xref: /rk3399_ARM-atf/services/std_svc/rmmd/rmmd_main.c (revision b62673c645752a78f649282cfa293e8da09e3bef)
1 /*
2  * Copyright (c) 2021-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch_features.h>
15 #include <bl31/bl31.h>
16 #include <common/debug.h>
17 #include <common/runtime_svc.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/cpu_data.h>
21 #include <lib/el3_runtime/pubsub.h>
22 #include <lib/extensions/pmuv3.h>
23 #include <lib/extensions/sys_reg_trace.h>
24 #include <lib/gpt_rme/gpt_rme.h>
25 
26 #include <lib/spinlock.h>
27 #include <lib/utils.h>
28 #include <lib/xlat_tables/xlat_tables_v2.h>
29 #include <plat/common/common_def.h>
30 #include <plat/common/platform.h>
31 #include <platform_def.h>
32 #include <services/rmmd_svc.h>
33 #include <smccc_helpers.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/trbe.h>
38 #include "rmmd_initial_context.h"
39 #include "rmmd_private.h"
40 
41 /*******************************************************************************
42  * RMM boot failure flag
43  ******************************************************************************/
44 static bool rmm_boot_failed;
45 
46 /*******************************************************************************
47  * RMM context information.
48  ******************************************************************************/
49 rmmd_rmm_context_t rmm_context[PLATFORM_CORE_COUNT];
50 
51 /*******************************************************************************
52  * RMM entry point information. Discovered on the primary core and reused
53  * on secondary cores.
54  ******************************************************************************/
55 static entry_point_info_t *rmm_ep_info;
56 
57 /*******************************************************************************
58  * Static function declaration.
59  ******************************************************************************/
60 static int32_t rmm_init(void);
61 
62 /*******************************************************************************
63  * This function takes an RMM context pointer and performs a synchronous entry
64  * into it.
65  ******************************************************************************/
66 uint64_t rmmd_rmm_sync_entry(rmmd_rmm_context_t *rmm_ctx)
67 {
68 	uint64_t rc;
69 
70 	assert(rmm_ctx != NULL);
71 
72 	cm_set_context(&(rmm_ctx->cpu_ctx), REALM);
73 
74 	/* Restore the realm context assigned above */
75 	cm_el2_sysregs_context_restore(REALM);
76 	cm_set_next_eret_context(REALM);
77 
78 	/* Enter RMM */
79 	rc = rmmd_rmm_enter(&rmm_ctx->c_rt_ctx);
80 
81 	/*
82 	 * Save realm context. EL2 Non-secure context will be restored
83 	 * before exiting Non-secure world, therefore there is no need
84 	 * to clear EL2 context registers.
85 	 */
86 	cm_el2_sysregs_context_save(REALM);
87 
88 	return rc;
89 }
90 
91 /*******************************************************************************
92  * This function returns to the place where rmmd_rmm_sync_entry() was
93  * called originally.
94  ******************************************************************************/
95 __dead2 void rmmd_rmm_sync_exit(uint64_t rc)
96 {
97 	rmmd_rmm_context_t *ctx = &rmm_context[plat_my_core_pos()];
98 
99 	/* Get context of the RMM in use by this CPU. */
100 	assert(cm_get_context(REALM) == &(ctx->cpu_ctx));
101 
102 	/*
103 	 * The RMMD must have initiated the original request through a
104 	 * synchronous entry into RMM. Jump back to the original C runtime
105 	 * context with the value of rc in x0;
106 	 */
107 	rmmd_rmm_exit(ctx->c_rt_ctx, rc);
108 
109 	panic();
110 }
111 
112 static void rmm_el2_context_init(el2_sysregs_t *regs)
113 {
114 	write_el2_ctx_common(regs, spsr_el2, REALM_SPSR_EL2);
115 	write_el2_ctx_common(regs, sctlr_el2, SCTLR_EL2_RES1);
116 }
117 
118 /*******************************************************************************
119  * Enable architecture extensions on first entry to Realm world.
120  ******************************************************************************/
121 
122 static void manage_extensions_realm(cpu_context_t *ctx)
123 {
124 	/*
125 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
126 	 */
127 	if (is_feat_sme_supported()) {
128 		sme_enable(ctx);
129 	}
130 
131 	/*
132 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
133 	 * sysreg access can. In case the EL1 controls leave them active on
134 	 * context switch, we want the owning security state to be NS so Realm
135 	 * can't be DOSed.
136 	 */
137 	if (is_feat_spe_supported()) {
138 		spe_disable(ctx);
139 	}
140 
141 	if (is_feat_trbe_supported()) {
142 		trbe_disable(ctx);
143 	}
144 }
145 
146 static void manage_extensions_realm_per_world(void)
147 {
148 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
149 
150 	if (is_feat_sve_supported()) {
151 	/*
152 	 * Enable SVE and FPU in realm context when it is enabled for NS.
153 	 * Realm manager must ensure that the SVE and FPU register
154 	 * contexts are properly managed.
155 	 */
156 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
157 	}
158 
159 	/* NS can access this but Realm shouldn't */
160 	if (is_feat_sys_reg_trace_supported()) {
161 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
162 	}
163 
164 	/*
165 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
166 	 * of SME instructions for Realm world. RMM will save/restore required
167 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
168 	 */
169 	if (is_feat_sme_supported()) {
170 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
171 	}
172 }
173 
174 /*******************************************************************************
175  * Jump to the RMM for the first time.
176  ******************************************************************************/
177 static int32_t rmm_init(void)
178 {
179 	long rc;
180 	rmmd_rmm_context_t *ctx = &rmm_context[plat_my_core_pos()];
181 
182 	INFO("RMM init start.\n");
183 
184 	/* Enable architecture extensions */
185 	manage_extensions_realm(&ctx->cpu_ctx);
186 
187 	manage_extensions_realm_per_world();
188 
189 	/* Initialize RMM EL2 context. */
190 	rmm_el2_context_init(&ctx->cpu_ctx.el2_sysregs_ctx);
191 
192 	rc = rmmd_rmm_sync_entry(ctx);
193 	if (rc != E_RMM_BOOT_SUCCESS) {
194 		ERROR("RMM init failed: %ld\n", rc);
195 		/* Mark the boot as failed for all the CPUs */
196 		rmm_boot_failed = true;
197 		return 0;
198 	}
199 
200 	INFO("RMM init end.\n");
201 
202 	return 1;
203 }
204 
205 /*******************************************************************************
206  * Load and read RMM manifest, setup RMM.
207  ******************************************************************************/
208 int rmmd_setup(void)
209 {
210 	size_t shared_buf_size __unused;
211 	uintptr_t shared_buf_base;
212 	uint32_t ep_attr;
213 	unsigned int linear_id = plat_my_core_pos();
214 	rmmd_rmm_context_t *rmm_ctx = &rmm_context[linear_id];
215 	struct rmm_manifest *manifest;
216 	int rc;
217 
218 	/* Make sure RME is supported. */
219 	if (is_feat_rme_present() == 0U) {
220 		/* Mark the RMM boot as failed for all the CPUs */
221 		rmm_boot_failed = true;
222 		return -ENOTSUP;
223 	}
224 
225 	rmm_ep_info = bl31_plat_get_next_image_ep_info(REALM);
226 	if ((rmm_ep_info == NULL) || (rmm_ep_info->pc == 0)) {
227 		WARN("No RMM image provided by BL2 boot loader, Booting "
228 		     "device without RMM initialization. SMCs destined for "
229 		     "RMM will return SMC_UNK\n");
230 
231 		/* Mark the boot as failed for all the CPUs */
232 		rmm_boot_failed = true;
233 		return -ENOENT;
234 	}
235 
236 	/* Initialise an entrypoint to set up the CPU context */
237 	ep_attr = EP_REALM;
238 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U) {
239 		ep_attr |= EP_EE_BIG;
240 	}
241 
242 	SET_PARAM_HEAD(rmm_ep_info, PARAM_EP, VERSION_1, ep_attr);
243 	rmm_ep_info->spsr = SPSR_64(MODE_EL2,
244 					MODE_SP_ELX,
245 					DISABLE_ALL_EXCEPTIONS);
246 
247 	shared_buf_size =
248 			plat_rmmd_get_el3_rmm_shared_mem(&shared_buf_base);
249 
250 	assert((shared_buf_size == SZ_4K) &&
251 					((void *)shared_buf_base != NULL));
252 
253 	/* Zero out and load the boot manifest at the beginning of the share area */
254 	manifest = (struct rmm_manifest *)shared_buf_base;
255 	(void)memset((void *)manifest, 0, sizeof(struct rmm_manifest));
256 
257 	rc = plat_rmmd_load_manifest(manifest);
258 	if (rc != 0) {
259 		ERROR("Error loading RMM Boot Manifest (%i)\n", rc);
260 		/* Mark the boot as failed for all the CPUs */
261 		rmm_boot_failed = true;
262 		return rc;
263 	}
264 	flush_dcache_range((uintptr_t)shared_buf_base, shared_buf_size);
265 
266 	/*
267 	 * Prepare coldboot arguments for RMM:
268 	 * arg0: This CPUID (primary processor).
269 	 * arg1: Version for this Boot Interface.
270 	 * arg2: PLATFORM_CORE_COUNT.
271 	 * arg3: Base address for the EL3 <-> RMM shared area. The boot
272 	 *       manifest will be stored at the beginning of this area.
273 	 */
274 	rmm_ep_info->args.arg0 = linear_id;
275 	rmm_ep_info->args.arg1 = RMM_EL3_INTERFACE_VERSION;
276 	rmm_ep_info->args.arg2 = PLATFORM_CORE_COUNT;
277 	rmm_ep_info->args.arg3 = shared_buf_base;
278 
279 	/* Initialise RMM context with this entry point information */
280 	cm_setup_context(&rmm_ctx->cpu_ctx, rmm_ep_info);
281 
282 	INFO("RMM setup done.\n");
283 
284 	/* Register init function for deferred init.  */
285 	bl31_register_rmm_init(&rmm_init);
286 
287 	return 0;
288 }
289 
290 /*******************************************************************************
291  * Forward SMC to the other security state
292  ******************************************************************************/
293 static uint64_t	rmmd_smc_forward(uint32_t src_sec_state,
294 				 uint32_t dst_sec_state, uint64_t x0,
295 				 uint64_t x1, uint64_t x2, uint64_t x3,
296 				 uint64_t x4, void *handle)
297 {
298 	cpu_context_t *ctx = cm_get_context(dst_sec_state);
299 
300 	/* Save incoming security state */
301 	cm_el2_sysregs_context_save(src_sec_state);
302 
303 	/* Restore outgoing security state */
304 	cm_el2_sysregs_context_restore(dst_sec_state);
305 	cm_set_next_eret_context(dst_sec_state);
306 
307 	/*
308 	 * As per SMCCCv1.2, we need to preserve x4 to x7 unless
309 	 * being used as return args. Hence we differentiate the
310 	 * onward and backward path. Support upto 8 args in the
311 	 * onward path and 4 args in return path.
312 	 * Register x4 will be preserved by RMM in case it is not
313 	 * used in return path.
314 	 */
315 	if (src_sec_state == NON_SECURE) {
316 		SMC_RET8(ctx, x0, x1, x2, x3, x4,
317 			 SMC_GET_GP(handle, CTX_GPREG_X5),
318 			 SMC_GET_GP(handle, CTX_GPREG_X6),
319 			 SMC_GET_GP(handle, CTX_GPREG_X7));
320 	}
321 
322 	SMC_RET5(ctx, x0, x1, x2, x3, x4);
323 }
324 
325 /*******************************************************************************
326  * This function handles all SMCs in the range reserved for RMI. Each call is
327  * either forwarded to the other security state or handled by the RMM dispatcher
328  ******************************************************************************/
329 uint64_t rmmd_rmi_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2,
330 			  uint64_t x3, uint64_t x4, void *cookie,
331 			  void *handle, uint64_t flags)
332 {
333 	uint32_t src_sec_state;
334 
335 	/* If RMM failed to boot, treat any RMI SMC as unknown */
336 	if (rmm_boot_failed) {
337 		WARN("RMMD: Failed to boot up RMM. Ignoring RMI call\n");
338 		SMC_RET1(handle, SMC_UNK);
339 	}
340 
341 	/* Determine which security state this SMC originated from */
342 	src_sec_state = caller_sec_state(flags);
343 
344 	/* RMI must not be invoked by the Secure world */
345 	if (src_sec_state == SMC_FROM_SECURE) {
346 		WARN("RMMD: RMI invoked by secure world.\n");
347 		SMC_RET1(handle, SMC_UNK);
348 	}
349 
350 	/*
351 	 * Forward an RMI call from the Normal world to the Realm world as it
352 	 * is.
353 	 */
354 	if (src_sec_state == SMC_FROM_NON_SECURE) {
355 		/*
356 		 * If SVE hint bit is set in the flags then update the SMC
357 		 * function id and pass it on to the lower EL.
358 		 */
359 		if (is_sve_hint_set(flags)) {
360 			smc_fid |= (FUNCID_SVE_HINT_MASK <<
361 				    FUNCID_SVE_HINT_SHIFT);
362 		}
363 		VERBOSE("RMMD: RMI call from non-secure world.\n");
364 		return rmmd_smc_forward(NON_SECURE, REALM, smc_fid,
365 					x1, x2, x3, x4, handle);
366 	}
367 
368 	if (src_sec_state != SMC_FROM_REALM) {
369 		SMC_RET1(handle, SMC_UNK);
370 	}
371 
372 	switch (smc_fid) {
373 	case RMM_RMI_REQ_COMPLETE: {
374 		uint64_t x5 = SMC_GET_GP(handle, CTX_GPREG_X5);
375 
376 		return rmmd_smc_forward(REALM, NON_SECURE, x1,
377 					x2, x3, x4, x5, handle);
378 	}
379 	default:
380 		WARN("RMMD: Unsupported RMM call 0x%08x\n", smc_fid);
381 		SMC_RET1(handle, SMC_UNK);
382 	}
383 }
384 
385 /*******************************************************************************
386  * This cpu has been turned on. Enter RMM to initialise R-EL2.  Entry into RMM
387  * is done after initialising minimal architectural state that guarantees safe
388  * execution.
389  ******************************************************************************/
390 static void *rmmd_cpu_on_finish_handler(const void *arg)
391 {
392 	long rc;
393 	uint32_t linear_id = plat_my_core_pos();
394 	rmmd_rmm_context_t *ctx = &rmm_context[linear_id];
395 
396 	if (rmm_boot_failed) {
397 		/* RMM Boot failed on a previous CPU. Abort. */
398 		ERROR("RMM Failed to initialize. Ignoring for CPU%d\n",
399 								linear_id);
400 		return NULL;
401 	}
402 
403 	/*
404 	 * Prepare warmboot arguments for RMM:
405 	 * arg0: This CPUID.
406 	 * arg1 to arg3: Not used.
407 	 */
408 	rmm_ep_info->args.arg0 = linear_id;
409 	rmm_ep_info->args.arg1 = 0ULL;
410 	rmm_ep_info->args.arg2 = 0ULL;
411 	rmm_ep_info->args.arg3 = 0ULL;
412 
413 	/* Initialise RMM context with this entry point information */
414 	cm_setup_context(&ctx->cpu_ctx, rmm_ep_info);
415 
416 	/* Enable architecture extensions */
417 	manage_extensions_realm(&ctx->cpu_ctx);
418 
419 	/* Initialize RMM EL2 context. */
420 	rmm_el2_context_init(&ctx->cpu_ctx.el2_sysregs_ctx);
421 
422 	rc = rmmd_rmm_sync_entry(ctx);
423 
424 	if (rc != E_RMM_BOOT_SUCCESS) {
425 		ERROR("RMM init failed on CPU%d: %ld\n", linear_id, rc);
426 		/* Mark the boot as failed for any other booting CPU */
427 		rmm_boot_failed = true;
428 	}
429 
430 	return NULL;
431 }
432 
433 /* Subscribe to PSCI CPU on to initialize RMM on secondary */
434 SUBSCRIBE_TO_EVENT(psci_cpu_on_finish, rmmd_cpu_on_finish_handler);
435 
436 /* Convert GPT lib error to RMMD GTS error */
437 static int gpt_to_gts_error(int error, uint32_t smc_fid, uint64_t address)
438 {
439 	int ret;
440 
441 	if (error == 0) {
442 		return E_RMM_OK;
443 	}
444 
445 	if (error == -EINVAL) {
446 		ret = E_RMM_BAD_ADDR;
447 	} else {
448 		/* This is the only other error code we expect */
449 		assert(error == -EPERM);
450 		ret = E_RMM_BAD_PAS;
451 	}
452 
453 	ERROR("RMMD: PAS Transition failed. GPT ret = %d, PA: 0x%"PRIx64 ", FID = 0x%x\n",
454 				error, address, smc_fid);
455 	return ret;
456 }
457 
458 static int rmm_el3_ifc_get_feat_register(uint64_t feat_reg_idx,
459 					 uint64_t *feat_reg)
460 {
461 	if (feat_reg_idx != RMM_EL3_FEAT_REG_0_IDX) {
462 		ERROR("RMMD: Failed to get feature register %ld\n", feat_reg_idx);
463 		return E_RMM_INVAL;
464 	}
465 
466 	*feat_reg = 0UL;
467 #if RMMD_ENABLE_EL3_TOKEN_SIGN
468 	*feat_reg |= RMM_EL3_FEAT_REG_0_EL3_TOKEN_SIGN_MASK;
469 #endif
470 	return E_RMM_OK;
471 }
472 
473 /*******************************************************************************
474  * This function handles RMM-EL3 interface SMCs
475  ******************************************************************************/
476 uint64_t rmmd_rmm_el3_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2,
477 				uint64_t x3, uint64_t x4, void *cookie,
478 				void *handle, uint64_t flags)
479 {
480 	uint64_t remaining_len = 0UL;
481 	uint32_t src_sec_state;
482 	int ret;
483 
484 	/* If RMM failed to boot, treat any RMM-EL3 interface SMC as unknown */
485 	if (rmm_boot_failed) {
486 		WARN("RMMD: Failed to boot up RMM. Ignoring RMM-EL3 call\n");
487 		SMC_RET1(handle, SMC_UNK);
488 	}
489 
490 	/* Determine which security state this SMC originated from */
491 	src_sec_state = caller_sec_state(flags);
492 
493 	if (src_sec_state != SMC_FROM_REALM) {
494 		WARN("RMMD: RMM-EL3 call originated from secure or normal world\n");
495 		SMC_RET1(handle, SMC_UNK);
496 	}
497 
498 	switch (smc_fid) {
499 	case RMM_GTSI_DELEGATE:
500 		ret = gpt_delegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM);
501 		SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1));
502 	case RMM_GTSI_UNDELEGATE:
503 		ret = gpt_undelegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM);
504 		SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1));
505 	case RMM_ATTEST_GET_PLAT_TOKEN:
506 		ret = rmmd_attest_get_platform_token(x1, &x2, x3, &remaining_len);
507 		SMC_RET3(handle, ret, x2, remaining_len);
508 	case RMM_ATTEST_GET_REALM_KEY:
509 		ret = rmmd_attest_get_signing_key(x1, &x2, x3);
510 		SMC_RET2(handle, ret, x2);
511 	case RMM_EL3_FEATURES:
512 		ret = rmm_el3_ifc_get_feat_register(x1, &x2);
513 		SMC_RET2(handle, ret, x2);
514 #if RMMD_ENABLE_EL3_TOKEN_SIGN
515 	case RMM_EL3_TOKEN_SIGN:
516 		return rmmd_el3_token_sign(handle, x1, x2, x3, x4);
517 #endif
518 	case RMM_BOOT_COMPLETE:
519 		VERBOSE("RMMD: running rmmd_rmm_sync_exit\n");
520 		rmmd_rmm_sync_exit(x1);
521 
522 	default:
523 		WARN("RMMD: Unsupported RMM-EL3 call 0x%08x\n", smc_fid);
524 		SMC_RET1(handle, SMC_UNK);
525 	}
526 }
527