped within EL3.
1589  * TODO: perform validation for additional invalid memory regions.
1590  */
1591 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1592 {
1593 	struct mailbox *mb;
1594 	uintptr_t buffer_size;
1595 	uintptr_t sp_rx_buffer;
1596 	uintptr_t sp_tx_buffer;
1597 	uintptr_t sp_rx_buffer_limit;
1598 	uintptr_t sp_tx_buffer_limit;
1599 
1600 	mb = &sp->mailbox;
1601 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1602 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1603 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1604 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1605 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1606 
1607 	/*
1608 	 * Check if the entry point lies within BL31, or the
1609 	 * SP's RX or TX buffer.
1610 	 */
1611 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1612 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1613 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1614 		return -EINVAL;
1615 	}
1616 	return 0;
1617 }
1618 
1619 /*******************************************************************************
1620  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1621  *  register an entry point for initialization during a secondary cold boot.
1622  ******************************************************************************/
1623 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1624 					    bool secure_origin,
1625 					    uint64_t x1,
1626 					    uint64_t x2,
1627 					    uint64_t x3,
1628 					    uint64_t x4,
1629 					    void *cookie,
1630 					    void *handle,
1631 					    uint64_t flags)
1632 {
1633 	struct secure_partition_desc *sp;
1634 	struct sp_exec_ctx *sp_ctx;
1635 
1636 	/* This request cannot originate from the Normal world. */
1637 	if (!secure_origin) {
1638 		WARN("%s: Can only be called from SWd.\n", __func__);
1639 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1640 	}
1641 
1642 	/* Get the context of the current SP. */
1643 	sp = spmc_get_current_sp_ctx();
1644 	if (sp == NULL) {
1645 		WARN("%s: Cannot find SP context.\n", __func__);
1646 		return spmc_ffa_error_return(handle,
1647 					     FFA_ERROR_INVALID_PARAMETER);
1648 	}
1649 
1650 	/* Only an S-EL1 SP should be invoking this ABI. */
1651 	if (sp->runtime_el != S_EL1) {
1652 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1653 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1654 	}
1655 
1656 	/* Ensure the SP is in its initialization state. */
1657 	sp_ctx = spmc_get_sp_ec(sp);
1658 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1659 		WARN("%s: Can only be called during SP initialization.\n",
1660 		     __func__);
1661 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1662 	}
1663 
1664 	/* Perform initial validation of the secondary entry point. */
1665 	if (validate_secondary_ep(x1, sp)) {
1666 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1667 		     __func__, x1);
1668 		return spmc_ffa_error_return(handle,
1669 					     FFA_ERROR_INVALID_PARAMETER);
1670 	}
1671 
1672 	/*
1673 	 * Update the secondary entrypoint in SP context.
1674 	 * We don't need a lock here as during partition initialization there
1675 	 * will only be a single core online.
1676 	 */
1677 	sp->secondary_ep = x1;
1678 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1679 
1680 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1681 }
1682 
1683 /*******************************************************************************
1684  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1685  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1686  * function converts a permission value from the FF-A format to the mmap_attr_t
1687  * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and
1688  * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are
1689  * ignored by the function xlat_change_mem_attributes_ctx().
1690  ******************************************************************************/
1691 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms)
1692 {
1693 	unsigned int tf_attr = 0U;
1694 	unsigned int access;
1695 
1696 	/* Deal with data access permissions first. */
1697 	access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT;
1698 
1699 	switch (access) {
1700 	case FFA_MEM_PERM_DATA_RW:
1701 		/* Return 0 if the execute is set with RW. */
1702 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) {
1703 			tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER;
1704 		}
1705 		break;
1706 
1707 	case FFA_MEM_PERM_DATA_RO:
1708 		tf_attr |= MT_RO | MT_USER;
1709 		/* Deal with the instruction access permissions next. */
1710 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) {
1711 			tf_attr |= MT_EXECUTE;
1712 		} else {
1713 			tf_attr |= MT_EXECUTE_NEVER;
1714 		}
1715 		break;
1716 
1717 	case FFA_MEM_PERM_DATA_NA:
1718 	default:
1719 		return tf_attr;
1720 	}
1721 
1722 	return tf_attr;
1723 }
1724 
1725 /*******************************************************************************
1726  * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP
1727  ******************************************************************************/
1728 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid,
1729 					 bool secure_origin,
1730 					 uint64_t x1,
1731 					 uint64_t x2,
1732 					 uint64_t x3,
1733 					 uint64_t x4,
1734 					 void *cookie,
1735 					 void *handle,
1736 					 uint64_t flags)
1737 {
1738 	struct secure_partition_desc *sp;
1739 	unsigned int idx;
1740 	uintptr_t base_va = (uintptr_t) x1;
1741 	size_t size = (size_t)(x2 * PAGE_SIZE);
1742 	uint32_t tf_attr;
1743 	int ret;
1744 
1745 	/* This request cannot originate from the Normal world. */
1746 	if (!secure_origin) {
1747 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1748 	}
1749 
1750 	if (size == 0) {
1751 		return spmc_ffa_error_return(handle,
1752 					     FFA_ERROR_INVALID_PARAMETER);
1753 	}
1754 
1755 	/* Get the context of the current SP. */
1756 	sp = spmc_get_current_sp_ctx();
1757 	if (sp == NULL) {
1758 		return spmc_ffa_error_return(handle,
1759 					     FFA_ERROR_INVALID_PARAMETER);
1760 	}
1761 
1762 	/* A S-EL1 SP has no business invoking this ABI. */
1763 	if (sp->runtime_el == S_EL1) {
1764 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1765 	}
1766 
1767 	if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) {
1768 		return spmc_ffa_error_return(handle,
1769 					     FFA_ERROR_INVALID_PARAMETER);
1770 	}
1771 
1772 	/* Get the execution context of the calling SP. */
1773 	idx = get_ec_index(sp);
1774 
1775 	/*
1776 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1777 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1778 	 * and can only be initialising on this cpu.
1779 	 */
1780 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1781 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1782 	}
1783 
1784 	VERBOSE("Setting memory permissions:\n");
1785 	VERBOSE("  Start address  : 0x%lx\n", base_va);
1786 	VERBOSE("  Number of pages: %lu (%zu bytes)\n", x2, size);
1787 	VERBOSE("  Attributes     : 0x%x\n", (uint32_t)x3);
1788 
1789 	/* Convert inbound permissions to TF-A permission attributes */
1790 	tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3);
1791 	if (tf_attr == 0U) {
1792 		return spmc_ffa_error_return(handle,
1793 					     FFA_ERROR_INVALID_PARAMETER);
1794 	}
1795 
1796 	/* Request the change in permissions */
1797 	ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle,
1798 					     base_va, size, tf_attr);
1799 	if (ret != 0) {
1800 		return spmc_ffa_error_return(handle,
1801 					     FFA_ERROR_INVALID_PARAMETER);
1802 	}
1803 
1804 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1805 }
1806 
1807 /*******************************************************************************
1808  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1809  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1810  * function converts a permission value from the mmap_attr_t format to the FF-A
1811  * format.
1812  ******************************************************************************/
1813 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr)
1814 {
1815 	unsigned int perms = 0U;
1816 	unsigned int data_access;
1817 
1818 	if ((attr & MT_USER) == 0) {
1819 		/* No access from EL0. */
1820 		data_access = FFA_MEM_PERM_DATA_NA;
1821 	} else {
1822 		if ((attr & MT_RW) != 0) {
1823 			data_access = FFA_MEM_PERM_DATA_RW;
1824 		} else {
1825 			data_access = FFA_MEM_PERM_DATA_RO;
1826 		}
1827 	}
1828 
1829 	perms |= (data_access & FFA_MEM_PERM_DATA_MASK)
1830 		<< FFA_MEM_PERM_DATA_SHIFT;
1831 
1832 	if ((attr & MT_EXECUTE_NEVER) != 0U) {
1833 		perms |= FFA_MEM_PERM_INST_NON_EXEC;
1834 	}
1835 
1836 	return perms;
1837 }
1838 
1839 /*******************************************************************************
1840  * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP
1841  ******************************************************************************/
1842 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid,
1843 					 bool secure_origin,
1844 					 uint64_t x1,
1845 					 uint64_t x2,
1846 					 uint64_t x3,
1847 					 uint64_t x4,
1848 					 void *cookie,
1849 					 void *handle,
1850 					 uint64_t flags)
1851 {
1852 	struct secure_partition_desc *sp;
1853 	unsigned int idx;
1854 	uintptr_t base_va = (uintptr_t)x1;
1855 	uint32_t tf_attr = 0;
1856 	int ret;
1857 
1858 	/* This request cannot originate from the Normal world. */
1859 	if (!secure_origin) {
1860 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1861 	}
1862 
1863 	/* Get the context of the current SP. */
1864 	sp = spmc_get_current_sp_ctx();
1865 	if (sp == NULL) {
1866 		return spmc_ffa_error_return(handle,
1867 					     FFA_ERROR_INVALID_PARAMETER);
1868 	}
1869 
1870 	/* A S-EL1 SP has no business invoking this ABI. */
1871 	if (sp->runtime_el == S_EL1) {
1872 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1873 	}
1874 
1875 	/* Get the execution context of the calling SP. */
1876 	idx = get_ec_index(sp);
1877 
1878 	/*
1879 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1880 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1881 	 * and can only be initialising on this cpu.
1882 	 */
1883 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1884 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1885 	}
1886 
1887 	/* Request the permissions */
1888 	ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr);
1889 	if (ret != 0) {
1890 		return spmc_ffa_error_return(handle,
1891 					     FFA_ERROR_INVALID_PARAMETER);
1892 	}
1893 
1894 	/* Convert TF-A permission to FF-A permissions attributes. */
1895 	x2 = mmap_perm_to_ffa_perm(tf_attr);
1896 
1897 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2);
1898 }
1899 
1900 /*******************************************************************************
1901  * This function will parse the Secure Partition Manifest. From manifest, it
1902  * will fetch details for preparing Secure partition image context and secure
1903  * partition image boot arguments if any.
1904  ******************************************************************************/
1905 static int sp_manifest_parse(void *sp_manifest, int offset,
1906 			     struct secure_partition_desc *sp,
1907 			     entry_point_info_t *ep_info,
1908 			     int32_t *boot_info_reg)
1909 {
1910 	int32_t ret, node;
1911 	uint32_t config_32;
1912 
1913 	/*
1914 	 * Look for the mandatory fields that are expected to be present in
1915 	 * the SP manifests.
1916 	 */
1917 	node = fdt_path_offset(sp_manifest, "/");
1918 	if (node < 0) {
1919 		ERROR("Did not find root node.\n");
1920 		return node;
1921 	}
1922 
1923 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
1924 				    ARRAY_SIZE(sp->uuid), sp->uuid);
1925 	if (ret != 0) {
1926 		ERROR("Missing Secure Partition UUID.\n");
1927 		return ret;
1928 	}
1929 
1930 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
1931 	if (ret != 0) {
1932 		ERROR("Missing SP Exception Level information.\n");
1933 		return ret;
1934 	}
1935 
1936 	sp->runtime_el = config_32;
1937 
1938 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
1939 	if (ret != 0) {
1940 		ERROR("Missing Secure Partition FF-A Version.\n");
1941 		return ret;
1942 	}
1943 
1944 	sp->ffa_version = config_32;
1945 
1946 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
1947 	if (ret != 0) {
1948 		ERROR("Missing Secure Partition Execution State.\n");
1949 		return ret;
1950 	}
1951 
1952 	sp->execution_state = config_32;
1953 
1954 	ret = fdt_read_uint32(sp_manifest, node,
1955 			      "messaging-method", &config_32);
1956 	if (ret != 0) {
1957 		ERROR("Missing Secure Partition messaging method.\n");
1958 		return ret;
1959 	}
1960 
1961 	/* Validate this entry, we currently only support direct messaging. */
1962 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
1963 			  FFA_PARTITION_DIRECT_REQ_SEND |
1964 			  FFA_PARTITION_DIRECT_REQ2_RECV |
1965 			  FFA_PARTITION_DIRECT_REQ2_SEND)) != 0U) {
1966 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
1967 		     config_32);
1968 		return -EINVAL;
1969 	}
1970 
1971 	sp->properties = config_32;
1972 
1973 	ret = fdt_read_uint32(sp_manifest, node,
1974 			      "execution-ctx-count", &config_32);
1975 
1976 	if (ret != 0) {
1977 		ERROR("Missing SP Execution Context Count.\n");
1978 		return ret;
1979 	}
1980 
1981 	/*
1982 	 * Ensure this field is set correctly in the manifest however
1983 	 * since this is currently a hardcoded value for S-EL1 partitions
1984 	 * we don't need to save it here, just validate.
1985 	 */
1986 	if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) {
1987 		ERROR("SP Execution Context Count (%u) must be %u.\n",
1988 			config_32, PLATFORM_CORE_COUNT);
1989 		return -EINVAL;
1990 	}
1991 
1992 	/*
1993 	 * Look for the optional fields that are expected to be present in
1994 	 * an SP manifest.
1995 	 */
1996 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
1997 	if (ret != 0) {
1998 		WARN("Missing Secure Partition ID.\n");
1999 	} else {
2000 		if (!is_ffa_secure_id_valid(config_32)) {
2001 			ERROR("Invalid Secure Partition ID (0x%x).\n",
2002 			      config_32);
2003 			return -EINVAL;
2004 		}
2005 		sp->sp_id = config_32;
2006 	}
2007 
2008 	ret = fdt_read_uint32(sp_manifest, node,
2009 			      "power-management-messages", &config_32);
2010 	if (ret != 0) {
2011 		WARN("Missing Power Management Messages entry.\n");
2012 	} else {
2013 		if ((sp->runtime_el == S_EL0) && (config_32 != 0)) {
2014 			ERROR("Power messages not supported for S-EL0 SP\n");
2015 			return -EINVAL;
2016 		}
2017 
2018 		/*
2019 		 * Ensure only the currently supported power messages have
2020 		 * been requested.
2021 		 */
2022 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
2023 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
2024 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
2025 			ERROR("Requested unsupported PM messages (%x)\n",
2026 			      config_32);
2027 			return -EINVAL;
2028 		}
2029 		sp->pwr_mgmt_msgs = config_32;
2030 	}
2031 
2032 	ret = fdt_read_uint32(sp_manifest, node,
2033 			      "gp-register-num", &config_32);
2034 	if (ret != 0) {
2035 		WARN("Missing boot information register.\n");
2036 	} else {
2037 		/* Check if a register number between 0-3 is specified. */
2038 		if (config_32 < 4) {
2039 			*boot_info_reg = config_32;
2040 		} else {
2041 			WARN("Incorrect boot information register (%u).\n",
2042 			     config_32);
2043 		}
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 /*******************************************************************************
2050  * This function gets the Secure Partition Manifest base and maps the manifest
2051  * region.
2052  * Currently only one Secure Partition manifest is considered which is used to
2053  * prepare the context for the single Secure Partition.
2054  ******************************************************************************/
2055 static int find_and_prepare_sp_context(void)
2056 {
2057 	void *sp_manifest;
2058 	uintptr_t manifest_base;
2059 	uintptr_t manifest_base_align;
2060 	entry_point_info_t *next_image_ep_info;
2061 	int32_t ret, boot_info_reg = -1;
2062 	struct secure_partition_desc *sp;
2063 
2064 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
2065 	if (next_image_ep_info == NULL) {
2066 		WARN("No Secure Partition image provided by BL2.\n");
2067 		return -ENOENT;
2068 	}
2069 
2070 	sp_manifest = (void *)next_image_ep_info->args.arg0;
2071 	if (sp_manifest == NULL) {
2072 		WARN("Secure Partition manifest absent.\n");
2073 		return -ENOENT;
2074 	}
2075 
2076 	manifest_base = (uintptr_t)sp_manifest;
2077 	manifest_base_align = page_align(manifest_base, DOWN);
2078 
2079 	/*
2080 	 * Map the secure partition manifest region in the EL3 translation
2081 	 * regime.
2082 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
2083 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
2084 	 * not completely accommodate the secure partition manifest region.
2085 	 */
2086 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
2087 				      manifest_base_align,
2088 				      PAGE_SIZE * 2,
2089 				      MT_RO_DATA);
2090 	if (ret != 0) {
2091 		ERROR("Error while mapping SP manifest (%d).\n", ret);
2092 		return ret;
2093 	}
2094 
2095 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
2096 					    "arm,ffa-manifest-1.0");
2097 	if (ret < 0) {
2098 		ERROR("Error happened in SP manifest reading.\n");
2099 		return -EINVAL;
2100 	}
2101 
2102 	/*
2103 	 * Store the size of the manifest so that it can be used later to pass
2104 	 * the manifest as boot information later.
2105 	 */
2106 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
2107 	INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base,
2108 	     next_image_ep_info->args.arg1);
2109 
2110 	/*
2111 	 * Select an SP descriptor for initialising the partition's execution
2112 	 * context on the primary CPU.
2113 	 */
2114 	sp = spmc_get_current_sp_ctx();
2115 
2116 #if SPMC_AT_EL3_SEL0_SP
2117 	/* Assign translation tables context. */
2118 	sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context();
2119 
2120 #endif /* SPMC_AT_EL3_SEL0_SP */
2121 	/* Initialize entry point information for the SP */
2122 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
2123 		       SECURE | EP_ST_ENABLE);
2124 
2125 	/* Parse the SP manifest. */
2126 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info,
2127 				&boot_info_reg);
2128 	if (ret != 0) {
2129 		ERROR("Error in Secure Partition manifest parsing.\n");
2130 		return ret;
2131 	}
2132 
2133 	/* Perform any common initialisation. */
2134 	spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg);
2135 
2136 	/* Perform any initialisation specific to S-EL1 SPs. */
2137 	if (sp->runtime_el == S_EL1) {
2138 		spmc_el1_sp_setup(sp, next_image_ep_info);
2139 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2140 	}
2141 #if SPMC_AT_EL3_SEL0_SP
2142 	/* Perform any initialisation specific to S-EL0 SPs. */
2143 	else if (sp->runtime_el == S_EL0) {
2144 		/* Setup spsr in endpoint info for common context management routine. */
2145 		spmc_el0_sp_spsr_setup(next_image_ep_info);
2146 
2147 		spmc_sp_common_ep_commit(sp, next_image_ep_info);
2148 
2149 		/*
2150 		 * Perform any initialisation specific to S-EL0 not set by common
2151 		 * context management routine.
2152 		 */
2153 		spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest);
2154 	}
2155 #endif /* SPMC_AT_EL3_SEL0_SP */
2156 	else {
2157 		ERROR("Unexpected runtime EL: %u\n", sp->runtime_el);
2158 		return -EINVAL;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /*******************************************************************************
2165  * This function takes an SP context pointer and performs a synchronous entry
2166  * into it.
2167  ******************************************************************************/
2168 static int32_t logical_sp_init(void)
2169 {
2170 	int32_t rc = 0;
2171 	struct el3_lp_desc *el3_lp_descs;
2172 
2173 	/* Perform initial validation of the Logical Partitions. */
2174 	rc = el3_sp_desc_validate();
2175 	if (rc != 0) {
2176 		ERROR("Logical Partition validation failed!\n");
2177 		return rc;
2178 	}
2179 
2180 	el3_lp_descs = get_el3_lp_array();
2181 
2182 	INFO("Logical Secure Partition init start.\n");
2183 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
2184 		rc = el3_lp_descs[i].init();
2185 		if (rc != 0) {
2186 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
2187 			      el3_lp_descs[i].sp_id);
2188 			return rc;
2189 		}
2190 		VERBOSE("Logical SP (0x%x) Initialized\n",
2191 			      el3_lp_descs[i].sp_id);
2192 	}
2193 
2194 	INFO("Logical Secure Partition init completed.\n");
2195 
2196 	return rc;
2197 }
2198 
2199 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
2200 {
2201 	uint64_t rc;
2202 
2203 	assert(ec != NULL);
2204 
2205 	/* Assign the context of the SP to this CPU */
2206 	cm_set_context(&(ec->cpu_ctx), SECURE);
2207 
2208 	/* Restore the context assigned above */
2209 	cm_el1_sysregs_context_restore(SECURE);
2210 	cm_set_next_eret_context(SECURE);
2211 
2212 	/* Invalidate TLBs at EL1. */
2213 	tlbivmalle1();
2214 	dsbish();
2215 
2216 	/* Enter Secure Partition */
2217 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
2218 
2219 	/* Save secure state */
2220 	cm_el1_sysregs_context_save(SECURE);
2221 
2222 	return rc;
2223 }
2224 
2225 /*******************************************************************************
2226  * SPMC Helper Functions.
2227  ******************************************************************************/
2228 static int32_t sp_init(void)
2229 {
2230 	uint64_t rc;
2231 	struct secure_partition_desc *sp;
2232 	struct sp_exec_ctx *ec;
2233 
2234 	sp = spmc_get_current_sp_ctx();
2235 	ec = spmc_get_sp_ec(sp);
2236 	ec->rt_model = RT_MODEL_INIT;
2237 	ec->rt_state = RT_STATE_RUNNING;
2238 
2239 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
2240 
2241 	rc = spmc_sp_synchronous_entry(ec);
2242 	if (rc != 0) {
2243 		/* Indicate SP init was not successful. */
2244 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
2245 		      sp->sp_id, rc);
2246 		return 0;
2247 	}
2248 
2249 	ec->rt_state = RT_STATE_WAITING;
2250 	INFO("Secure Partition initialized.\n");
2251 
2252 	return 1;
2253 }
2254 
2255 static void initalize_sp_descs(void)
2256 {
2257 	struct secure_partition_desc *sp;
2258 
2259 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
2260 		sp = &sp_desc[i];
2261 		sp->sp_id = INV_SP_ID;
2262 		sp->mailbox.rx_buffer = NULL;
2263 		sp->mailbox.tx_buffer = NULL;
2264 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
2265 		sp->secondary_ep = 0;
2266 	}
2267 }
2268 
2269 static void initalize_ns_ep_descs(void)
2270 {
2271 	struct ns_endpoint_desc *ns_ep;
2272 
2273 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
2274 		ns_ep = &ns_ep_desc[i];
2275 		/*
2276 		 * Clashes with the Hypervisor ID but will not be a
2277 		 * problem in practice.
2278 		 */
2279 		ns_ep->ns_ep_id = 0;
2280 		ns_ep->ffa_version = 0;
2281 		ns_ep->mailbox.rx_buffer = NULL;
2282 		ns_ep->mailbox.tx_buffer = NULL;
2283 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
2284 	}
2285 }
2286 
2287 /*******************************************************************************
2288  * Initialize SPMC attributes for the SPMD.
2289  ******************************************************************************/
2290 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
2291 {
2292 	spmc_attrs->major_version = FFA_VERSION_MAJOR;
2293 	spmc_attrs->minor_version = FFA_VERSION_MINOR;
2294 	spmc_attrs->exec_state = MODE_RW_64;
2295 	spmc_attrs->spmc_id = FFA_SPMC_ID;
2296 }
2297 
2298 /*******************************************************************************
2299  * Initialize contexts of all Secure Partitions.
2300  ******************************************************************************/
2301 int32_t spmc_setup(void)
2302 {
2303 	int32_t ret;
2304 	uint32_t flags;
2305 
2306 	/* Initialize endpoint descriptors */
2307 	initalize_sp_descs();
2308 	initalize_ns_ep_descs();
2309 
2310 	/*
2311 	 * Retrieve the information of the datastore for tracking shared memory
2312 	 * requests allocated by platform code and zero the region if available.
2313 	 */
2314 	ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data,
2315 					    &spmc_shmem_obj_state.data_size);
2316 	if (ret != 0) {
2317 		ERROR("Failed to obtain memory descriptor backing store!\n");
2318 		return ret;
2319 	}
2320 	memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size);
2321 
2322 	/* Setup logical SPs. */
2323 	ret = logical_sp_init();
2324 	if (ret != 0) {
2325 		ERROR("Failed to initialize Logical Partitions.\n");
2326 		return ret;
2327 	}
2328 
2329 	/* Perform physical SP setup. */
2330 
2331 	/* Disable MMU at EL1 (initialized by BL2) */
2332 	disable_mmu_icache_el1();
2333 
2334 	/* Initialize context of the SP */
2335 	INFO("Secure Partition context setup start.\n");
2336 
2337 	ret = find_and_prepare_sp_context();
2338 	if (ret != 0) {
2339 		ERROR("Error in SP finding and context preparation.\n");
2340 		return ret;
2341 	}
2342 
2343 	/* Register power management hooks with PSCI */
2344 	psci_register_spd_pm_hook(&spmc_pm);
2345 
2346 	/*
2347 	 * Register an interrupt handler for S-EL1 interrupts
2348 	 * when generated during code executing in the
2349 	 * non-secure state.
2350 	 */
2351 	flags = 0;
2352 	set_interrupt_rm_flag(flags, NON_SECURE);
2353 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
2354 					      spmc_sp_interrupt_handler,
2355 					      flags);
2356 	if (ret != 0) {
2357 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
2358 		panic();
2359 	}
2360 
2361 	/* Register init function for deferred init.  */
2362 	bl31_register_bl32_init(&sp_init);
2363 
2364 	INFO("Secure Partition setup done.\n");
2365 
2366 	return 0;
2367 }
2368 
2369 /*******************************************************************************
2370  * Secure Partition Manager SMC handler.
2371  ******************************************************************************/
2372 uint64_t spmc_smc_handler(uint32_t smc_fid,
2373 			  bool secure_origin,
2374 			  uint64_t x1,
2375 			  uint64_t x2,
2376 			  uint64_t x3,
2377 			  uint64_t x4,
2378 			  void *cookie,
2379 			  void *handle,
2380 			  uint64_t flags)
2381 {
2382 	switch (smc_fid) {
2383 
2384 	case FFA_VERSION:
2385 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
2386 					   x4, cookie, handle, flags);
2387 
2388 	case FFA_SPM_ID_GET:
2389 		return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2,
2390 					     x3, x4, cookie, handle, flags);
2391 
2392 	case FFA_ID_GET:
2393 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
2394 					  x4, cookie, handle, flags);
2395 
2396 	case FFA_FEATURES:
2397 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
2398 					    x4, cookie, handle, flags);
2399 
2400 	case FFA_SECONDARY_EP_REGISTER_SMC64:
2401 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
2402 						   x2, x3, x4, cookie, handle,
2403 						   flags);
2404 
2405 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
2406 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
2407 	case FFA_MSG_SEND_DIRECT_REQ2_SMC64:
2408 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
2409 					      x3, x4, cookie, handle, flags);
2410 
2411 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
2412 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
2413 	case FFA_MSG_SEND_DIRECT_RESP2_SMC64:
2414 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
2415 					       x3, x4, cookie, handle, flags);
2416 
2417 	case FFA_RXTX_MAP_SMC32:
2418 	case FFA_RXTX_MAP_SMC64:
2419 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2420 					cookie, handle, flags);
2421 
2422 	case FFA_RXTX_UNMAP:
2423 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
2424 					  x4, cookie, handle, flags);
2425 
2426 	case FFA_PARTITION_INFO_GET:
2427 		return partition_info_get_handler(smc_fid, secure_origin, x1,
2428 						  x2, x3, x4, cookie, handle,
2429 						  flags);
2430 
2431 	case FFA_RX_RELEASE:
2432 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
2433 					  x4, cookie, handle, flags);
2434 
2435 	case FFA_MSG_WAIT:
2436 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2437 					cookie, handle, flags);
2438 
2439 	case FFA_ERROR:
2440 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2441 					cookie, handle, flags);
2442 
2443 	case FFA_MSG_RUN:
2444 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2445 				       cookie, handle, flags);
2446 
2447 	case FFA_MEM_SHARE_SMC32:
2448 	case FFA_MEM_SHARE_SMC64:
2449 	case FFA_MEM_LEND_SMC32:
2450 	case FFA_MEM_LEND_SMC64:
2451 		return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4,
2452 					 cookie, handle, flags);
2453 
2454 	case FFA_MEM_FRAG_TX:
2455 		return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3,
2456 					    x4, cookie, handle, flags);
2457 
2458 	case FFA_MEM_FRAG_RX:
2459 		return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3,
2460 					    x4, cookie, handle, flags);
2461 
2462 	case FFA_MEM_RETRIEVE_REQ_SMC32:
2463 	case FFA_MEM_RETRIEVE_REQ_SMC64:
2464 		return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2,
2465 						 x3, x4, cookie, handle, flags);
2466 
2467 	case FFA_MEM_RELINQUISH:
2468 		return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2,
2469 					       x3, x4, cookie, handle, flags);
2470 
2471 	case FFA_MEM_RECLAIM:
2472 		return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3,
2473 						x4, cookie, handle, flags);
2474 	case FFA_CONSOLE_LOG_SMC32:
2475 	case FFA_CONSOLE_LOG_SMC64:
2476 		return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3,
2477 						x4, cookie, handle, flags);
2478 
2479 	case FFA_MEM_PERM_GET_SMC32:
2480 	case FFA_MEM_PERM_GET_SMC64:
2481 		return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2,
2482 						x3, x4, cookie, handle, flags);
2483 
2484 	case FFA_MEM_PERM_SET_SMC32:
2485 	case FFA_MEM_PERM_SET_SMC64:
2486 		return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2,
2487 						x3, x4, cookie, handle, flags);
2488 
2489 	default:
2490 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
2491 		break;
2492 	}
2493 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
2494 }
2495 
2496 /*******************************************************************************
2497  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
2498  * validates the interrupt and upon success arranges entry into the SP for
2499  * handling the interrupt.
2500  ******************************************************************************/
2501 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
2502 					  uint32_t flags,
2503 					  void *handle,
2504 					  void *cookie)
2505 {
2506 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
2507 	struct sp_exec_ctx *ec;
2508 	uint32_t linear_id = plat_my_core_pos();
2509 
2510 	/* Sanity check for a NULL pointer dereference. */
2511 	assert(sp != NULL);
2512 
2513 	/* Check the security state when the exception was generated. */
2514 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
2515 
2516 	/* Panic if not an S-EL1 Partition. */
2517 	if (sp->runtime_el != S_EL1) {
2518 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
2519 		      linear_id);
2520 		panic();
2521 	}
2522 
2523 	/* Obtain a reference to the SP execution context. */
2524 	ec = spmc_get_sp_ec(sp);
2525 
2526 	/* Ensure that the execution context is in waiting state else panic. */
2527 	if (ec->rt_state != RT_STATE_WAITING) {
2528 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
2529 		      linear_id, RT_STATE_WAITING, ec->rt_state);
2530 		panic();
2531 	}
2532 
2533 	/* Update the runtime model and state of the partition. */
2534 	ec->rt_model = RT_MODEL_INTR;
2535 	ec->rt_state = RT_STATE_RUNNING;
2536 
2537 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
2538 
2539 	/*
2540 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
2541 	 * populated as the SP can determine this by itself.
2542 	 * The flags field is forced to 0 mainly to pass the SVE hint bit
2543 	 * cleared for consumption by the lower EL.
2544 	 */
2545 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
2546 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2547 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2548 				     handle, 0ULL);
2549 }
2550