1 /* 2 * Copyright (c) 2022-2025, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 #include <stdio.h> 10 11 #include <arch_helpers.h> 12 #include <bl31/bl31.h> 13 #include <bl31/ehf.h> 14 #include <bl31/interrupt_mgmt.h> 15 #include <common/debug.h> 16 #include <common/fdt_wrappers.h> 17 #include <common/runtime_svc.h> 18 #include <common/uuid.h> 19 #include <lib/el3_runtime/context_mgmt.h> 20 #include <lib/smccc.h> 21 #include <lib/utils.h> 22 #include <lib/xlat_tables/xlat_tables_v2.h> 23 #include <libfdt.h> 24 #include <plat/common/platform.h> 25 #include <services/el3_spmc_logical_sp.h> 26 #include <services/ffa_svc.h> 27 #include <services/spmc_svc.h> 28 #include <services/spmd_svc.h> 29 #include "spmc.h" 30 #include "spmc_shared_mem.h" 31 #if TRANSFER_LIST 32 #include <transfer_list.h> 33 #endif 34 35 #include <platform_def.h> 36 37 /* FFA_MEM_PERM_* helpers */ 38 #define FFA_MEM_PERM_MASK U(7) 39 #define FFA_MEM_PERM_DATA_MASK U(3) 40 #define FFA_MEM_PERM_DATA_SHIFT U(0) 41 #define FFA_MEM_PERM_DATA_NA U(0) 42 #define FFA_MEM_PERM_DATA_RW U(1) 43 #define FFA_MEM_PERM_DATA_RES U(2) 44 #define FFA_MEM_PERM_DATA_RO U(3) 45 #define FFA_MEM_PERM_INST_EXEC (U(0) << 2) 46 #define FFA_MEM_PERM_INST_NON_EXEC (U(1) << 2) 47 48 /* Declare the maximum number of SPs and El3 LPs. */ 49 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT 50 51 #define FFA_VERSION_SPMC_MAJOR U(1) 52 #define FFA_VERSION_SPMC_MINOR U(2) 53 54 /* 55 * Allocate a secure partition descriptor to describe each SP in the system that 56 * does not reside at EL3. 57 */ 58 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT]; 59 60 /* 61 * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in 62 * the system that interacts with a SP. It is used to track the Hypervisor 63 * buffer pair, version and ID for now. It could be extended to track VM 64 * properties when the SPMC supports indirect messaging. 65 */ 66 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT]; 67 68 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 69 uint32_t flags, 70 void *handle, 71 void *cookie); 72 73 /* 74 * Helper function to obtain the array storing the EL3 75 * Logical Partition descriptors. 76 */ 77 struct el3_lp_desc *get_el3_lp_array(void) 78 { 79 return (struct el3_lp_desc *) EL3_LP_DESCS_START; 80 } 81 82 /* 83 * Helper function to obtain the descriptor of the last SP to whom control was 84 * handed to on this physical cpu. Currently, we assume there is only one SP. 85 * TODO: Expand to track multiple partitions when required. 86 */ 87 struct secure_partition_desc *spmc_get_current_sp_ctx(void) 88 { 89 return &(sp_desc[ACTIVE_SP_DESC_INDEX]); 90 } 91 92 /* 93 * Helper function to obtain the execution context of an SP on the 94 * current physical cpu. 95 */ 96 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp) 97 { 98 return &(sp->ec[get_ec_index(sp)]); 99 } 100 101 /* Helper function to get pointer to SP context from its ID. */ 102 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id) 103 { 104 /* Check for Secure World Partitions. */ 105 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 106 if (sp_desc[i].sp_id == id) { 107 return &(sp_desc[i]); 108 } 109 } 110 return NULL; 111 } 112 113 /* 114 * Helper function to obtain the descriptor of the Hypervisor or OS kernel. 115 * We assume that the first descriptor is reserved for this entity. 116 */ 117 struct ns_endpoint_desc *spmc_get_hyp_ctx(void) 118 { 119 return &(ns_ep_desc[0]); 120 } 121 122 /* 123 * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor 124 * or OS kernel in the normal world or the last SP that was run. 125 */ 126 struct mailbox *spmc_get_mbox_desc(bool secure_origin) 127 { 128 /* Obtain the RX/TX buffer pair descriptor. */ 129 if (secure_origin) { 130 return &(spmc_get_current_sp_ctx()->mailbox); 131 } else { 132 return &(spmc_get_hyp_ctx()->mailbox); 133 } 134 } 135 136 /****************************************************************************** 137 * This function returns to the place where spmc_sp_synchronous_entry() was 138 * called originally. 139 ******************************************************************************/ 140 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc) 141 { 142 /* 143 * The SPM must have initiated the original request through a 144 * synchronous entry into the secure partition. Jump back to the 145 * original C runtime context with the value of rc in x0; 146 */ 147 spm_secure_partition_exit(ec->c_rt_ctx, rc); 148 149 panic(); 150 } 151 152 /******************************************************************************* 153 * Return FFA_ERROR with specified error code. 154 ******************************************************************************/ 155 uint64_t spmc_ffa_error_return(void *handle, int error_code) 156 { 157 SMC_RET8(handle, FFA_ERROR, 158 FFA_TARGET_INFO_MBZ, error_code, 159 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ, 160 FFA_PARAM_MBZ, FFA_PARAM_MBZ); 161 } 162 163 /****************************************************************************** 164 * Helper function to validate a secure partition ID to ensure it does not 165 * conflict with any other FF-A component and follows the convention to 166 * indicate it resides within the secure world. 167 ******************************************************************************/ 168 bool is_ffa_secure_id_valid(uint16_t partition_id) 169 { 170 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 171 172 /* Ensure the ID is not the invalid partition ID. */ 173 if (partition_id == INV_SP_ID) { 174 return false; 175 } 176 177 /* Ensure the ID is not the SPMD ID. */ 178 if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) { 179 return false; 180 } 181 182 /* 183 * Ensure the ID follows the convention to indicate it resides 184 * in the secure world. 185 */ 186 if (!ffa_is_secure_world_id(partition_id)) { 187 return false; 188 } 189 190 /* Ensure we don't conflict with the SPMC partition ID. */ 191 if (partition_id == FFA_SPMC_ID) { 192 return false; 193 } 194 195 /* Ensure we do not already have an SP context with this ID. */ 196 if (spmc_get_sp_ctx(partition_id)) { 197 return false; 198 } 199 200 /* Ensure we don't clash with any Logical SP's. */ 201 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 202 if (el3_lp_descs[i].sp_id == partition_id) { 203 return false; 204 } 205 } 206 207 return true; 208 } 209 210 /******************************************************************************* 211 * This function either forwards the request to the other world or returns 212 * with an ERET depending on the source of the call. 213 * We can assume that the destination is for an entity at a lower exception 214 * level as any messages destined for a logical SP resident in EL3 will have 215 * already been taken care of by the SPMC before entering this function. 216 ******************************************************************************/ 217 static uint64_t spmc_smc_return(uint32_t smc_fid, 218 bool secure_origin, 219 uint64_t x1, 220 uint64_t x2, 221 uint64_t x3, 222 uint64_t x4, 223 void *handle, 224 void *cookie, 225 uint64_t flags, 226 uint16_t dst_id, 227 uint32_t sp_ffa_version) 228 { 229 /* If the destination is in the normal world always go via the SPMD. */ 230 if (ffa_is_normal_world_id(dst_id)) { 231 return spmd_smc_handler(smc_fid, x1, x2, x3, x4, 232 cookie, handle, flags, sp_ffa_version); 233 } 234 /* 235 * If the caller is secure and we want to return to the secure world, 236 * ERET directly. 237 */ 238 else if (secure_origin && ffa_is_secure_world_id(dst_id)) { 239 SMC_RET5(handle, smc_fid, x1, x2, x3, x4); 240 } 241 /* If we originated in the normal world then switch contexts. */ 242 else if (!secure_origin && ffa_is_secure_world_id(dst_id)) { 243 return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2, 244 x3, x4, handle, flags, sp_ffa_version); 245 } else { 246 /* Unknown State. */ 247 panic(); 248 } 249 250 /* Shouldn't be Reached. */ 251 return 0; 252 } 253 254 /******************************************************************************* 255 * FF-A ABI Handlers. 256 ******************************************************************************/ 257 258 /******************************************************************************* 259 * Helper function to validate arg2 as part of a direct message. 260 ******************************************************************************/ 261 static inline bool direct_msg_validate_arg2(uint64_t x2) 262 { 263 /* Check message type. */ 264 if (x2 & FFA_FWK_MSG_BIT) { 265 /* We have a framework message, ensure it is a known message. */ 266 if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) { 267 VERBOSE("Invalid message format 0x%lx.\n", x2); 268 return false; 269 } 270 } else { 271 /* We have a partition messages, ensure x2 is not set. */ 272 if (x2 != (uint64_t) 0) { 273 VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n", 274 x2); 275 return false; 276 } 277 } 278 return true; 279 } 280 281 /******************************************************************************* 282 * Helper function to validate the destination ID of a direct response. 283 ******************************************************************************/ 284 static bool direct_msg_validate_dst_id(uint16_t dst_id) 285 { 286 struct secure_partition_desc *sp; 287 288 /* Check if we're targeting a normal world partition. */ 289 if (ffa_is_normal_world_id(dst_id)) { 290 return true; 291 } 292 293 /* Or directed to the SPMC itself.*/ 294 if (dst_id == FFA_SPMC_ID) { 295 return true; 296 } 297 298 /* Otherwise ensure the SP exists. */ 299 sp = spmc_get_sp_ctx(dst_id); 300 if (sp != NULL) { 301 return true; 302 } 303 304 return false; 305 } 306 307 /******************************************************************************* 308 * Helper function to validate the response from a Logical Partition. 309 ******************************************************************************/ 310 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id, 311 void *handle) 312 { 313 /* Retrieve populated Direct Response Arguments. */ 314 uint64_t smc_fid = SMC_GET_GP(handle, CTX_GPREG_X0); 315 uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1); 316 uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2); 317 uint16_t src_id = ffa_endpoint_source(x1); 318 uint16_t dst_id = ffa_endpoint_destination(x1); 319 320 if (src_id != lp_id) { 321 ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id); 322 return false; 323 } 324 325 /* 326 * Check the destination ID is valid and ensure the LP is responding to 327 * the original request. 328 */ 329 if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) { 330 ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id); 331 return false; 332 } 333 334 if ((smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) && 335 !direct_msg_validate_arg2(x2)) { 336 ERROR("Invalid EL3 LP message encoding.\n"); 337 return false; 338 } 339 return true; 340 } 341 342 /******************************************************************************* 343 * Helper function to check that partition can receive direct msg or not. 344 ******************************************************************************/ 345 static bool direct_msg_receivable(uint32_t properties, uint16_t dir_req_fnum) 346 { 347 if ((dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ && 348 ((properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0U)) || 349 (dir_req_fnum == FFA_FNUM_MSG_SEND_DIRECT_REQ2 && 350 ((properties & FFA_PARTITION_DIRECT_REQ2_RECV) == 0U))) { 351 return false; 352 } 353 354 return true; 355 } 356 357 /******************************************************************************* 358 * Helper function to obtain the FF-A version of the calling partition. 359 ******************************************************************************/ 360 uint32_t get_partition_ffa_version(bool secure_origin) 361 { 362 if (secure_origin) { 363 return spmc_get_current_sp_ctx()->ffa_version; 364 } else { 365 return spmc_get_hyp_ctx()->ffa_version; 366 } 367 } 368 369 /******************************************************************************* 370 * Handle direct request messages and route to the appropriate destination. 371 ******************************************************************************/ 372 static uint64_t direct_req_smc_handler(uint32_t smc_fid, 373 bool secure_origin, 374 uint64_t x1, 375 uint64_t x2, 376 uint64_t x3, 377 uint64_t x4, 378 void *cookie, 379 void *handle, 380 uint64_t flags) 381 { 382 uint16_t src_id = ffa_endpoint_source(x1); 383 uint16_t dst_id = ffa_endpoint_destination(x1); 384 uint16_t dir_req_funcid; 385 struct el3_lp_desc *el3_lp_descs; 386 struct secure_partition_desc *sp; 387 unsigned int idx; 388 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 389 390 dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_REQ2_SMC64) ? 391 FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2; 392 393 if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ2) && 394 ffa_version < MAKE_FFA_VERSION(U(1), U(2))) { 395 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 396 } 397 398 /* 399 * Sanity check for DIRECT_REQ: 400 * Check if arg2 has been populated correctly based on message type 401 */ 402 if ((dir_req_funcid == FFA_FNUM_MSG_SEND_DIRECT_REQ) && 403 !direct_msg_validate_arg2(x2)) { 404 return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); 405 } 406 407 /* Validate Sender is either the current SP or from the normal world. */ 408 if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) || 409 (!secure_origin && !ffa_is_normal_world_id(src_id))) { 410 ERROR("Invalid direct request source ID (0x%x).\n", src_id); 411 return spmc_ffa_error_return(handle, 412 FFA_ERROR_INVALID_PARAMETER); 413 } 414 415 el3_lp_descs = get_el3_lp_array(); 416 417 /* Check if the request is destined for a Logical Partition. */ 418 for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) { 419 if (el3_lp_descs[i].sp_id == dst_id) { 420 if (!direct_msg_receivable(el3_lp_descs[i].properties, dir_req_funcid)) { 421 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 422 } 423 424 uint64_t ret = el3_lp_descs[i].direct_req( 425 smc_fid, secure_origin, x1, x2, 426 x3, x4, cookie, handle, flags); 427 if (!direct_msg_validate_lp_resp(src_id, dst_id, 428 handle)) { 429 panic(); 430 } 431 432 /* Message checks out. */ 433 return ret; 434 } 435 } 436 437 /* 438 * If the request was not targeted to a LSP and from the secure world 439 * then it is invalid since a SP cannot call into the Normal world and 440 * there is no other SP to call into. If there are other SPs in future 441 * then the partition runtime model would need to be validated as well. 442 */ 443 if (secure_origin) { 444 VERBOSE("Direct request not supported to the Normal World.\n"); 445 return spmc_ffa_error_return(handle, 446 FFA_ERROR_INVALID_PARAMETER); 447 } 448 449 /* Check if the SP ID is valid. */ 450 sp = spmc_get_sp_ctx(dst_id); 451 if (sp == NULL) { 452 VERBOSE("Direct request to unknown partition ID (0x%x).\n", 453 dst_id); 454 return spmc_ffa_error_return(handle, 455 FFA_ERROR_INVALID_PARAMETER); 456 } 457 458 if (!direct_msg_receivable(sp->properties, dir_req_funcid)) { 459 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 460 } 461 462 /* Protect the runtime state of a UP S-EL0 SP with a lock. */ 463 if (sp->runtime_el == S_EL0) { 464 spin_lock(&sp->rt_state_lock); 465 } 466 467 /* 468 * Check that the target execution context is in a waiting state before 469 * forwarding the direct request to it. 470 */ 471 idx = get_ec_index(sp); 472 if (sp->ec[idx].rt_state != RT_STATE_WAITING) { 473 VERBOSE("SP context on core%u is not waiting (%u).\n", 474 idx, sp->ec[idx].rt_model); 475 476 if (sp->runtime_el == S_EL0) { 477 spin_unlock(&sp->rt_state_lock); 478 } 479 480 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 481 } 482 483 /* 484 * Everything checks out so forward the request to the SP after updating 485 * its state and runtime model. 486 */ 487 sp->ec[idx].rt_state = RT_STATE_RUNNING; 488 sp->ec[idx].rt_model = RT_MODEL_DIR_REQ; 489 sp->ec[idx].dir_req_origin_id = src_id; 490 sp->ec[idx].dir_req_funcid = dir_req_funcid; 491 492 if (sp->runtime_el == S_EL0) { 493 spin_unlock(&sp->rt_state_lock); 494 } 495 496 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 497 handle, cookie, flags, dst_id, sp->ffa_version); 498 } 499 500 /******************************************************************************* 501 * Handle direct response messages and route to the appropriate destination. 502 ******************************************************************************/ 503 static uint64_t direct_resp_smc_handler(uint32_t smc_fid, 504 bool secure_origin, 505 uint64_t x1, 506 uint64_t x2, 507 uint64_t x3, 508 uint64_t x4, 509 void *cookie, 510 void *handle, 511 uint64_t flags) 512 { 513 uint16_t dst_id = ffa_endpoint_destination(x1); 514 uint16_t dir_req_funcid; 515 struct secure_partition_desc *sp; 516 unsigned int idx; 517 518 dir_req_funcid = (smc_fid != FFA_MSG_SEND_DIRECT_RESP2_SMC64) ? 519 FFA_FNUM_MSG_SEND_DIRECT_REQ : FFA_FNUM_MSG_SEND_DIRECT_REQ2; 520 521 /* Check if arg2 has been populated correctly based on message type. */ 522 if (!direct_msg_validate_arg2(x2)) { 523 return spmc_ffa_error_return(handle, 524 FFA_ERROR_INVALID_PARAMETER); 525 } 526 527 /* Check that the response did not originate from the Normal world. */ 528 if (!secure_origin) { 529 VERBOSE("Direct Response not supported from Normal World.\n"); 530 return spmc_ffa_error_return(handle, 531 FFA_ERROR_INVALID_PARAMETER); 532 } 533 534 /* 535 * Check that the response is either targeted to the Normal world or the 536 * SPMC e.g. a PM response. 537 */ 538 if (!direct_msg_validate_dst_id(dst_id)) { 539 VERBOSE("Direct response to invalid partition ID (0x%x).\n", 540 dst_id); 541 return spmc_ffa_error_return(handle, 542 FFA_ERROR_INVALID_PARAMETER); 543 } 544 545 /* Obtain the SP descriptor and update its runtime state. */ 546 sp = spmc_get_sp_ctx(ffa_endpoint_source(x1)); 547 if (sp == NULL) { 548 VERBOSE("Direct response to unknown partition ID (0x%x).\n", 549 dst_id); 550 return spmc_ffa_error_return(handle, 551 FFA_ERROR_INVALID_PARAMETER); 552 } 553 554 if (sp->runtime_el == S_EL0) { 555 spin_lock(&sp->rt_state_lock); 556 } 557 558 /* Sanity check state is being tracked correctly in the SPMC. */ 559 idx = get_ec_index(sp); 560 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 561 562 /* Ensure SP execution context was in the right runtime model. */ 563 if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) { 564 VERBOSE("SP context on core%u not handling direct req (%u).\n", 565 idx, sp->ec[idx].rt_model); 566 if (sp->runtime_el == S_EL0) { 567 spin_unlock(&sp->rt_state_lock); 568 } 569 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 570 } 571 572 if (dir_req_funcid != sp->ec[idx].dir_req_funcid) { 573 WARN("Unmatched direct req/resp func id. req:%x, resp:%x on core%u.\n", 574 sp->ec[idx].dir_req_funcid, (smc_fid & FUNCID_NUM_MASK), idx); 575 if (sp->runtime_el == S_EL0) { 576 spin_unlock(&sp->rt_state_lock); 577 } 578 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 579 } 580 581 if (sp->ec[idx].dir_req_origin_id != dst_id) { 582 WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n", 583 dst_id, sp->ec[idx].dir_req_origin_id, idx); 584 if (sp->runtime_el == S_EL0) { 585 spin_unlock(&sp->rt_state_lock); 586 } 587 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 588 } 589 590 /* Update the state of the SP execution context. */ 591 sp->ec[idx].rt_state = RT_STATE_WAITING; 592 593 /* Clear the ongoing direct request ID. */ 594 sp->ec[idx].dir_req_origin_id = INV_SP_ID; 595 596 /* Clear the ongoing direct request message version. */ 597 sp->ec[idx].dir_req_funcid = 0U; 598 599 if (sp->runtime_el == S_EL0) { 600 spin_unlock(&sp->rt_state_lock); 601 } 602 603 /* 604 * If the receiver is not the SPMC then forward the response to the 605 * Normal world. 606 */ 607 if (dst_id == FFA_SPMC_ID) { 608 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 609 /* Should not get here. */ 610 panic(); 611 } 612 613 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 614 handle, cookie, flags, dst_id, sp->ffa_version); 615 } 616 617 /******************************************************************************* 618 * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its 619 * cycles. 620 ******************************************************************************/ 621 static uint64_t msg_wait_handler(uint32_t smc_fid, 622 bool secure_origin, 623 uint64_t x1, 624 uint64_t x2, 625 uint64_t x3, 626 uint64_t x4, 627 void *cookie, 628 void *handle, 629 uint64_t flags) 630 { 631 struct secure_partition_desc *sp; 632 unsigned int idx; 633 634 /* 635 * Check that the response did not originate from the Normal world as 636 * only the secure world can call this ABI. 637 */ 638 if (!secure_origin) { 639 VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n"); 640 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 641 } 642 643 /* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */ 644 sp = spmc_get_current_sp_ctx(); 645 if (sp == NULL) { 646 return spmc_ffa_error_return(handle, 647 FFA_ERROR_INVALID_PARAMETER); 648 } 649 650 /* 651 * Get the execution context of the SP that invoked FFA_MSG_WAIT. 652 */ 653 idx = get_ec_index(sp); 654 if (sp->runtime_el == S_EL0) { 655 spin_lock(&sp->rt_state_lock); 656 } 657 658 /* Ensure SP execution context was in the right runtime model. */ 659 if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 660 if (sp->runtime_el == S_EL0) { 661 spin_unlock(&sp->rt_state_lock); 662 } 663 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 664 } 665 666 /* Sanity check the state is being tracked correctly in the SPMC. */ 667 assert(sp->ec[idx].rt_state == RT_STATE_RUNNING); 668 669 /* 670 * Perform a synchronous exit if the partition was initialising. The 671 * state is updated after the exit. 672 */ 673 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 674 if (sp->runtime_el == S_EL0) { 675 spin_unlock(&sp->rt_state_lock); 676 } 677 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 678 /* Should not get here */ 679 panic(); 680 } 681 682 /* Update the state of the SP execution context. */ 683 sp->ec[idx].rt_state = RT_STATE_WAITING; 684 685 /* Resume normal world if a secure interrupt was handled. */ 686 if (sp->ec[idx].rt_model == RT_MODEL_INTR) { 687 if (sp->runtime_el == S_EL0) { 688 spin_unlock(&sp->rt_state_lock); 689 } 690 691 return spmd_smc_switch_state(FFA_NORMAL_WORLD_RESUME, secure_origin, 692 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 693 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 694 handle, flags, sp->ffa_version); 695 } 696 697 /* Protect the runtime state of a S-EL0 SP with a lock. */ 698 if (sp->runtime_el == S_EL0) { 699 spin_unlock(&sp->rt_state_lock); 700 } 701 702 /* Forward the response to the Normal world. */ 703 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 704 handle, cookie, flags, FFA_NWD_ID, sp->ffa_version); 705 } 706 707 static uint64_t ffa_error_handler(uint32_t smc_fid, 708 bool secure_origin, 709 uint64_t x1, 710 uint64_t x2, 711 uint64_t x3, 712 uint64_t x4, 713 void *cookie, 714 void *handle, 715 uint64_t flags) 716 { 717 struct secure_partition_desc *sp; 718 unsigned int idx; 719 uint16_t dst_id = ffa_endpoint_destination(x1); 720 bool cancel_dir_req = false; 721 722 /* Check that the response did not originate from the Normal world. */ 723 if (!secure_origin) { 724 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 725 } 726 727 /* Get the descriptor of the SP that invoked FFA_ERROR. */ 728 sp = spmc_get_current_sp_ctx(); 729 if (sp == NULL) { 730 return spmc_ffa_error_return(handle, 731 FFA_ERROR_INVALID_PARAMETER); 732 } 733 734 /* Get the execution context of the SP that invoked FFA_ERROR. */ 735 idx = get_ec_index(sp); 736 737 /* 738 * We only expect FFA_ERROR to be received during SP initialisation 739 * otherwise this is an invalid call. 740 */ 741 if (sp->ec[idx].rt_model == RT_MODEL_INIT) { 742 ERROR("SP 0x%x failed to initialize.\n", sp->sp_id); 743 spmc_sp_synchronous_exit(&sp->ec[idx], x2); 744 /* Should not get here. */ 745 panic(); 746 } 747 748 if (sp->runtime_el == S_EL0) { 749 spin_lock(&sp->rt_state_lock); 750 } 751 752 if (sp->ec[idx].rt_state == RT_STATE_RUNNING && 753 sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) { 754 sp->ec[idx].rt_state = RT_STATE_WAITING; 755 sp->ec[idx].dir_req_origin_id = INV_SP_ID; 756 sp->ec[idx].dir_req_funcid = 0x00; 757 cancel_dir_req = true; 758 } 759 760 if (sp->runtime_el == S_EL0) { 761 spin_unlock(&sp->rt_state_lock); 762 } 763 764 if (cancel_dir_req) { 765 if (dst_id == FFA_SPMC_ID) { 766 spmc_sp_synchronous_exit(&sp->ec[idx], x4); 767 /* Should not get here. */ 768 panic(); 769 } else 770 return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4, 771 handle, cookie, flags, dst_id, sp->ffa_version); 772 } 773 774 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 775 } 776 777 static uint64_t ffa_version_handler(uint32_t smc_fid, 778 bool secure_origin, 779 uint64_t x1, 780 uint64_t x2, 781 uint64_t x3, 782 uint64_t x4, 783 void *cookie, 784 void *handle, 785 uint64_t flags) 786 { 787 uint32_t requested_version = x1 & FFA_VERSION_MASK; 788 789 if (requested_version & FFA_VERSION_BIT31_MASK) { 790 /* Invalid encoding, return an error. */ 791 SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED); 792 /* Execution stops here. */ 793 } 794 795 /* Determine the caller to store the requested version. */ 796 if (secure_origin) { 797 /* 798 * Ensure that the SP is reporting the same version as 799 * specified in its manifest. If these do not match there is 800 * something wrong with the SP. 801 * TODO: Should we abort the SP? For now assert this is not 802 * case. 803 */ 804 assert(requested_version == 805 spmc_get_current_sp_ctx()->ffa_version); 806 } else { 807 /* 808 * If this is called by the normal world, record this 809 * information in its descriptor. 810 */ 811 spmc_get_hyp_ctx()->ffa_version = requested_version; 812 } 813 814 SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_SPMC_MAJOR, 815 FFA_VERSION_SPMC_MINOR)); 816 } 817 818 static uint64_t rxtx_map_handler(uint32_t smc_fid, 819 bool secure_origin, 820 uint64_t x1, 821 uint64_t x2, 822 uint64_t x3, 823 uint64_t x4, 824 void *cookie, 825 void *handle, 826 uint64_t flags) 827 { 828 int ret; 829 uint32_t error_code; 830 uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS; 831 struct mailbox *mbox; 832 uintptr_t tx_address = x1; 833 uintptr_t rx_address = x2; 834 uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */ 835 uint32_t buf_size = page_count * FFA_PAGE_SIZE; 836 837 /* 838 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 839 * indirect messaging with SPs. Check if the Hypervisor has invoked this 840 * ABI on behalf of a VM and reject it if this is the case. 841 */ 842 if (tx_address == 0 || rx_address == 0) { 843 WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n"); 844 return spmc_ffa_error_return(handle, 845 FFA_ERROR_INVALID_PARAMETER); 846 } 847 848 /* Ensure the specified buffers are not the same. */ 849 if (tx_address == rx_address) { 850 WARN("TX Buffer must not be the same as RX Buffer.\n"); 851 return spmc_ffa_error_return(handle, 852 FFA_ERROR_INVALID_PARAMETER); 853 } 854 855 /* Ensure the buffer size is not 0. */ 856 if (buf_size == 0U) { 857 WARN("Buffer size must not be 0\n"); 858 return spmc_ffa_error_return(handle, 859 FFA_ERROR_INVALID_PARAMETER); 860 } 861 862 /* 863 * Ensure the buffer size is a multiple of the translation granule size 864 * in TF-A. 865 */ 866 if (buf_size % PAGE_SIZE != 0U) { 867 WARN("Buffer size must be aligned to translation granule.\n"); 868 return spmc_ffa_error_return(handle, 869 FFA_ERROR_INVALID_PARAMETER); 870 } 871 872 /* Obtain the RX/TX buffer pair descriptor. */ 873 mbox = spmc_get_mbox_desc(secure_origin); 874 875 spin_lock(&mbox->lock); 876 877 /* Check if buffers have already been mapped. */ 878 if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) { 879 WARN("RX/TX Buffers already mapped (%p/%p)\n", 880 (void *) mbox->rx_buffer, (void *)mbox->tx_buffer); 881 error_code = FFA_ERROR_DENIED; 882 goto err; 883 } 884 885 /* memmap the TX buffer as read only. */ 886 ret = mmap_add_dynamic_region(tx_address, /* PA */ 887 tx_address, /* VA */ 888 buf_size, /* size */ 889 mem_atts | MT_RO_DATA); /* attrs */ 890 if (ret != 0) { 891 /* Return the correct error code. */ 892 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 893 FFA_ERROR_INVALID_PARAMETER; 894 WARN("Unable to map TX buffer: %d\n", error_code); 895 goto err; 896 } 897 898 /* memmap the RX buffer as read write. */ 899 ret = mmap_add_dynamic_region(rx_address, /* PA */ 900 rx_address, /* VA */ 901 buf_size, /* size */ 902 mem_atts | MT_RW_DATA); /* attrs */ 903 904 if (ret != 0) { 905 error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY : 906 FFA_ERROR_INVALID_PARAMETER; 907 WARN("Unable to map RX buffer: %d\n", error_code); 908 /* Unmap the TX buffer again. */ 909 mmap_remove_dynamic_region(tx_address, buf_size); 910 goto err; 911 } 912 913 mbox->tx_buffer = (void *) tx_address; 914 mbox->rx_buffer = (void *) rx_address; 915 mbox->rxtx_page_count = page_count; 916 spin_unlock(&mbox->lock); 917 918 SMC_RET1(handle, FFA_SUCCESS_SMC32); 919 /* Execution stops here. */ 920 err: 921 spin_unlock(&mbox->lock); 922 return spmc_ffa_error_return(handle, error_code); 923 } 924 925 static uint64_t rxtx_unmap_handler(uint32_t smc_fid, 926 bool secure_origin, 927 uint64_t x1, 928 uint64_t x2, 929 uint64_t x3, 930 uint64_t x4, 931 void *cookie, 932 void *handle, 933 uint64_t flags) 934 { 935 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 936 uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 937 938 /* 939 * The SPMC does not support mapping of VM RX/TX pairs to facilitate 940 * indirect messaging with SPs. Check if the Hypervisor has invoked this 941 * ABI on behalf of a VM and reject it if this is the case. 942 */ 943 if (x1 != 0UL) { 944 return spmc_ffa_error_return(handle, 945 FFA_ERROR_INVALID_PARAMETER); 946 } 947 948 spin_lock(&mbox->lock); 949 950 /* Check if buffers are currently mapped. */ 951 if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) { 952 spin_unlock(&mbox->lock); 953 return spmc_ffa_error_return(handle, 954 FFA_ERROR_INVALID_PARAMETER); 955 } 956 957 /* Unmap RX Buffer */ 958 if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer, 959 buf_size) != 0) { 960 WARN("Unable to unmap RX buffer!\n"); 961 } 962 963 mbox->rx_buffer = 0; 964 965 /* Unmap TX Buffer */ 966 if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer, 967 buf_size) != 0) { 968 WARN("Unable to unmap TX buffer!\n"); 969 } 970 971 mbox->tx_buffer = 0; 972 mbox->rxtx_page_count = 0; 973 974 spin_unlock(&mbox->lock); 975 SMC_RET1(handle, FFA_SUCCESS_SMC32); 976 } 977 978 /* 979 * Helper function to populate the properties field of a Partition Info Get 980 * descriptor. 981 */ 982 static uint32_t 983 partition_info_get_populate_properties(uint32_t sp_properties, 984 enum sp_execution_state sp_ec_state) 985 { 986 uint32_t properties = sp_properties; 987 uint32_t ec_state; 988 989 /* Determine the execution state of the SP. */ 990 ec_state = sp_ec_state == SP_STATE_AARCH64 ? 991 FFA_PARTITION_INFO_GET_AARCH64_STATE : 992 FFA_PARTITION_INFO_GET_AARCH32_STATE; 993 994 properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT; 995 996 return properties; 997 } 998 999 /* 1000 * Collate the partition information in a v1.1 partition information 1001 * descriptor format, this will be converter later if required. 1002 */ 1003 static int partition_info_get_handler_v1_1(uint32_t *uuid, 1004 struct ffa_partition_info_v1_1 1005 *partitions, 1006 uint32_t max_partitions, 1007 uint32_t *partition_count) 1008 { 1009 uint32_t index; 1010 struct ffa_partition_info_v1_1 *desc; 1011 bool null_uuid = is_null_uuid(uuid); 1012 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 1013 1014 /* Deal with Logical Partitions. */ 1015 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 1016 if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) { 1017 /* Found a matching UUID, populate appropriately. */ 1018 if (*partition_count >= max_partitions) { 1019 return FFA_ERROR_NO_MEMORY; 1020 } 1021 1022 desc = &partitions[*partition_count]; 1023 desc->ep_id = el3_lp_descs[index].sp_id; 1024 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 1025 /* LSPs must be AArch64. */ 1026 desc->properties = 1027 partition_info_get_populate_properties( 1028 el3_lp_descs[index].properties, 1029 SP_STATE_AARCH64); 1030 1031 if (null_uuid) { 1032 copy_uuid(desc->uuid, el3_lp_descs[index].uuid); 1033 } 1034 (*partition_count)++; 1035 } 1036 } 1037 1038 /* Deal with physical SP's. */ 1039 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 1040 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 1041 /* Found a matching UUID, populate appropriately. */ 1042 if (*partition_count >= max_partitions) { 1043 return FFA_ERROR_NO_MEMORY; 1044 } 1045 1046 desc = &partitions[*partition_count]; 1047 desc->ep_id = sp_desc[index].sp_id; 1048 /* 1049 * Execution context count must match No. cores for 1050 * S-EL1 SPs. 1051 */ 1052 desc->execution_ctx_count = PLATFORM_CORE_COUNT; 1053 desc->properties = 1054 partition_info_get_populate_properties( 1055 sp_desc[index].properties, 1056 sp_desc[index].execution_state); 1057 1058 if (null_uuid) { 1059 copy_uuid(desc->uuid, sp_desc[index].uuid); 1060 } 1061 (*partition_count)++; 1062 } 1063 } 1064 return 0; 1065 } 1066 1067 /* 1068 * Handle the case where that caller only wants the count of partitions 1069 * matching a given UUID and does not want the corresponding descriptors 1070 * populated. 1071 */ 1072 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid) 1073 { 1074 uint32_t index = 0; 1075 uint32_t partition_count = 0; 1076 bool null_uuid = is_null_uuid(uuid); 1077 struct el3_lp_desc *el3_lp_descs = get_el3_lp_array(); 1078 1079 /* Deal with Logical Partitions. */ 1080 for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) { 1081 if (null_uuid || 1082 uuid_match(uuid, el3_lp_descs[index].uuid)) { 1083 (partition_count)++; 1084 } 1085 } 1086 1087 /* Deal with physical SP's. */ 1088 for (index = 0U; index < SECURE_PARTITION_COUNT; index++) { 1089 if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) { 1090 (partition_count)++; 1091 } 1092 } 1093 return partition_count; 1094 } 1095 1096 /* 1097 * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate 1098 * the corresponding descriptor format from the v1.1 descriptor array. 1099 */ 1100 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1 1101 *partitions, 1102 struct mailbox *mbox, 1103 int partition_count) 1104 { 1105 uint32_t index; 1106 uint32_t buf_size; 1107 uint32_t descriptor_size; 1108 struct ffa_partition_info_v1_0 *v1_0_partitions = 1109 (struct ffa_partition_info_v1_0 *) mbox->rx_buffer; 1110 1111 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE; 1112 descriptor_size = partition_count * 1113 sizeof(struct ffa_partition_info_v1_0); 1114 1115 if (descriptor_size > buf_size) { 1116 return FFA_ERROR_NO_MEMORY; 1117 } 1118 1119 for (index = 0U; index < partition_count; index++) { 1120 v1_0_partitions[index].ep_id = partitions[index].ep_id; 1121 v1_0_partitions[index].execution_ctx_count = 1122 partitions[index].execution_ctx_count; 1123 /* Only report v1.0 properties. */ 1124 v1_0_partitions[index].properties = 1125 (partitions[index].properties & 1126 FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK); 1127 } 1128 return 0; 1129 } 1130 1131 /* 1132 * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and 1133 * v1.0 implementations. 1134 */ 1135 static uint64_t partition_info_get_handler(uint32_t smc_fid, 1136 bool secure_origin, 1137 uint64_t x1, 1138 uint64_t x2, 1139 uint64_t x3, 1140 uint64_t x4, 1141 void *cookie, 1142 void *handle, 1143 uint64_t flags) 1144 { 1145 int ret; 1146 uint32_t partition_count = 0; 1147 uint32_t size = 0; 1148 uint32_t ffa_version = get_partition_ffa_version(secure_origin); 1149 struct mailbox *mbox; 1150 uint64_t info_get_flags; 1151 bool count_only; 1152 uint32_t uuid[4]; 1153 1154 uuid[0] = x1; 1155 uuid[1] = x2; 1156 uuid[2] = x3; 1157 uuid[3] = x4; 1158 1159 /* Determine if the Partition descriptors should be populated. */ 1160 info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5); 1161 count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK); 1162 1163 /* Handle the case where we don't need to populate the descriptors. */ 1164 if (count_only) { 1165 partition_count = partition_info_get_handler_count_only(uuid); 1166 if (partition_count == 0) { 1167 return spmc_ffa_error_return(handle, 1168 FFA_ERROR_INVALID_PARAMETER); 1169 } 1170 } else { 1171 struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS]; 1172 1173 /* 1174 * Handle the case where the partition descriptors are required, 1175 * check we have the buffers available and populate the 1176 * appropriate structure version. 1177 */ 1178 1179 /* Obtain the v1.1 format of the descriptors. */ 1180 ret = partition_info_get_handler_v1_1(uuid, partitions, 1181 MAX_SP_LP_PARTITIONS, 1182 &partition_count); 1183 1184 /* Check if an error occurred during discovery. */ 1185 if (ret != 0) { 1186 goto err; 1187 } 1188 1189 /* If we didn't find any matches the UUID is unknown. */ 1190 if (partition_count == 0) { 1191 ret = FFA_ERROR_INVALID_PARAMETER; 1192 goto err; 1193 } 1194 1195 /* Obtain the partition mailbox RX/TX buffer pair descriptor. */ 1196 mbox = spmc_get_mbox_desc(secure_origin); 1197 1198 /* 1199 * If the caller has not bothered registering its RX/TX pair 1200 * then return an error code. 1201 */ 1202 spin_lock(&mbox->lock); 1203 if (mbox->rx_buffer == NULL) { 1204 ret = FFA_ERROR_BUSY; 1205 goto err_unlock; 1206 } 1207 1208 /* Ensure the RX buffer is currently free. */ 1209 if (mbox->state != MAILBOX_STATE_EMPTY) { 1210 ret = FFA_ERROR_BUSY; 1211 goto err_unlock; 1212 } 1213 1214 /* Zero the RX buffer before populating. */ 1215 (void)memset(mbox->rx_buffer, 0, 1216 mbox->rxtx_page_count * FFA_PAGE_SIZE); 1217 1218 /* 1219 * Depending on the FF-A version of the requesting partition 1220 * we may need to convert to a v1.0 format otherwise we can copy 1221 * directly. 1222 */ 1223 if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) { 1224 ret = partition_info_populate_v1_0(partitions, 1225 mbox, 1226 partition_count); 1227 if (ret != 0) { 1228 goto err_unlock; 1229 } 1230 } else { 1231 uint32_t buf_size = mbox->rxtx_page_count * 1232 FFA_PAGE_SIZE; 1233 1234 /* Ensure the descriptor will fit in the buffer. */ 1235 size = sizeof(struct ffa_partition_info_v1_1); 1236 if (partition_count * size > buf_size) { 1237 ret = FFA_ERROR_NO_MEMORY; 1238 goto err_unlock; 1239 } 1240 memcpy(mbox->rx_buffer, partitions, 1241 partition_count * size); 1242 } 1243 1244 mbox->state = MAILBOX_STATE_FULL; 1245 spin_unlock(&mbox->lock); 1246 } 1247 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size); 1248 1249 err_unlock: 1250 spin_unlock(&mbox->lock); 1251 err: 1252 return spmc_ffa_error_return(handle, ret); 1253 } 1254 1255 static uint64_t ffa_feature_success(void *handle, uint32_t arg2) 1256 { 1257 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2); 1258 } 1259 1260 static uint64_t ffa_features_retrieve_request(bool secure_origin, 1261 uint32_t input_properties, 1262 void *handle) 1263 { 1264 /* 1265 * If we're called by the normal world we don't support any 1266 * additional features. 1267 */ 1268 if (!secure_origin) { 1269 if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) { 1270 return spmc_ffa_error_return(handle, 1271 FFA_ERROR_NOT_SUPPORTED); 1272 } 1273 1274 } else { 1275 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 1276 /* 1277 * If v1.1 the NS bit must be set otherwise it is an invalid 1278 * call. If v1.0 check and store whether the SP has requested 1279 * the use of the NS bit. 1280 */ 1281 if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) { 1282 if ((input_properties & 1283 FFA_FEATURES_RET_REQ_NS_BIT) == 0U) { 1284 return spmc_ffa_error_return(handle, 1285 FFA_ERROR_NOT_SUPPORTED); 1286 } 1287 return ffa_feature_success(handle, 1288 FFA_FEATURES_RET_REQ_NS_BIT); 1289 } else { 1290 sp->ns_bit_requested = (input_properties & 1291 FFA_FEATURES_RET_REQ_NS_BIT) != 1292 0U; 1293 } 1294 if (sp->ns_bit_requested) { 1295 return ffa_feature_success(handle, 1296 FFA_FEATURES_RET_REQ_NS_BIT); 1297 } 1298 } 1299 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1300 } 1301 1302 static uint64_t ffa_features_handler(uint32_t smc_fid, 1303 bool secure_origin, 1304 uint64_t x1, 1305 uint64_t x2, 1306 uint64_t x3, 1307 uint64_t x4, 1308 void *cookie, 1309 void *handle, 1310 uint64_t flags) 1311 { 1312 uint32_t function_id = (uint32_t) x1; 1313 uint32_t input_properties = (uint32_t) x2; 1314 1315 /* Check if a Feature ID was requested. */ 1316 if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) { 1317 /* We currently don't support any additional features. */ 1318 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1319 } 1320 1321 /* 1322 * Handle the cases where we have separate handlers due to additional 1323 * properties. 1324 */ 1325 switch (function_id) { 1326 case FFA_MEM_RETRIEVE_REQ_SMC32: 1327 case FFA_MEM_RETRIEVE_REQ_SMC64: 1328 return ffa_features_retrieve_request(secure_origin, 1329 input_properties, 1330 handle); 1331 } 1332 1333 /* 1334 * We don't currently support additional input properties for these 1335 * other ABIs therefore ensure this value is set to 0. 1336 */ 1337 if (input_properties != 0U) { 1338 return spmc_ffa_error_return(handle, 1339 FFA_ERROR_NOT_SUPPORTED); 1340 } 1341 1342 /* Report if any other FF-A ABI is supported. */ 1343 switch (function_id) { 1344 /* Supported features from both worlds. */ 1345 case FFA_ERROR: 1346 case FFA_SUCCESS_SMC32: 1347 case FFA_INTERRUPT: 1348 case FFA_SPM_ID_GET: 1349 case FFA_ID_GET: 1350 case FFA_FEATURES: 1351 case FFA_VERSION: 1352 case FFA_RX_RELEASE: 1353 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 1354 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 1355 case FFA_MSG_SEND_DIRECT_REQ2_SMC64: 1356 case FFA_PARTITION_INFO_GET: 1357 case FFA_RXTX_MAP_SMC32: 1358 case FFA_RXTX_MAP_SMC64: 1359 case FFA_RXTX_UNMAP: 1360 case FFA_MEM_FRAG_TX: 1361 case FFA_MSG_RUN: 1362 1363 /* 1364 * We are relying on the fact that the other registers 1365 * will be set to 0 as these values align with the 1366 * currently implemented features of the SPMC. If this 1367 * changes this function must be extended to handle 1368 * reporting the additional functionality. 1369 */ 1370 1371 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1372 /* Execution stops here. */ 1373 1374 /* Supported ABIs only from the secure world. */ 1375 case FFA_MEM_PERM_GET_SMC32: 1376 case FFA_MEM_PERM_GET_SMC64: 1377 case FFA_MEM_PERM_SET_SMC32: 1378 case FFA_MEM_PERM_SET_SMC64: 1379 /* these ABIs are only supported from S-EL0 SPs */ 1380 #if !(SPMC_AT_EL3_SEL0_SP) 1381 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1382 #endif 1383 /* fall through */ 1384 1385 case FFA_SECONDARY_EP_REGISTER_SMC64: 1386 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 1387 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 1388 case FFA_MSG_SEND_DIRECT_RESP2_SMC64: 1389 case FFA_MEM_RELINQUISH: 1390 case FFA_MSG_WAIT: 1391 case FFA_CONSOLE_LOG_SMC32: 1392 case FFA_CONSOLE_LOG_SMC64: 1393 if (!secure_origin) { 1394 return spmc_ffa_error_return(handle, 1395 FFA_ERROR_NOT_SUPPORTED); 1396 } 1397 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1398 /* Execution stops here. */ 1399 1400 /* Supported features only from the normal world. */ 1401 case FFA_MEM_SHARE_SMC32: 1402 case FFA_MEM_SHARE_SMC64: 1403 case FFA_MEM_LEND_SMC32: 1404 case FFA_MEM_LEND_SMC64: 1405 case FFA_MEM_RECLAIM: 1406 case FFA_MEM_FRAG_RX: 1407 1408 if (secure_origin) { 1409 return spmc_ffa_error_return(handle, 1410 FFA_ERROR_NOT_SUPPORTED); 1411 } 1412 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1413 /* Execution stops here. */ 1414 1415 default: 1416 return spmc_ffa_error_return(handle, 1417 FFA_ERROR_NOT_SUPPORTED); 1418 } 1419 } 1420 1421 static uint64_t ffa_id_get_handler(uint32_t smc_fid, 1422 bool secure_origin, 1423 uint64_t x1, 1424 uint64_t x2, 1425 uint64_t x3, 1426 uint64_t x4, 1427 void *cookie, 1428 void *handle, 1429 uint64_t flags) 1430 { 1431 if (secure_origin) { 1432 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1433 spmc_get_current_sp_ctx()->sp_id); 1434 } else { 1435 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, 1436 spmc_get_hyp_ctx()->ns_ep_id); 1437 } 1438 } 1439 1440 /* 1441 * Enable an SP to query the ID assigned to the SPMC. 1442 */ 1443 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid, 1444 bool secure_origin, 1445 uint64_t x1, 1446 uint64_t x2, 1447 uint64_t x3, 1448 uint64_t x4, 1449 void *cookie, 1450 void *handle, 1451 uint64_t flags) 1452 { 1453 assert(x1 == 0UL); 1454 assert(x2 == 0UL); 1455 assert(x3 == 0UL); 1456 assert(x4 == 0UL); 1457 assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL); 1458 assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL); 1459 assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL); 1460 1461 SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID); 1462 } 1463 1464 static uint64_t ffa_run_handler(uint32_t smc_fid, 1465 bool secure_origin, 1466 uint64_t x1, 1467 uint64_t x2, 1468 uint64_t x3, 1469 uint64_t x4, 1470 void *cookie, 1471 void *handle, 1472 uint64_t flags) 1473 { 1474 struct secure_partition_desc *sp; 1475 uint16_t target_id = FFA_RUN_EP_ID(x1); 1476 uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1); 1477 unsigned int idx; 1478 unsigned int *rt_state; 1479 unsigned int *rt_model; 1480 1481 /* Can only be called from the normal world. */ 1482 if (secure_origin) { 1483 ERROR("FFA_RUN can only be called from NWd.\n"); 1484 return spmc_ffa_error_return(handle, 1485 FFA_ERROR_INVALID_PARAMETER); 1486 } 1487 1488 /* Cannot run a Normal world partition. */ 1489 if (ffa_is_normal_world_id(target_id)) { 1490 ERROR("Cannot run a NWd partition (0x%x).\n", target_id); 1491 return spmc_ffa_error_return(handle, 1492 FFA_ERROR_INVALID_PARAMETER); 1493 } 1494 1495 /* Check that the target SP exists. */ 1496 sp = spmc_get_sp_ctx(target_id); 1497 if (sp == NULL) { 1498 ERROR("Unknown partition ID (0x%x).\n", target_id); 1499 return spmc_ffa_error_return(handle, 1500 FFA_ERROR_INVALID_PARAMETER); 1501 } 1502 1503 idx = get_ec_index(sp); 1504 1505 if (idx != vcpu_id) { 1506 ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id); 1507 return spmc_ffa_error_return(handle, 1508 FFA_ERROR_INVALID_PARAMETER); 1509 } 1510 if (sp->runtime_el == S_EL0) { 1511 spin_lock(&sp->rt_state_lock); 1512 } 1513 rt_state = &((sp->ec[idx]).rt_state); 1514 rt_model = &((sp->ec[idx]).rt_model); 1515 if (*rt_state == RT_STATE_RUNNING) { 1516 if (sp->runtime_el == S_EL0) { 1517 spin_unlock(&sp->rt_state_lock); 1518 } 1519 ERROR("Partition (0x%x) is already running.\n", target_id); 1520 return spmc_ffa_error_return(handle, FFA_ERROR_BUSY); 1521 } 1522 1523 /* 1524 * Sanity check that if the execution context was not waiting then it 1525 * was either in the direct request or the run partition runtime model. 1526 */ 1527 if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) { 1528 assert(*rt_model == RT_MODEL_RUN || 1529 *rt_model == RT_MODEL_DIR_REQ); 1530 } 1531 1532 /* 1533 * If the context was waiting then update the partition runtime model. 1534 */ 1535 if (*rt_state == RT_STATE_WAITING) { 1536 *rt_model = RT_MODEL_RUN; 1537 } 1538 1539 /* 1540 * Forward the request to the correct SP vCPU after updating 1541 * its state. 1542 */ 1543 *rt_state = RT_STATE_RUNNING; 1544 1545 if (sp->runtime_el == S_EL0) { 1546 spin_unlock(&sp->rt_state_lock); 1547 } 1548 1549 return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0, 1550 handle, cookie, flags, target_id, sp->ffa_version); 1551 } 1552 1553 static uint64_t rx_release_handler(uint32_t smc_fid, 1554 bool secure_origin, 1555 uint64_t x1, 1556 uint64_t x2, 1557 uint64_t x3, 1558 uint64_t x4, 1559 void *cookie, 1560 void *handle, 1561 uint64_t flags) 1562 { 1563 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin); 1564 1565 spin_lock(&mbox->lock); 1566 1567 if (mbox->state != MAILBOX_STATE_FULL) { 1568 spin_unlock(&mbox->lock); 1569 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1570 } 1571 1572 mbox->state = MAILBOX_STATE_EMPTY; 1573 spin_unlock(&mbox->lock); 1574 1575 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1576 } 1577 1578 static uint64_t spmc_ffa_console_log(uint32_t smc_fid, 1579 bool secure_origin, 1580 uint64_t x1, 1581 uint64_t x2, 1582 uint64_t x3, 1583 uint64_t x4, 1584 void *cookie, 1585 void *handle, 1586 uint64_t flags) 1587 { 1588 /* Maximum number of characters is 48: 6 registers of 8 bytes each. */ 1589 char chars[48] = {0}; 1590 size_t chars_max; 1591 size_t chars_count = x1; 1592 1593 /* Does not support request from Nwd. */ 1594 if (!secure_origin) { 1595 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1596 } 1597 1598 assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64); 1599 if (smc_fid == FFA_CONSOLE_LOG_SMC32) { 1600 uint32_t *registers = (uint32_t *)chars; 1601 registers[0] = (uint32_t)x2; 1602 registers[1] = (uint32_t)x3; 1603 registers[2] = (uint32_t)x4; 1604 registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5); 1605 registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6); 1606 registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7); 1607 chars_max = 6 * sizeof(uint32_t); 1608 } else { 1609 uint64_t *registers = (uint64_t *)chars; 1610 registers[0] = x2; 1611 registers[1] = x3; 1612 registers[2] = x4; 1613 registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5); 1614 registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6); 1615 registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7); 1616 chars_max = 6 * sizeof(uint64_t); 1617 } 1618 1619 if ((chars_count == 0) || (chars_count > chars_max)) { 1620 return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER); 1621 } 1622 1623 for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) { 1624 putchar(chars[i]); 1625 } 1626 1627 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1628 } 1629 1630 /* 1631 * Perform initial validation on the provided secondary entry point. 1632 * For now ensure it does not lie within the BL31 Image or the SP's 1633 * RX/TX buffers as these are mapped within EL3. 1634 * TODO: perform validation for additional invalid memory regions. 1635 */ 1636 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp) 1637 { 1638 struct mailbox *mb; 1639 uintptr_t buffer_size; 1640 uintptr_t sp_rx_buffer; 1641 uintptr_t sp_tx_buffer; 1642 uintptr_t sp_rx_buffer_limit; 1643 uintptr_t sp_tx_buffer_limit; 1644 1645 mb = &sp->mailbox; 1646 buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE); 1647 sp_rx_buffer = (uintptr_t) mb->rx_buffer; 1648 sp_tx_buffer = (uintptr_t) mb->tx_buffer; 1649 sp_rx_buffer_limit = sp_rx_buffer + buffer_size; 1650 sp_tx_buffer_limit = sp_tx_buffer + buffer_size; 1651 1652 /* 1653 * Check if the entry point lies within BL31, or the 1654 * SP's RX or TX buffer. 1655 */ 1656 if ((ep >= BL31_BASE && ep < BL31_LIMIT) || 1657 (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) || 1658 (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) { 1659 return -EINVAL; 1660 } 1661 return 0; 1662 } 1663 1664 /******************************************************************************* 1665 * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to 1666 * register an entry point for initialization during a secondary cold boot. 1667 ******************************************************************************/ 1668 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid, 1669 bool secure_origin, 1670 uint64_t x1, 1671 uint64_t x2, 1672 uint64_t x3, 1673 uint64_t x4, 1674 void *cookie, 1675 void *handle, 1676 uint64_t flags) 1677 { 1678 struct secure_partition_desc *sp; 1679 struct sp_exec_ctx *sp_ctx; 1680 1681 /* This request cannot originate from the Normal world. */ 1682 if (!secure_origin) { 1683 WARN("%s: Can only be called from SWd.\n", __func__); 1684 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1685 } 1686 1687 /* Get the context of the current SP. */ 1688 sp = spmc_get_current_sp_ctx(); 1689 if (sp == NULL) { 1690 WARN("%s: Cannot find SP context.\n", __func__); 1691 return spmc_ffa_error_return(handle, 1692 FFA_ERROR_INVALID_PARAMETER); 1693 } 1694 1695 /* Only an S-EL1 SP should be invoking this ABI. */ 1696 if (sp->runtime_el != S_EL1) { 1697 WARN("%s: Can only be called for a S-EL1 SP.\n", __func__); 1698 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1699 } 1700 1701 /* Ensure the SP is in its initialization state. */ 1702 sp_ctx = spmc_get_sp_ec(sp); 1703 if (sp_ctx->rt_model != RT_MODEL_INIT) { 1704 WARN("%s: Can only be called during SP initialization.\n", 1705 __func__); 1706 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1707 } 1708 1709 /* Perform initial validation of the secondary entry point. */ 1710 if (validate_secondary_ep(x1, sp)) { 1711 WARN("%s: Invalid entry point provided (0x%lx).\n", 1712 __func__, x1); 1713 return spmc_ffa_error_return(handle, 1714 FFA_ERROR_INVALID_PARAMETER); 1715 } 1716 1717 /* 1718 * Update the secondary entrypoint in SP context. 1719 * We don't need a lock here as during partition initialization there 1720 * will only be a single core online. 1721 */ 1722 sp->secondary_ep = x1; 1723 VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep); 1724 1725 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1726 } 1727 1728 /******************************************************************************* 1729 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1730 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1731 * function converts a permission value from the FF-A format to the mmap_attr_t 1732 * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and 1733 * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are 1734 * ignored by the function xlat_change_mem_attributes_ctx(). 1735 ******************************************************************************/ 1736 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms) 1737 { 1738 unsigned int tf_attr = 0U; 1739 unsigned int access; 1740 1741 /* Deal with data access permissions first. */ 1742 access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT; 1743 1744 switch (access) { 1745 case FFA_MEM_PERM_DATA_RW: 1746 /* Return 0 if the execute is set with RW. */ 1747 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) { 1748 tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER; 1749 } 1750 break; 1751 1752 case FFA_MEM_PERM_DATA_RO: 1753 tf_attr |= MT_RO | MT_USER; 1754 /* Deal with the instruction access permissions next. */ 1755 if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) { 1756 tf_attr |= MT_EXECUTE; 1757 } else { 1758 tf_attr |= MT_EXECUTE_NEVER; 1759 } 1760 break; 1761 1762 case FFA_MEM_PERM_DATA_NA: 1763 default: 1764 return tf_attr; 1765 } 1766 1767 return tf_attr; 1768 } 1769 1770 /******************************************************************************* 1771 * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP 1772 ******************************************************************************/ 1773 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid, 1774 bool secure_origin, 1775 uint64_t x1, 1776 uint64_t x2, 1777 uint64_t x3, 1778 uint64_t x4, 1779 void *cookie, 1780 void *handle, 1781 uint64_t flags) 1782 { 1783 struct secure_partition_desc *sp; 1784 unsigned int idx; 1785 uintptr_t base_va = (uintptr_t) x1; 1786 size_t size = (size_t)(x2 * PAGE_SIZE); 1787 uint32_t tf_attr; 1788 int ret; 1789 1790 /* This request cannot originate from the Normal world. */ 1791 if (!secure_origin) { 1792 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1793 } 1794 1795 if (size == 0) { 1796 return spmc_ffa_error_return(handle, 1797 FFA_ERROR_INVALID_PARAMETER); 1798 } 1799 1800 /* Get the context of the current SP. */ 1801 sp = spmc_get_current_sp_ctx(); 1802 if (sp == NULL) { 1803 return spmc_ffa_error_return(handle, 1804 FFA_ERROR_INVALID_PARAMETER); 1805 } 1806 1807 /* A S-EL1 SP has no business invoking this ABI. */ 1808 if (sp->runtime_el == S_EL1) { 1809 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1810 } 1811 1812 if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) { 1813 return spmc_ffa_error_return(handle, 1814 FFA_ERROR_INVALID_PARAMETER); 1815 } 1816 1817 /* Get the execution context of the calling SP. */ 1818 idx = get_ec_index(sp); 1819 1820 /* 1821 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1822 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1823 * and can only be initialising on this cpu. 1824 */ 1825 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1826 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1827 } 1828 1829 VERBOSE("Setting memory permissions:\n"); 1830 VERBOSE(" Start address : 0x%lx\n", base_va); 1831 VERBOSE(" Number of pages: %lu (%zu bytes)\n", x2, size); 1832 VERBOSE(" Attributes : 0x%x\n", (uint32_t)x3); 1833 1834 /* Convert inbound permissions to TF-A permission attributes */ 1835 tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3); 1836 if (tf_attr == 0U) { 1837 return spmc_ffa_error_return(handle, 1838 FFA_ERROR_INVALID_PARAMETER); 1839 } 1840 1841 /* Request the change in permissions */ 1842 ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle, 1843 base_va, size, tf_attr); 1844 if (ret != 0) { 1845 return spmc_ffa_error_return(handle, 1846 FFA_ERROR_INVALID_PARAMETER); 1847 } 1848 1849 SMC_RET1(handle, FFA_SUCCESS_SMC32); 1850 } 1851 1852 /******************************************************************************* 1853 * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs 1854 * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This 1855 * function converts a permission value from the mmap_attr_t format to the FF-A 1856 * format. 1857 ******************************************************************************/ 1858 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr) 1859 { 1860 unsigned int perms = 0U; 1861 unsigned int data_access; 1862 1863 if ((attr & MT_USER) == 0) { 1864 /* No access from EL0. */ 1865 data_access = FFA_MEM_PERM_DATA_NA; 1866 } else { 1867 if ((attr & MT_RW) != 0) { 1868 data_access = FFA_MEM_PERM_DATA_RW; 1869 } else { 1870 data_access = FFA_MEM_PERM_DATA_RO; 1871 } 1872 } 1873 1874 perms |= (data_access & FFA_MEM_PERM_DATA_MASK) 1875 << FFA_MEM_PERM_DATA_SHIFT; 1876 1877 if ((attr & MT_EXECUTE_NEVER) != 0U) { 1878 perms |= FFA_MEM_PERM_INST_NON_EXEC; 1879 } 1880 1881 return perms; 1882 } 1883 1884 /******************************************************************************* 1885 * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP 1886 ******************************************************************************/ 1887 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid, 1888 bool secure_origin, 1889 uint64_t x1, 1890 uint64_t x2, 1891 uint64_t x3, 1892 uint64_t x4, 1893 void *cookie, 1894 void *handle, 1895 uint64_t flags) 1896 { 1897 struct secure_partition_desc *sp; 1898 unsigned int idx; 1899 uintptr_t base_va = (uintptr_t)x1; 1900 uint64_t max_page_count = x2 + 1; 1901 uint64_t page_count = 0; 1902 uint32_t base_page_attr = 0; 1903 uint32_t page_attr = 0; 1904 unsigned int table_level; 1905 int ret; 1906 1907 /* This request cannot originate from the Normal world. */ 1908 if (!secure_origin) { 1909 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 1910 } 1911 1912 /* Get the context of the current SP. */ 1913 sp = spmc_get_current_sp_ctx(); 1914 if (sp == NULL) { 1915 return spmc_ffa_error_return(handle, 1916 FFA_ERROR_INVALID_PARAMETER); 1917 } 1918 1919 /* A S-EL1 SP has no business invoking this ABI. */ 1920 if (sp->runtime_el == S_EL1) { 1921 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1922 } 1923 1924 /* Get the execution context of the calling SP. */ 1925 idx = get_ec_index(sp); 1926 1927 /* 1928 * Ensure that the S-EL0 SP is initialising itself. We do not need to 1929 * synchronise this operation through a spinlock since a S-EL0 SP is UP 1930 * and can only be initialising on this cpu. 1931 */ 1932 if (sp->ec[idx].rt_model != RT_MODEL_INIT) { 1933 return spmc_ffa_error_return(handle, FFA_ERROR_DENIED); 1934 } 1935 1936 base_va &= ~(PAGE_SIZE_MASK); 1937 1938 /* Request the permissions */ 1939 ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, 1940 &base_page_attr, &table_level); 1941 if (ret != 0) { 1942 return spmc_ffa_error_return(handle, 1943 FFA_ERROR_INVALID_PARAMETER); 1944 } 1945 1946 /* 1947 * Caculate how many pages in this block entry from base_va including 1948 * its page. 1949 */ 1950 page_count = ((XLAT_BLOCK_SIZE(table_level) - 1951 (base_va & XLAT_BLOCK_MASK(table_level))) >> PAGE_SIZE_SHIFT); 1952 base_va += XLAT_BLOCK_SIZE(table_level); 1953 1954 while ((page_count < max_page_count) && (base_va != 0x00)) { 1955 ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, 1956 &page_attr, &table_level); 1957 if (ret != 0) { 1958 return spmc_ffa_error_return(handle, 1959 FFA_ERROR_INVALID_PARAMETER); 1960 } 1961 1962 if (page_attr != base_page_attr) { 1963 break; 1964 } 1965 1966 base_va += XLAT_BLOCK_SIZE(table_level); 1967 page_count += (XLAT_BLOCK_SIZE(table_level) >> PAGE_SIZE_SHIFT); 1968 } 1969 1970 if (page_count > max_page_count) { 1971 page_count = max_page_count; 1972 } 1973 1974 /* Convert TF-A permission to FF-A permissions attributes. */ 1975 x2 = mmap_perm_to_ffa_perm(base_page_attr); 1976 1977 /* x3 should be page count - 1 */ 1978 SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, x2, --page_count); 1979 } 1980 1981 /******************************************************************************* 1982 * This function will parse the Secure Partition Manifest. From manifest, it 1983 * will fetch details for preparing Secure partition image context and secure 1984 * partition image boot arguments if any. 1985 ******************************************************************************/ 1986 static int sp_manifest_parse(void *sp_manifest, int offset, 1987 struct secure_partition_desc *sp, 1988 entry_point_info_t *ep_info, 1989 int32_t *boot_info_reg) 1990 { 1991 int32_t ret, node; 1992 uint32_t config_32; 1993 1994 /* 1995 * Look for the mandatory fields that are expected to be present in 1996 * the SP manifests. 1997 */ 1998 node = fdt_path_offset(sp_manifest, "/"); 1999 if (node < 0) { 2000 ERROR("Did not find root node.\n"); 2001 return node; 2002 } 2003 2004 ret = fdt_read_uint32_array(sp_manifest, node, "uuid", 2005 ARRAY_SIZE(sp->uuid), sp->uuid); 2006 if (ret != 0) { 2007 ERROR("Missing Secure Partition UUID.\n"); 2008 return ret; 2009 } 2010 2011 ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32); 2012 if (ret != 0) { 2013 ERROR("Missing SP Exception Level information.\n"); 2014 return ret; 2015 } 2016 2017 sp->runtime_el = config_32; 2018 2019 ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32); 2020 if (ret != 0) { 2021 ERROR("Missing Secure Partition FF-A Version.\n"); 2022 return ret; 2023 } 2024 2025 sp->ffa_version = config_32; 2026 2027 ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32); 2028 if (ret != 0) { 2029 ERROR("Missing Secure Partition Execution State.\n"); 2030 return ret; 2031 } 2032 2033 sp->execution_state = config_32; 2034 2035 ret = fdt_read_uint32(sp_manifest, node, 2036 "messaging-method", &config_32); 2037 if (ret != 0) { 2038 ERROR("Missing Secure Partition messaging method.\n"); 2039 return ret; 2040 } 2041 2042 /* Validate this entry, we currently only support direct messaging. */ 2043 if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV | 2044 FFA_PARTITION_DIRECT_REQ_SEND | 2045 FFA_PARTITION_DIRECT_REQ2_RECV | 2046 FFA_PARTITION_DIRECT_REQ2_SEND)) != 0U) { 2047 WARN("Invalid Secure Partition messaging method (0x%x)\n", 2048 config_32); 2049 return -EINVAL; 2050 } 2051 2052 sp->properties = config_32; 2053 2054 ret = fdt_read_uint32(sp_manifest, node, 2055 "execution-ctx-count", &config_32); 2056 2057 if (ret != 0) { 2058 ERROR("Missing SP Execution Context Count.\n"); 2059 return ret; 2060 } 2061 2062 /* 2063 * Ensure this field is set correctly in the manifest however 2064 * since this is currently a hardcoded value for S-EL1 partitions 2065 * we don't need to save it here, just validate. 2066 */ 2067 if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) { 2068 ERROR("SP Execution Context Count (%u) must be %u.\n", 2069 config_32, PLATFORM_CORE_COUNT); 2070 return -EINVAL; 2071 } 2072 2073 /* 2074 * Look for the optional fields that are expected to be present in 2075 * an SP manifest. 2076 */ 2077 ret = fdt_read_uint32(sp_manifest, node, "id", &config_32); 2078 if (ret != 0) { 2079 WARN("Missing Secure Partition ID.\n"); 2080 } else { 2081 if (!is_ffa_secure_id_valid(config_32)) { 2082 ERROR("Invalid Secure Partition ID (0x%x).\n", 2083 config_32); 2084 return -EINVAL; 2085 } 2086 sp->sp_id = config_32; 2087 } 2088 2089 ret = fdt_read_uint32(sp_manifest, node, 2090 "power-management-messages", &config_32); 2091 if (ret != 0) { 2092 WARN("Missing Power Management Messages entry.\n"); 2093 } else { 2094 if ((sp->runtime_el == S_EL0) && (config_32 != 0)) { 2095 ERROR("Power messages not supported for S-EL0 SP\n"); 2096 return -EINVAL; 2097 } 2098 2099 /* 2100 * Ensure only the currently supported power messages have 2101 * been requested. 2102 */ 2103 if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF | 2104 FFA_PM_MSG_SUB_CPU_SUSPEND | 2105 FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) { 2106 ERROR("Requested unsupported PM messages (%x)\n", 2107 config_32); 2108 return -EINVAL; 2109 } 2110 sp->pwr_mgmt_msgs = config_32; 2111 } 2112 2113 ret = fdt_read_uint32(sp_manifest, node, 2114 "gp-register-num", &config_32); 2115 if (ret != 0) { 2116 WARN("Missing boot information register.\n"); 2117 } else { 2118 /* Check if a register number between 0-3 is specified. */ 2119 if (config_32 < 4) { 2120 *boot_info_reg = config_32; 2121 } else { 2122 WARN("Incorrect boot information register (%u).\n", 2123 config_32); 2124 } 2125 } 2126 2127 ret = fdt_read_uint32(sp_manifest, node, 2128 "vm-availability-messages", &config_32); 2129 if (ret != 0) { 2130 WARN("Missing VM availability messaging.\n"); 2131 } else if ((sp->properties & FFA_PARTITION_DIRECT_REQ_RECV) == 0) { 2132 ERROR("VM availability messaging requested without " 2133 "direct message receive support.\n"); 2134 return -EINVAL; 2135 } else { 2136 /* Validate this entry. */ 2137 if ((config_32 & ~(FFA_VM_AVAILABILITY_CREATED | 2138 FFA_VM_AVAILABILITY_DESTROYED)) != 0U) { 2139 WARN("Invalid VM availability messaging (0x%x)\n", 2140 config_32); 2141 return -EINVAL; 2142 } 2143 2144 if ((config_32 & FFA_VM_AVAILABILITY_CREATED) != 0U) { 2145 sp->properties |= FFA_PARTITION_VM_CREATED; 2146 } 2147 if ((config_32 & FFA_VM_AVAILABILITY_DESTROYED) != 0U) { 2148 sp->properties |= FFA_PARTITION_VM_DESTROYED; 2149 } 2150 } 2151 2152 return 0; 2153 } 2154 2155 /******************************************************************************* 2156 * This function gets the Secure Partition Manifest base and maps the manifest 2157 * region. 2158 * Currently only one Secure Partition manifest is considered which is used to 2159 * prepare the context for the single Secure Partition. 2160 ******************************************************************************/ 2161 static int find_and_prepare_sp_context(void) 2162 { 2163 void *sp_manifest; 2164 uintptr_t manifest_base; 2165 uintptr_t manifest_base_align __maybe_unused; 2166 entry_point_info_t *next_image_ep_info; 2167 int32_t ret, boot_info_reg = -1; 2168 struct secure_partition_desc *sp; 2169 struct transfer_list_header *tl __maybe_unused; 2170 struct transfer_list_entry *te __maybe_unused; 2171 2172 next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 2173 if (next_image_ep_info == NULL) { 2174 WARN("No Secure Partition image provided by BL2.\n"); 2175 return -ENOENT; 2176 } 2177 2178 2179 #if TRANSFER_LIST && !RESET_TO_BL31 2180 tl = (struct transfer_list_header *)next_image_ep_info->args.arg3; 2181 te = transfer_list_find(tl, TL_TAG_DT_FFA_MANIFEST); 2182 if (te == NULL) { 2183 WARN("Secure Partition manifest absent.\n"); 2184 return -ENOENT; 2185 } 2186 2187 sp_manifest = (void *)transfer_list_entry_data(te); 2188 manifest_base = (uintptr_t)sp_manifest; 2189 #else 2190 sp_manifest = (void *)next_image_ep_info->args.arg0; 2191 if (sp_manifest == NULL) { 2192 WARN("Secure Partition manifest absent.\n"); 2193 return -ENOENT; 2194 } 2195 2196 manifest_base = (uintptr_t)sp_manifest; 2197 manifest_base_align = page_align(manifest_base, DOWN); 2198 2199 /* 2200 * Map the secure partition manifest region in the EL3 translation 2201 * regime. 2202 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base 2203 * alignment the region of 1 PAGE_SIZE from manifest align base may 2204 * not completely accommodate the secure partition manifest region. 2205 */ 2206 ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align, 2207 manifest_base_align, 2208 PAGE_SIZE * 2, 2209 MT_RO_DATA); 2210 if (ret != 0) { 2211 ERROR("Error while mapping SP manifest (%d).\n", ret); 2212 return ret; 2213 } 2214 #endif 2215 2216 ret = fdt_node_offset_by_compatible(sp_manifest, -1, 2217 "arm,ffa-manifest-1.0"); 2218 if (ret < 0) { 2219 ERROR("Error happened in SP manifest reading.\n"); 2220 return -EINVAL; 2221 } 2222 2223 /* 2224 * Store the size of the manifest so that it can be used later to pass 2225 * the manifest as boot information later. 2226 */ 2227 next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest); 2228 INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base, 2229 next_image_ep_info->args.arg1); 2230 2231 /* 2232 * Select an SP descriptor for initialising the partition's execution 2233 * context on the primary CPU. 2234 */ 2235 sp = spmc_get_current_sp_ctx(); 2236 2237 #if SPMC_AT_EL3_SEL0_SP 2238 /* Assign translation tables context. */ 2239 sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context(); 2240 2241 #endif /* SPMC_AT_EL3_SEL0_SP */ 2242 /* Initialize entry point information for the SP */ 2243 SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1, 2244 SECURE | EP_ST_ENABLE); 2245 2246 /* Parse the SP manifest. */ 2247 ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info, 2248 &boot_info_reg); 2249 if (ret != 0) { 2250 ERROR("Error in Secure Partition manifest parsing.\n"); 2251 return ret; 2252 } 2253 2254 /* Perform any common initialisation. */ 2255 spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg); 2256 2257 /* Perform any initialisation specific to S-EL1 SPs. */ 2258 if (sp->runtime_el == S_EL1) { 2259 spmc_el1_sp_setup(sp, next_image_ep_info); 2260 spmc_sp_common_ep_commit(sp, next_image_ep_info); 2261 } 2262 #if SPMC_AT_EL3_SEL0_SP 2263 /* Perform any initialisation specific to S-EL0 SPs. */ 2264 else if (sp->runtime_el == S_EL0) { 2265 /* Setup spsr in endpoint info for common context management routine. */ 2266 spmc_el0_sp_spsr_setup(next_image_ep_info); 2267 2268 spmc_sp_common_ep_commit(sp, next_image_ep_info); 2269 2270 /* 2271 * Perform any initialisation specific to S-EL0 not set by common 2272 * context management routine. 2273 */ 2274 spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest); 2275 } 2276 #endif /* SPMC_AT_EL3_SEL0_SP */ 2277 else { 2278 ERROR("Unexpected runtime EL: %u\n", sp->runtime_el); 2279 return -EINVAL; 2280 } 2281 2282 return 0; 2283 } 2284 2285 /******************************************************************************* 2286 * This function takes an SP context pointer and performs a synchronous entry 2287 * into it. 2288 ******************************************************************************/ 2289 static int32_t logical_sp_init(void) 2290 { 2291 int32_t rc = 0; 2292 struct el3_lp_desc *el3_lp_descs; 2293 2294 /* Perform initial validation of the Logical Partitions. */ 2295 rc = el3_sp_desc_validate(); 2296 if (rc != 0) { 2297 ERROR("Logical Partition validation failed!\n"); 2298 return rc; 2299 } 2300 2301 el3_lp_descs = get_el3_lp_array(); 2302 2303 INFO("Logical Secure Partition init start.\n"); 2304 for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) { 2305 rc = el3_lp_descs[i].init(); 2306 if (rc != 0) { 2307 ERROR("Logical SP (0x%x) Failed to Initialize\n", 2308 el3_lp_descs[i].sp_id); 2309 return rc; 2310 } 2311 VERBOSE("Logical SP (0x%x) Initialized\n", 2312 el3_lp_descs[i].sp_id); 2313 } 2314 2315 INFO("Logical Secure Partition init completed.\n"); 2316 2317 return rc; 2318 } 2319 2320 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec) 2321 { 2322 uint64_t rc; 2323 2324 assert(ec != NULL); 2325 2326 /* Assign the context of the SP to this CPU */ 2327 cm_set_context(&(ec->cpu_ctx), SECURE); 2328 2329 /* Restore the context assigned above */ 2330 cm_el1_sysregs_context_restore(SECURE); 2331 cm_set_next_eret_context(SECURE); 2332 2333 /* Invalidate TLBs at EL1. */ 2334 tlbivmalle1(); 2335 dsbish(); 2336 2337 /* Enter Secure Partition */ 2338 rc = spm_secure_partition_enter(&ec->c_rt_ctx); 2339 2340 /* Save secure state */ 2341 cm_el1_sysregs_context_save(SECURE); 2342 2343 return rc; 2344 } 2345 2346 /******************************************************************************* 2347 * SPMC Helper Functions. 2348 ******************************************************************************/ 2349 static int32_t sp_init(void) 2350 { 2351 uint64_t rc; 2352 struct secure_partition_desc *sp; 2353 struct sp_exec_ctx *ec; 2354 2355 sp = spmc_get_current_sp_ctx(); 2356 ec = spmc_get_sp_ec(sp); 2357 ec->rt_model = RT_MODEL_INIT; 2358 ec->rt_state = RT_STATE_RUNNING; 2359 2360 INFO("Secure Partition (0x%x) init start.\n", sp->sp_id); 2361 2362 rc = spmc_sp_synchronous_entry(ec); 2363 if (rc != 0) { 2364 /* Indicate SP init was not successful. */ 2365 ERROR("SP (0x%x) failed to initialize (%lu).\n", 2366 sp->sp_id, rc); 2367 return 0; 2368 } 2369 2370 ec->rt_state = RT_STATE_WAITING; 2371 INFO("Secure Partition initialized.\n"); 2372 2373 return 1; 2374 } 2375 2376 static void initalize_sp_descs(void) 2377 { 2378 struct secure_partition_desc *sp; 2379 2380 for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) { 2381 sp = &sp_desc[i]; 2382 sp->sp_id = INV_SP_ID; 2383 sp->mailbox.rx_buffer = NULL; 2384 sp->mailbox.tx_buffer = NULL; 2385 sp->mailbox.state = MAILBOX_STATE_EMPTY; 2386 sp->secondary_ep = 0; 2387 } 2388 } 2389 2390 static void initalize_ns_ep_descs(void) 2391 { 2392 struct ns_endpoint_desc *ns_ep; 2393 2394 for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) { 2395 ns_ep = &ns_ep_desc[i]; 2396 /* 2397 * Clashes with the Hypervisor ID but will not be a 2398 * problem in practice. 2399 */ 2400 ns_ep->ns_ep_id = 0; 2401 ns_ep->ffa_version = 0; 2402 ns_ep->mailbox.rx_buffer = NULL; 2403 ns_ep->mailbox.tx_buffer = NULL; 2404 ns_ep->mailbox.state = MAILBOX_STATE_EMPTY; 2405 } 2406 } 2407 2408 /******************************************************************************* 2409 * Initialize SPMC attributes for the SPMD. 2410 ******************************************************************************/ 2411 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs) 2412 { 2413 spmc_attrs->major_version = FFA_VERSION_SPMC_MAJOR; 2414 spmc_attrs->minor_version = FFA_VERSION_SPMC_MINOR; 2415 spmc_attrs->exec_state = MODE_RW_64; 2416 spmc_attrs->spmc_id = FFA_SPMC_ID; 2417 } 2418 2419 /******************************************************************************* 2420 * Initialize contexts of all Secure Partitions. 2421 ******************************************************************************/ 2422 int32_t spmc_setup(void) 2423 { 2424 int32_t ret; 2425 uint32_t flags; 2426 2427 /* Initialize endpoint descriptors */ 2428 initalize_sp_descs(); 2429 initalize_ns_ep_descs(); 2430 2431 /* 2432 * Retrieve the information of the datastore for tracking shared memory 2433 * requests allocated by platform code and zero the region if available. 2434 */ 2435 ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data, 2436 &spmc_shmem_obj_state.data_size); 2437 if (ret != 0) { 2438 ERROR("Failed to obtain memory descriptor backing store!\n"); 2439 return ret; 2440 } 2441 memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size); 2442 2443 /* Setup logical SPs. */ 2444 ret = logical_sp_init(); 2445 if (ret != 0) { 2446 ERROR("Failed to initialize Logical Partitions.\n"); 2447 return ret; 2448 } 2449 2450 /* Perform physical SP setup. */ 2451 2452 /* Disable MMU at EL1 (initialized by BL2) */ 2453 disable_mmu_icache_el1(); 2454 2455 /* Initialize context of the SP */ 2456 INFO("Secure Partition context setup start.\n"); 2457 2458 ret = find_and_prepare_sp_context(); 2459 if (ret != 0) { 2460 ERROR("Error in SP finding and context preparation.\n"); 2461 return ret; 2462 } 2463 2464 /* Register power management hooks with PSCI */ 2465 psci_register_spd_pm_hook(&spmc_pm); 2466 2467 /* 2468 * Register an interrupt handler for S-EL1 interrupts 2469 * when generated during code executing in the 2470 * non-secure state. 2471 */ 2472 flags = 0; 2473 set_interrupt_rm_flag(flags, NON_SECURE); 2474 ret = register_interrupt_type_handler(INTR_TYPE_S_EL1, 2475 spmc_sp_interrupt_handler, 2476 flags); 2477 if (ret != 0) { 2478 ERROR("Failed to register interrupt handler! (%d)\n", ret); 2479 panic(); 2480 } 2481 2482 /* Register init function for deferred init. */ 2483 bl31_register_bl32_init(&sp_init); 2484 2485 INFO("Secure Partition setup done.\n"); 2486 2487 return 0; 2488 } 2489 2490 /******************************************************************************* 2491 * Secure Partition Manager SMC handler. 2492 ******************************************************************************/ 2493 uint64_t spmc_smc_handler(uint32_t smc_fid, 2494 bool secure_origin, 2495 uint64_t x1, 2496 uint64_t x2, 2497 uint64_t x3, 2498 uint64_t x4, 2499 void *cookie, 2500 void *handle, 2501 uint64_t flags) 2502 { 2503 switch (smc_fid) { 2504 2505 case FFA_VERSION: 2506 return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3, 2507 x4, cookie, handle, flags); 2508 2509 case FFA_SPM_ID_GET: 2510 return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2, 2511 x3, x4, cookie, handle, flags); 2512 2513 case FFA_ID_GET: 2514 return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3, 2515 x4, cookie, handle, flags); 2516 2517 case FFA_FEATURES: 2518 return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3, 2519 x4, cookie, handle, flags); 2520 2521 case FFA_SECONDARY_EP_REGISTER_SMC64: 2522 return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1, 2523 x2, x3, x4, cookie, handle, 2524 flags); 2525 2526 case FFA_MSG_SEND_DIRECT_REQ_SMC32: 2527 case FFA_MSG_SEND_DIRECT_REQ_SMC64: 2528 case FFA_MSG_SEND_DIRECT_REQ2_SMC64: 2529 return direct_req_smc_handler(smc_fid, secure_origin, x1, x2, 2530 x3, x4, cookie, handle, flags); 2531 2532 case FFA_MSG_SEND_DIRECT_RESP_SMC32: 2533 case FFA_MSG_SEND_DIRECT_RESP_SMC64: 2534 case FFA_MSG_SEND_DIRECT_RESP2_SMC64: 2535 return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2, 2536 x3, x4, cookie, handle, flags); 2537 2538 case FFA_RXTX_MAP_SMC32: 2539 case FFA_RXTX_MAP_SMC64: 2540 return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2541 cookie, handle, flags); 2542 2543 case FFA_RXTX_UNMAP: 2544 return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3, 2545 x4, cookie, handle, flags); 2546 2547 case FFA_PARTITION_INFO_GET: 2548 return partition_info_get_handler(smc_fid, secure_origin, x1, 2549 x2, x3, x4, cookie, handle, 2550 flags); 2551 2552 case FFA_RX_RELEASE: 2553 return rx_release_handler(smc_fid, secure_origin, x1, x2, x3, 2554 x4, cookie, handle, flags); 2555 2556 case FFA_MSG_WAIT: 2557 return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2558 cookie, handle, flags); 2559 2560 case FFA_ERROR: 2561 return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2562 cookie, handle, flags); 2563 2564 case FFA_MSG_RUN: 2565 return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4, 2566 cookie, handle, flags); 2567 2568 case FFA_MEM_SHARE_SMC32: 2569 case FFA_MEM_SHARE_SMC64: 2570 case FFA_MEM_LEND_SMC32: 2571 case FFA_MEM_LEND_SMC64: 2572 return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4, 2573 cookie, handle, flags); 2574 2575 case FFA_MEM_FRAG_TX: 2576 return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3, 2577 x4, cookie, handle, flags); 2578 2579 case FFA_MEM_FRAG_RX: 2580 return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3, 2581 x4, cookie, handle, flags); 2582 2583 case FFA_MEM_RETRIEVE_REQ_SMC32: 2584 case FFA_MEM_RETRIEVE_REQ_SMC64: 2585 return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2, 2586 x3, x4, cookie, handle, flags); 2587 2588 case FFA_MEM_RELINQUISH: 2589 return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2, 2590 x3, x4, cookie, handle, flags); 2591 2592 case FFA_MEM_RECLAIM: 2593 return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3, 2594 x4, cookie, handle, flags); 2595 case FFA_CONSOLE_LOG_SMC32: 2596 case FFA_CONSOLE_LOG_SMC64: 2597 return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3, 2598 x4, cookie, handle, flags); 2599 2600 case FFA_MEM_PERM_GET_SMC32: 2601 case FFA_MEM_PERM_GET_SMC64: 2602 return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2, 2603 x3, x4, cookie, handle, flags); 2604 2605 case FFA_MEM_PERM_SET_SMC32: 2606 case FFA_MEM_PERM_SET_SMC64: 2607 return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2, 2608 x3, x4, cookie, handle, flags); 2609 2610 default: 2611 WARN("Unsupported FF-A call 0x%08x.\n", smc_fid); 2612 break; 2613 } 2614 return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED); 2615 } 2616 2617 /******************************************************************************* 2618 * This function is the handler registered for S-EL1 interrupts by the SPMC. It 2619 * validates the interrupt and upon success arranges entry into the SP for 2620 * handling the interrupt. 2621 ******************************************************************************/ 2622 static uint64_t spmc_sp_interrupt_handler(uint32_t id, 2623 uint32_t flags, 2624 void *handle, 2625 void *cookie) 2626 { 2627 struct secure_partition_desc *sp = spmc_get_current_sp_ctx(); 2628 struct sp_exec_ctx *ec; 2629 uint32_t linear_id = plat_my_core_pos(); 2630 2631 /* Sanity check for a NULL pointer dereference. */ 2632 assert(sp != NULL); 2633 2634 /* Check the security state when the exception was generated. */ 2635 assert(get_interrupt_src_ss(flags) == NON_SECURE); 2636 2637 /* Panic if not an S-EL1 Partition. */ 2638 if (sp->runtime_el != S_EL1) { 2639 ERROR("Interrupt received for a non S-EL1 SP on core%u.\n", 2640 linear_id); 2641 panic(); 2642 } 2643 2644 /* Obtain a reference to the SP execution context. */ 2645 ec = spmc_get_sp_ec(sp); 2646 2647 /* Ensure that the execution context is in waiting state else panic. */ 2648 if (ec->rt_state != RT_STATE_WAITING) { 2649 ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n", 2650 linear_id, RT_STATE_WAITING, ec->rt_state); 2651 panic(); 2652 } 2653 2654 /* Update the runtime model and state of the partition. */ 2655 ec->rt_model = RT_MODEL_INTR; 2656 ec->rt_state = RT_STATE_RUNNING; 2657 2658 VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id); 2659 2660 /* 2661 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not 2662 * populated as the SP can determine this by itself. 2663 * The flags field is forced to 0 mainly to pass the SVE hint bit 2664 * cleared for consumption by the lower EL. 2665 */ 2666 return spmd_smc_switch_state(FFA_INTERRUPT, false, 2667 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2668 FFA_PARAM_MBZ, FFA_PARAM_MBZ, 2669 handle, 0ULL, sp->ffa_version); 2670 } 2671