1 /* 2 * Copyright (c) 2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef SPMC_H 8 #define SPMC_H 9 10 #include <stdint.h> 11 12 #include <lib/psci/psci.h> 13 #include <lib/spinlock.h> 14 #include <services/el3_spmc_logical_sp.h> 15 #include "spm_common.h" 16 17 /* 18 * Ranges of FF-A IDs for Normal world and Secure world components. The 19 * convention matches that used by other SPMCs i.e. Hafnium and OP-TEE. 20 */ 21 #define FFA_NWD_ID_BASE 0x0 22 #define FFA_NWD_ID_LIMIT 0x7FFF 23 #define FFA_SWD_ID_BASE 0x8000 24 #define FFA_SWD_ID_LIMIT SPMD_DIRECT_MSG_ENDPOINT_ID - 1 25 #define FFA_SWD_ID_MASK 0x8000 26 27 /* ID 0 is reserved for the normal world entity, (Hypervisor or OS Kernel). */ 28 #define FFA_NWD_ID U(0) 29 /* First ID is reserved for the SPMC */ 30 #define FFA_SPMC_ID U(FFA_SWD_ID_BASE) 31 /* SP IDs are allocated after the SPMC ID */ 32 #define FFA_SP_ID_BASE (FFA_SPMC_ID + 1) 33 /* Align with Hafnium implementation */ 34 #define INV_SP_ID 0x7FFF 35 36 /* FF-A warm boot types. */ 37 #define FFA_WB_TYPE_S2RAM 0 38 #define FFA_WB_TYPE_NOTS2RAM 1 39 40 /* 41 * Runtime states of an execution context as per the FF-A v1.1 specification. 42 */ 43 enum sp_runtime_states { 44 RT_STATE_WAITING, 45 RT_STATE_RUNNING, 46 RT_STATE_PREEMPTED, 47 RT_STATE_BLOCKED 48 }; 49 50 /* 51 * Runtime model of an execution context as per the FF-A v1.1 specification. Its 52 * value is valid only if the execution context is not in the waiting state. 53 */ 54 enum sp_runtime_model { 55 RT_MODEL_DIR_REQ, 56 RT_MODEL_RUN, 57 RT_MODEL_INIT, 58 RT_MODEL_INTR 59 }; 60 61 enum sp_runtime_el { 62 EL1 = 0, 63 S_EL0, 64 S_EL1 65 }; 66 67 enum sp_execution_state { 68 SP_STATE_AARCH64 = 0, 69 SP_STATE_AARCH32 70 }; 71 72 /* 73 * Execution context members for an SP. This is a bit like struct 74 * vcpu in a hypervisor. 75 */ 76 struct sp_exec_ctx { 77 /* 78 * Store the stack address to restore C runtime context from after 79 * returning from a synchronous entry into the SP. 80 */ 81 uint64_t c_rt_ctx; 82 83 /* Space to maintain the architectural state of an SP. */ 84 cpu_context_t cpu_ctx; 85 86 /* Track the current runtime state of the SP. */ 87 enum sp_runtime_states rt_state; 88 89 /* Track the current runtime model of the SP. */ 90 enum sp_runtime_model rt_model; 91 }; 92 93 /* 94 * Structure to describe the cumulative properties of an SP. 95 */ 96 struct secure_partition_desc { 97 /* 98 * Execution contexts allocated to this endpoint. Ideally, 99 * we need as many contexts as there are physical cpus only 100 * for a S-EL1 SP which is MP-pinned. 101 */ 102 struct sp_exec_ctx ec[PLATFORM_CORE_COUNT]; 103 104 /* ID of the Secure Partition. */ 105 uint16_t sp_id; 106 107 /* Runtime EL. */ 108 enum sp_runtime_el runtime_el; 109 110 /* Partition UUID. */ 111 uint32_t uuid[4]; 112 113 /* Partition Properties. */ 114 uint32_t properties; 115 116 /* Supported FF-A Version. */ 117 uint32_t ffa_version; 118 119 /* Execution State. */ 120 enum sp_execution_state execution_state; 121 122 /* Secondary entrypoint. Only valid for a S-EL1 SP. */ 123 uintptr_t secondary_ep; 124 }; 125 126 /* 127 * This define identifies the only SP that will be initialised and participate 128 * in FF-A communication. The implementation leaves the door open for more SPs 129 * to be managed in future but for now it is reasonable to assume that either a 130 * single S-EL0 or a single S-EL1 SP will be supported. This define will be used 131 * to identify which SP descriptor to initialise and manage during SP runtime. 132 */ 133 #define ACTIVE_SP_DESC_INDEX 0 134 135 /* 136 * Structure to describe the cumulative properties of the Hypervisor and 137 * NS-Endpoints. 138 */ 139 struct ns_endpoint_desc { 140 /* 141 * ID of the NS-Endpoint or Hypervisor. 142 */ 143 uint16_t ns_ep_id; 144 145 /* 146 * Supported FF-A Version. 147 */ 148 uint32_t ffa_version; 149 }; 150 151 /* Setup Function for different SP types. */ 152 void spmc_sp_common_setup(struct secure_partition_desc *sp, 153 entry_point_info_t *ep_info); 154 void spmc_el1_sp_setup(struct secure_partition_desc *sp, 155 entry_point_info_t *ep_info); 156 void spmc_sp_common_ep_commit(struct secure_partition_desc *sp, 157 entry_point_info_t *ep_info); 158 159 /* 160 * Helper function to perform a synchronous entry into a SP. 161 */ 162 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec); 163 164 /* 165 * Helper function to obtain the descriptor of the current SP on a physical cpu. 166 */ 167 struct secure_partition_desc *spmc_get_current_sp_ctx(void); 168 169 /* 170 * Helper function to obtain the execution context of an SP on a 171 * physical cpu. 172 */ 173 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp); 174 175 /* 176 * Helper function to obtain the index of the execution context of an SP on a 177 * physical cpu. 178 */ 179 unsigned int get_ec_index(struct secure_partition_desc *sp); 180 181 uint64_t spmc_ffa_error_return(void *handle, int error_code); 182 183 /* 184 * Ensure a partition ID does not clash and follows the secure world convention. 185 */ 186 bool is_ffa_secure_id_valid(uint16_t partition_id); 187 188 /* 189 * Helper function to obtain the array storing the EL3 190 * Logical Partition descriptors. 191 */ 192 struct el3_lp_desc *get_el3_lp_array(void); 193 194 #endif /* SPMC_H */ 195