xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc.h (revision 52ed157fd66812debb13a792c21f763de01aef70)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef SPMC_H
8 #define SPMC_H
9 
10 #include <stdint.h>
11 
12 #include <lib/psci/psci.h>
13 #include <lib/spinlock.h>
14 #include "spm_common.h"
15 
16 /*
17  * Ranges of FF-A IDs for Normal world and Secure world components. The
18  * convention matches that used by other SPMCs i.e. Hafnium and OP-TEE.
19  */
20 #define FFA_NWD_ID_BASE		0x0
21 #define FFA_NWD_ID_LIMIT	0x7FFF
22 #define FFA_SWD_ID_BASE		0x8000
23 #define FFA_SWD_ID_LIMIT	SPMD_DIRECT_MSG_ENDPOINT_ID - 1
24 #define FFA_SWD_ID_MASK		0x8000
25 
26 /* ID 0 is reserved for the normal world entity, (Hypervisor or OS Kernel). */
27 #define FFA_NWD_ID		U(0)
28 /* First ID is reserved for the SPMC */
29 #define FFA_SPMC_ID		U(FFA_SWD_ID_BASE)
30 /* SP IDs are allocated after the SPMC ID */
31 #define FFA_SP_ID_BASE		(FFA_SPMC_ID + 1)
32 /* Align with Hafnium implementation */
33 #define INV_SP_ID		0x7FFF
34 
35 /* FF-A warm boot types. */
36 #define FFA_WB_TYPE_S2RAM	0
37 #define FFA_WB_TYPE_NOTS2RAM	1
38 
39 /*
40  * Runtime states of an execution context as per the FF-A v1.1 specification.
41  */
42 enum sp_runtime_states {
43 	RT_STATE_WAITING,
44 	RT_STATE_RUNNING,
45 	RT_STATE_PREEMPTED,
46 	RT_STATE_BLOCKED
47 };
48 
49 /*
50  * Runtime model of an execution context as per the FF-A v1.1 specification. Its
51  * value is valid only if the execution context is not in the waiting state.
52  */
53 enum sp_runtime_model {
54 	RT_MODEL_DIR_REQ,
55 	RT_MODEL_RUN,
56 	RT_MODEL_INIT,
57 	RT_MODEL_INTR
58 };
59 
60 enum sp_runtime_el {
61 	EL1 = 0,
62 	S_EL0,
63 	S_EL1
64 };
65 
66 enum sp_execution_state {
67 	SP_STATE_AARCH64 = 0,
68 	SP_STATE_AARCH32
69 };
70 
71 /*
72  * Execution context members for an SP. This is a bit like struct
73  * vcpu in a hypervisor.
74  */
75 struct sp_exec_ctx {
76 	/*
77 	 * Store the stack address to restore C runtime context from after
78 	 * returning from a synchronous entry into the SP.
79 	 */
80 	uint64_t c_rt_ctx;
81 
82 	/* Space to maintain the architectural state of an SP. */
83 	cpu_context_t cpu_ctx;
84 
85 	/* Track the current runtime state of the SP. */
86 	enum sp_runtime_states rt_state;
87 
88 	/* Track the current runtime model of the SP. */
89 	enum sp_runtime_model rt_model;
90 };
91 
92 /*
93  * Structure to describe the cumulative properties of an SP.
94  */
95 struct secure_partition_desc {
96 	/*
97 	 * Execution contexts allocated to this endpoint. Ideally,
98 	 * we need as many contexts as there are physical cpus only
99 	 * for a S-EL1 SP which is MP-pinned.
100 	 */
101 	struct sp_exec_ctx ec[PLATFORM_CORE_COUNT];
102 
103 	/* ID of the Secure Partition. */
104 	uint16_t sp_id;
105 
106 	/* Runtime EL. */
107 	enum sp_runtime_el runtime_el;
108 
109 	/* Partition UUID. */
110 	uint32_t uuid[4];
111 
112 	/* Partition Properties. */
113 	uint32_t properties;
114 
115 	/* Supported FF-A Version. */
116 	uint32_t ffa_version;
117 
118 	/* Execution State. */
119 	enum sp_execution_state execution_state;
120 
121 	/* Secondary entrypoint. Only valid for a S-EL1 SP. */
122 	uintptr_t secondary_ep;
123 };
124 
125 /*
126  * This define identifies the only SP that will be initialised and participate
127  * in FF-A communication. The implementation leaves the door open for more SPs
128  * to be managed in future but for now it is reasonable to assume that either a
129  * single S-EL0 or a single S-EL1 SP will be supported. This define will be used
130  * to identify which SP descriptor to initialise and manage during SP runtime.
131  */
132 #define ACTIVE_SP_DESC_INDEX	0
133 
134 /*
135  * Structure to describe the cumulative properties of the Hypervisor and
136  * NS-Endpoints.
137  */
138 struct ns_endpoint_desc {
139 	/*
140 	 * ID of the NS-Endpoint or Hypervisor.
141 	 */
142 	uint16_t ns_ep_id;
143 
144 	/*
145 	 * Supported FF-A Version.
146 	 */
147 	uint32_t ffa_version;
148 };
149 
150 /* Setup Function for different SP types. */
151 void spmc_sp_common_setup(struct secure_partition_desc *sp,
152 			  entry_point_info_t *ep_info);
153 void spmc_el1_sp_setup(struct secure_partition_desc *sp,
154 		       entry_point_info_t *ep_info);
155 void spmc_sp_common_ep_commit(struct secure_partition_desc *sp,
156 			      entry_point_info_t *ep_info);
157 
158 /*
159  * Helper function to perform a synchronous entry into a SP.
160  */
161 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec);
162 
163 /*
164  * Helper function to obtain the descriptor of the current SP on a physical cpu.
165  */
166 struct secure_partition_desc *spmc_get_current_sp_ctx(void);
167 
168 /*
169  * Helper function to obtain the execution context of an SP on a
170  * physical cpu.
171  */
172 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp);
173 
174 /*
175  * Helper function to obtain the index of the execution context of an SP on a
176  * physical cpu.
177  */
178 unsigned int get_ec_index(struct secure_partition_desc *sp);
179 
180 uint64_t spmc_ffa_error_return(void *handle, int error_code);
181 
182 /*
183  * Ensure a partition ID does not clash and follows the secure world convention.
184  */
185 bool is_ffa_secure_id_valid(uint16_t partition_id);
186 
187 #endif /* SPMC_H */
188