xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc.h (revision 7affa25cad400101c016082be2d102be0f4fce80)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef SPMC_H
8 #define SPMC_H
9 
10 #include <stdint.h>
11 
12 #include <lib/psci/psci.h>
13 #include <lib/spinlock.h>
14 #include <services/el3_spmc_logical_sp.h>
15 #include "spm_common.h"
16 
17 /*
18  * Ranges of FF-A IDs for Normal world and Secure world components. The
19  * convention matches that used by other SPMCs i.e. Hafnium and OP-TEE.
20  */
21 #define FFA_NWD_ID_BASE		0x0
22 #define FFA_NWD_ID_LIMIT	0x7FFF
23 #define FFA_SWD_ID_BASE		0x8000
24 #define FFA_SWD_ID_LIMIT	SPMD_DIRECT_MSG_ENDPOINT_ID - 1
25 #define FFA_SWD_ID_MASK		0x8000
26 
27 /* ID 0 is reserved for the normal world entity, (Hypervisor or OS Kernel). */
28 #define FFA_NWD_ID		U(0)
29 /* First ID is reserved for the SPMC */
30 #define FFA_SPMC_ID		U(FFA_SWD_ID_BASE)
31 /* SP IDs are allocated after the SPMC ID */
32 #define FFA_SP_ID_BASE		(FFA_SPMC_ID + 1)
33 /* Align with Hafnium implementation */
34 #define INV_SP_ID		0x7FFF
35 
36 /* FF-A warm boot types. */
37 #define FFA_WB_TYPE_S2RAM	0
38 #define FFA_WB_TYPE_NOTS2RAM	1
39 
40 /*
41  * Runtime states of an execution context as per the FF-A v1.1 specification.
42  */
43 enum sp_runtime_states {
44 	RT_STATE_WAITING,
45 	RT_STATE_RUNNING,
46 	RT_STATE_PREEMPTED,
47 	RT_STATE_BLOCKED
48 };
49 
50 /*
51  * Runtime model of an execution context as per the FF-A v1.1 specification. Its
52  * value is valid only if the execution context is not in the waiting state.
53  */
54 enum sp_runtime_model {
55 	RT_MODEL_DIR_REQ,
56 	RT_MODEL_RUN,
57 	RT_MODEL_INIT,
58 	RT_MODEL_INTR
59 };
60 
61 enum sp_runtime_el {
62 	EL1 = 0,
63 	S_EL0,
64 	S_EL1
65 };
66 
67 enum sp_execution_state {
68 	SP_STATE_AARCH64 = 0,
69 	SP_STATE_AARCH32
70 };
71 
72 /*
73  * Execution context members for an SP. This is a bit like struct
74  * vcpu in a hypervisor.
75  */
76 struct sp_exec_ctx {
77 	/*
78 	 * Store the stack address to restore C runtime context from after
79 	 * returning from a synchronous entry into the SP.
80 	 */
81 	uint64_t c_rt_ctx;
82 
83 	/* Space to maintain the architectural state of an SP. */
84 	cpu_context_t cpu_ctx;
85 
86 	/* Track the current runtime state of the SP. */
87 	enum sp_runtime_states rt_state;
88 
89 	/* Track the current runtime model of the SP. */
90 	enum sp_runtime_model rt_model;
91 };
92 
93 /*
94  * Structure to describe the cumulative properties of an SP.
95  */
96 struct secure_partition_desc {
97 	/*
98 	 * Execution contexts allocated to this endpoint. Ideally,
99 	 * we need as many contexts as there are physical cpus only
100 	 * for a S-EL1 SP which is MP-pinned.
101 	 */
102 	struct sp_exec_ctx ec[PLATFORM_CORE_COUNT];
103 
104 	/* ID of the Secure Partition. */
105 	uint16_t sp_id;
106 
107 	/* Runtime EL. */
108 	enum sp_runtime_el runtime_el;
109 
110 	/* Partition UUID. */
111 	uint32_t uuid[4];
112 
113 	/* Partition Properties. */
114 	uint32_t properties;
115 
116 	/* Supported FF-A Version. */
117 	uint32_t ffa_version;
118 
119 	/* Execution State. */
120 	enum sp_execution_state execution_state;
121 
122 	/* Secondary entrypoint. Only valid for a S-EL1 SP. */
123 	uintptr_t secondary_ep;
124 };
125 
126 /*
127  * This define identifies the only SP that will be initialised and participate
128  * in FF-A communication. The implementation leaves the door open for more SPs
129  * to be managed in future but for now it is reasonable to assume that either a
130  * single S-EL0 or a single S-EL1 SP will be supported. This define will be used
131  * to identify which SP descriptor to initialise and manage during SP runtime.
132  */
133 #define ACTIVE_SP_DESC_INDEX	0
134 
135 /*
136  * Structure to describe the cumulative properties of the Hypervisor and
137  * NS-Endpoints.
138  */
139 struct ns_endpoint_desc {
140 	/*
141 	 * ID of the NS-Endpoint or Hypervisor.
142 	 */
143 	uint16_t ns_ep_id;
144 
145 	/*
146 	 * Supported FF-A Version.
147 	 */
148 	uint32_t ffa_version;
149 };
150 
151 /* Setup Function for different SP types. */
152 void spmc_sp_common_setup(struct secure_partition_desc *sp,
153 			  entry_point_info_t *ep_info);
154 void spmc_el1_sp_setup(struct secure_partition_desc *sp,
155 		       entry_point_info_t *ep_info);
156 void spmc_sp_common_ep_commit(struct secure_partition_desc *sp,
157 			      entry_point_info_t *ep_info);
158 
159 /*
160  * Helper function to perform a synchronous entry into a SP.
161  */
162 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec);
163 
164 /*
165  * Helper function to obtain the descriptor of the current SP on a physical cpu.
166  */
167 struct secure_partition_desc *spmc_get_current_sp_ctx(void);
168 
169 /*
170  * Helper function to obtain the execution context of an SP on a
171  * physical cpu.
172  */
173 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp);
174 
175 /*
176  * Helper function to obtain the index of the execution context of an SP on a
177  * physical cpu.
178  */
179 unsigned int get_ec_index(struct secure_partition_desc *sp);
180 
181 uint64_t spmc_ffa_error_return(void *handle, int error_code);
182 
183 /*
184  * Ensure a partition ID does not clash and follows the secure world convention.
185  */
186 bool is_ffa_secure_id_valid(uint16_t partition_id);
187 
188 /*
189  * Helper function to obtain the array storing the EL3
190  * Logical Partition descriptors.
191  */
192 struct el3_lp_desc *get_el3_lp_array(void);
193 
194 #endif /* SPMC_H */
195