xref: /rk3399_ARM-atf/services/std_svc/spm/el3_spmc/spmc.h (revision 5096aeb2ba646548a7a6ab59e975b996e6c9026a)
1 /*
2  * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef SPMC_H
8 #define SPMC_H
9 
10 #include <stdint.h>
11 
12 #include <lib/psci/psci.h>
13 #include <lib/spinlock.h>
14 #include "spm_common.h"
15 
16 /*
17  * Ranges of FF-A IDs for Normal world and Secure world components. The
18  * convention matches that used by other SPMCs i.e. Hafnium and OP-TEE.
19  */
20 #define FFA_NWD_ID_BASE		0x0
21 #define FFA_NWD_ID_LIMIT	0x7FFF
22 #define FFA_SWD_ID_BASE		0x8000
23 #define FFA_SWD_ID_LIMIT	SPMD_DIRECT_MSG_ENDPOINT_ID - 1
24 #define FFA_SWD_ID_MASK		0x8000
25 
26 /* First ID is reserved for the SPMC */
27 #define FFA_SPMC_ID		U(FFA_SWD_ID_BASE)
28 /* SP IDs are allocated after the SPMC ID */
29 #define FFA_SP_ID_BASE		(FFA_SPMC_ID + 1)
30 /* Align with Hafnium implementation */
31 #define INV_SP_ID		0x7FFF
32 
33 /* FF-A warm boot types. */
34 #define FFA_WB_TYPE_S2RAM	0
35 #define FFA_WB_TYPE_NOTS2RAM	1
36 
37 /*
38  * Runtime states of an execution context as per the FF-A v1.1 specification.
39  */
40 enum sp_runtime_states {
41 	RT_STATE_WAITING,
42 	RT_STATE_RUNNING,
43 	RT_STATE_PREEMPTED,
44 	RT_STATE_BLOCKED
45 };
46 
47 /*
48  * Runtime model of an execution context as per the FF-A v1.1 specification. Its
49  * value is valid only if the execution context is not in the waiting state.
50  */
51 enum sp_runtime_model {
52 	RT_MODEL_DIR_REQ,
53 	RT_MODEL_RUN,
54 	RT_MODEL_INIT,
55 	RT_MODEL_INTR
56 };
57 
58 enum sp_runtime_el {
59 	EL1 = 0,
60 	S_EL0,
61 	S_EL1
62 };
63 
64 enum sp_execution_state {
65 	SP_STATE_AARCH64 = 0,
66 	SP_STATE_AARCH32
67 };
68 
69 /*
70  * Execution context members for an SP. This is a bit like struct
71  * vcpu in a hypervisor.
72  */
73 struct sp_exec_ctx {
74 	/*
75 	 * Store the stack address to restore C runtime context from after
76 	 * returning from a synchronous entry into the SP.
77 	 */
78 	uint64_t c_rt_ctx;
79 
80 	/* Space to maintain the architectural state of an SP. */
81 	cpu_context_t cpu_ctx;
82 
83 	/* Track the current runtime state of the SP. */
84 	enum sp_runtime_states rt_state;
85 
86 	/* Track the current runtime model of the SP. */
87 	enum sp_runtime_model rt_model;
88 };
89 
90 /*
91  * Structure to describe the cumulative properties of an SP.
92  */
93 struct secure_partition_desc {
94 	/*
95 	 * Execution contexts allocated to this endpoint. Ideally,
96 	 * we need as many contexts as there are physical cpus only
97 	 * for a S-EL1 SP which is MP-pinned.
98 	 */
99 	struct sp_exec_ctx ec[PLATFORM_CORE_COUNT];
100 
101 	/* ID of the Secure Partition. */
102 	uint16_t sp_id;
103 
104 	/* Runtime EL. */
105 	enum sp_runtime_el runtime_el;
106 
107 	/* Partition UUID. */
108 	uint32_t uuid[4];
109 
110 	/* Partition Properties. */
111 	uint32_t properties;
112 
113 	/* Supported FF-A Version. */
114 	uint32_t ffa_version;
115 
116 	/* Execution State. */
117 	enum sp_execution_state execution_state;
118 
119 	/* Secondary entrypoint. Only valid for a S-EL1 SP. */
120 	uintptr_t secondary_ep;
121 };
122 
123 /*
124  * This define identifies the only SP that will be initialised and participate
125  * in FF-A communication. The implementation leaves the door open for more SPs
126  * to be managed in future but for now it is reasonable to assume that either a
127  * single S-EL0 or a single S-EL1 SP will be supported. This define will be used
128  * to identify which SP descriptor to initialise and manage during SP runtime.
129  */
130 #define ACTIVE_SP_DESC_INDEX	0
131 
132 /*
133  * Structure to describe the cumulative properties of the Hypervisor and
134  * NS-Endpoints.
135  */
136 struct ns_endpoint_desc {
137 	/*
138 	 * ID of the NS-Endpoint or Hypervisor.
139 	 */
140 	uint16_t ns_ep_id;
141 
142 	/*
143 	 * Supported FF-A Version.
144 	 */
145 	uint32_t ffa_version;
146 };
147 
148 /* Setup Function for different SP types. */
149 void spmc_sp_common_setup(struct secure_partition_desc *sp,
150 			  entry_point_info_t *ep_info);
151 void spmc_el1_sp_setup(struct secure_partition_desc *sp,
152 		       entry_point_info_t *ep_info);
153 void spmc_sp_common_ep_commit(struct secure_partition_desc *sp,
154 			      entry_point_info_t *ep_info);
155 
156 /*
157  * Helper function to perform a synchronous entry into a SP.
158  */
159 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec);
160 
161 /*
162  * Helper function to obtain the descriptor of the current SP on a physical cpu.
163  */
164 struct secure_partition_desc *spmc_get_current_sp_ctx(void);
165 
166 /*
167  * Helper function to obtain the execution context of an SP on a
168  * physical cpu.
169  */
170 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp);
171 
172 /*
173  * Helper function to obtain the index of the execution context of an SP on a
174  * physical cpu.
175  */
176 unsigned int get_ec_index(struct secure_partition_desc *sp);
177 
178 uint64_t spmc_ffa_error_return(void *handle, int error_code);
179 
180 /*
181  * Ensure a partition ID does not clash and follows the secure world convention.
182  */
183 bool is_ffa_secure_id_valid(uint16_t partition_id);
184 
185 #endif /* SPMC_H */
186