1 /* 2 * Copyright (c) 2021-2023, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <errno.h> 9 #include <inttypes.h> 10 #include <stdint.h> 11 #include <string.h> 12 13 #include <arch_helpers.h> 14 #include <arch_features.h> 15 #include <bl31/bl31.h> 16 #include <common/debug.h> 17 #include <common/runtime_svc.h> 18 #include <context.h> 19 #include <lib/el3_runtime/context_mgmt.h> 20 #include <lib/el3_runtime/cpu_data.h> 21 #include <lib/el3_runtime/pubsub.h> 22 #include <lib/extensions/pmuv3.h> 23 #include <lib/extensions/sys_reg_trace.h> 24 #include <lib/gpt_rme/gpt_rme.h> 25 26 #include <lib/spinlock.h> 27 #include <lib/utils.h> 28 #include <lib/xlat_tables/xlat_tables_v2.h> 29 #include <plat/common/common_def.h> 30 #include <plat/common/platform.h> 31 #include <platform_def.h> 32 #include <services/rmmd_svc.h> 33 #include <smccc_helpers.h> 34 #include <lib/extensions/sme.h> 35 #include <lib/extensions/sve.h> 36 #include "rmmd_initial_context.h" 37 #include "rmmd_private.h" 38 39 /******************************************************************************* 40 * RMM boot failure flag 41 ******************************************************************************/ 42 static bool rmm_boot_failed; 43 44 /******************************************************************************* 45 * RMM context information. 46 ******************************************************************************/ 47 rmmd_rmm_context_t rmm_context[PLATFORM_CORE_COUNT]; 48 49 /******************************************************************************* 50 * RMM entry point information. Discovered on the primary core and reused 51 * on secondary cores. 52 ******************************************************************************/ 53 static entry_point_info_t *rmm_ep_info; 54 55 /******************************************************************************* 56 * Static function declaration. 57 ******************************************************************************/ 58 static int32_t rmm_init(void); 59 60 /******************************************************************************* 61 * This function takes an RMM context pointer and performs a synchronous entry 62 * into it. 63 ******************************************************************************/ 64 uint64_t rmmd_rmm_sync_entry(rmmd_rmm_context_t *rmm_ctx) 65 { 66 uint64_t rc; 67 68 assert(rmm_ctx != NULL); 69 70 cm_set_context(&(rmm_ctx->cpu_ctx), REALM); 71 72 /* Restore the realm context assigned above */ 73 cm_el1_sysregs_context_restore(REALM); 74 cm_el2_sysregs_context_restore(REALM); 75 cm_set_next_eret_context(REALM); 76 77 /* Enter RMM */ 78 rc = rmmd_rmm_enter(&rmm_ctx->c_rt_ctx); 79 80 /* 81 * Save realm context. EL1 and EL2 Non-secure 82 * contexts will be restored before exiting to 83 * Non-secure world, therefore there is no need 84 * to clear EL1 and EL2 context registers. 85 */ 86 cm_el1_sysregs_context_save(REALM); 87 cm_el2_sysregs_context_save(REALM); 88 89 return rc; 90 } 91 92 /******************************************************************************* 93 * This function returns to the place where rmmd_rmm_sync_entry() was 94 * called originally. 95 ******************************************************************************/ 96 __dead2 void rmmd_rmm_sync_exit(uint64_t rc) 97 { 98 rmmd_rmm_context_t *ctx = &rmm_context[plat_my_core_pos()]; 99 100 /* Get context of the RMM in use by this CPU. */ 101 assert(cm_get_context(REALM) == &(ctx->cpu_ctx)); 102 103 /* 104 * The RMMD must have initiated the original request through a 105 * synchronous entry into RMM. Jump back to the original C runtime 106 * context with the value of rc in x0; 107 */ 108 rmmd_rmm_exit(ctx->c_rt_ctx, rc); 109 110 panic(); 111 } 112 113 static void rmm_el2_context_init(el2_sysregs_t *regs) 114 { 115 regs->ctx_regs[CTX_SPSR_EL2 >> 3] = REALM_SPSR_EL2; 116 regs->ctx_regs[CTX_SCTLR_EL2 >> 3] = SCTLR_EL2_RES1; 117 } 118 119 /******************************************************************************* 120 * Enable architecture extensions on first entry to Realm world. 121 ******************************************************************************/ 122 123 static void manage_extensions_realm(cpu_context_t *ctx) 124 { 125 pmuv3_enable(ctx); 126 127 /* 128 * If SME/SME2 is supported and enabled for NS world, then enables SME 129 * for Realm world. RMM will save/restore required registers that are 130 * shared with SVE/FPU so that Realm can use FPU or SVE. 131 */ 132 if (is_feat_sme_supported()) { 133 /* sme_enable() also enables SME2 if supported by hardware */ 134 sme_enable(ctx); 135 } 136 } 137 138 #if IMAGE_BL31 139 static void manage_extensions_realm_per_world(void) 140 { 141 if (is_feat_sve_supported()) { 142 /* 143 * Enable SVE and FPU in realm context when it is enabled for NS. 144 * Realm manager must ensure that the SVE and FPU register 145 * contexts are properly managed. 146 */ 147 sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]); 148 } 149 150 /* NS can access this but Realm shouldn't */ 151 if (is_feat_sys_reg_trace_supported()) { 152 sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]); 153 } 154 155 } 156 #endif /* IMAGE_BL31 */ 157 158 /******************************************************************************* 159 * Jump to the RMM for the first time. 160 ******************************************************************************/ 161 static int32_t rmm_init(void) 162 { 163 long rc; 164 rmmd_rmm_context_t *ctx = &rmm_context[plat_my_core_pos()]; 165 166 INFO("RMM init start.\n"); 167 168 /* Enable architecture extensions */ 169 manage_extensions_realm(&ctx->cpu_ctx); 170 171 manage_extensions_realm_per_world(); 172 173 /* Initialize RMM EL2 context. */ 174 rmm_el2_context_init(&ctx->cpu_ctx.el2_sysregs_ctx); 175 176 rc = rmmd_rmm_sync_entry(ctx); 177 if (rc != E_RMM_BOOT_SUCCESS) { 178 ERROR("RMM init failed: %ld\n", rc); 179 /* Mark the boot as failed for all the CPUs */ 180 rmm_boot_failed = true; 181 return 0; 182 } 183 184 INFO("RMM init end.\n"); 185 186 return 1; 187 } 188 189 /******************************************************************************* 190 * Load and read RMM manifest, setup RMM. 191 ******************************************************************************/ 192 int rmmd_setup(void) 193 { 194 size_t shared_buf_size __unused; 195 uintptr_t shared_buf_base; 196 uint32_t ep_attr; 197 unsigned int linear_id = plat_my_core_pos(); 198 rmmd_rmm_context_t *rmm_ctx = &rmm_context[linear_id]; 199 struct rmm_manifest *manifest; 200 int rc; 201 202 /* Make sure RME is supported. */ 203 assert(get_armv9_2_feat_rme_support() != 0U); 204 205 rmm_ep_info = bl31_plat_get_next_image_ep_info(REALM); 206 if (rmm_ep_info == NULL) { 207 WARN("No RMM image provided by BL2 boot loader, Booting " 208 "device without RMM initialization. SMCs destined for " 209 "RMM will return SMC_UNK\n"); 210 return -ENOENT; 211 } 212 213 /* Under no circumstances will this parameter be 0 */ 214 assert(rmm_ep_info->pc == RMM_BASE); 215 216 /* Initialise an entrypoint to set up the CPU context */ 217 ep_attr = EP_REALM; 218 if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U) { 219 ep_attr |= EP_EE_BIG; 220 } 221 222 SET_PARAM_HEAD(rmm_ep_info, PARAM_EP, VERSION_1, ep_attr); 223 rmm_ep_info->spsr = SPSR_64(MODE_EL2, 224 MODE_SP_ELX, 225 DISABLE_ALL_EXCEPTIONS); 226 227 shared_buf_size = 228 plat_rmmd_get_el3_rmm_shared_mem(&shared_buf_base); 229 230 assert((shared_buf_size == SZ_4K) && 231 ((void *)shared_buf_base != NULL)); 232 233 /* Load the boot manifest at the beginning of the shared area */ 234 manifest = (struct rmm_manifest *)shared_buf_base; 235 rc = plat_rmmd_load_manifest(manifest); 236 if (rc != 0) { 237 ERROR("Error loading RMM Boot Manifest (%i)\n", rc); 238 return rc; 239 } 240 flush_dcache_range((uintptr_t)shared_buf_base, shared_buf_size); 241 242 /* 243 * Prepare coldboot arguments for RMM: 244 * arg0: This CPUID (primary processor). 245 * arg1: Version for this Boot Interface. 246 * arg2: PLATFORM_CORE_COUNT. 247 * arg3: Base address for the EL3 <-> RMM shared area. The boot 248 * manifest will be stored at the beginning of this area. 249 */ 250 rmm_ep_info->args.arg0 = linear_id; 251 rmm_ep_info->args.arg1 = RMM_EL3_INTERFACE_VERSION; 252 rmm_ep_info->args.arg2 = PLATFORM_CORE_COUNT; 253 rmm_ep_info->args.arg3 = shared_buf_base; 254 255 /* Initialise RMM context with this entry point information */ 256 cm_setup_context(&rmm_ctx->cpu_ctx, rmm_ep_info); 257 258 INFO("RMM setup done.\n"); 259 260 /* Register init function for deferred init. */ 261 bl31_register_rmm_init(&rmm_init); 262 263 return 0; 264 } 265 266 /******************************************************************************* 267 * Forward SMC to the other security state 268 ******************************************************************************/ 269 static uint64_t rmmd_smc_forward(uint32_t src_sec_state, 270 uint32_t dst_sec_state, uint64_t x0, 271 uint64_t x1, uint64_t x2, uint64_t x3, 272 uint64_t x4, void *handle) 273 { 274 cpu_context_t *ctx = cm_get_context(dst_sec_state); 275 276 /* Save incoming security state */ 277 cm_el1_sysregs_context_save(src_sec_state); 278 cm_el2_sysregs_context_save(src_sec_state); 279 280 /* Restore outgoing security state */ 281 cm_el1_sysregs_context_restore(dst_sec_state); 282 cm_el2_sysregs_context_restore(dst_sec_state); 283 cm_set_next_eret_context(dst_sec_state); 284 285 /* 286 * As per SMCCCv1.2, we need to preserve x4 to x7 unless 287 * being used as return args. Hence we differentiate the 288 * onward and backward path. Support upto 8 args in the 289 * onward path and 4 args in return path. 290 * Register x4 will be preserved by RMM in case it is not 291 * used in return path. 292 */ 293 if (src_sec_state == NON_SECURE) { 294 SMC_RET8(ctx, x0, x1, x2, x3, x4, 295 SMC_GET_GP(handle, CTX_GPREG_X5), 296 SMC_GET_GP(handle, CTX_GPREG_X6), 297 SMC_GET_GP(handle, CTX_GPREG_X7)); 298 } 299 300 SMC_RET5(ctx, x0, x1, x2, x3, x4); 301 } 302 303 /******************************************************************************* 304 * This function handles all SMCs in the range reserved for RMI. Each call is 305 * either forwarded to the other security state or handled by the RMM dispatcher 306 ******************************************************************************/ 307 uint64_t rmmd_rmi_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, 308 uint64_t x3, uint64_t x4, void *cookie, 309 void *handle, uint64_t flags) 310 { 311 uint32_t src_sec_state; 312 313 /* If RMM failed to boot, treat any RMI SMC as unknown */ 314 if (rmm_boot_failed) { 315 WARN("RMMD: Failed to boot up RMM. Ignoring RMI call\n"); 316 SMC_RET1(handle, SMC_UNK); 317 } 318 319 /* Determine which security state this SMC originated from */ 320 src_sec_state = caller_sec_state(flags); 321 322 /* RMI must not be invoked by the Secure world */ 323 if (src_sec_state == SMC_FROM_SECURE) { 324 WARN("RMMD: RMI invoked by secure world.\n"); 325 SMC_RET1(handle, SMC_UNK); 326 } 327 328 /* 329 * Forward an RMI call from the Normal world to the Realm world as it 330 * is. 331 */ 332 if (src_sec_state == SMC_FROM_NON_SECURE) { 333 /* 334 * If SVE hint bit is set in the flags then update the SMC 335 * function id and pass it on to the lower EL. 336 */ 337 if (is_sve_hint_set(flags)) { 338 smc_fid |= (FUNCID_SVE_HINT_MASK << 339 FUNCID_SVE_HINT_SHIFT); 340 } 341 VERBOSE("RMMD: RMI call from non-secure world.\n"); 342 return rmmd_smc_forward(NON_SECURE, REALM, smc_fid, 343 x1, x2, x3, x4, handle); 344 } 345 346 if (src_sec_state != SMC_FROM_REALM) { 347 SMC_RET1(handle, SMC_UNK); 348 } 349 350 switch (smc_fid) { 351 case RMM_RMI_REQ_COMPLETE: { 352 uint64_t x5 = SMC_GET_GP(handle, CTX_GPREG_X5); 353 354 return rmmd_smc_forward(REALM, NON_SECURE, x1, 355 x2, x3, x4, x5, handle); 356 } 357 default: 358 WARN("RMMD: Unsupported RMM call 0x%08x\n", smc_fid); 359 SMC_RET1(handle, SMC_UNK); 360 } 361 } 362 363 /******************************************************************************* 364 * This cpu has been turned on. Enter RMM to initialise R-EL2. Entry into RMM 365 * is done after initialising minimal architectural state that guarantees safe 366 * execution. 367 ******************************************************************************/ 368 static void *rmmd_cpu_on_finish_handler(const void *arg) 369 { 370 long rc; 371 uint32_t linear_id = plat_my_core_pos(); 372 rmmd_rmm_context_t *ctx = &rmm_context[linear_id]; 373 374 if (rmm_boot_failed) { 375 /* RMM Boot failed on a previous CPU. Abort. */ 376 ERROR("RMM Failed to initialize. Ignoring for CPU%d\n", 377 linear_id); 378 return NULL; 379 } 380 381 /* 382 * Prepare warmboot arguments for RMM: 383 * arg0: This CPUID. 384 * arg1 to arg3: Not used. 385 */ 386 rmm_ep_info->args.arg0 = linear_id; 387 rmm_ep_info->args.arg1 = 0ULL; 388 rmm_ep_info->args.arg2 = 0ULL; 389 rmm_ep_info->args.arg3 = 0ULL; 390 391 /* Initialise RMM context with this entry point information */ 392 cm_setup_context(&ctx->cpu_ctx, rmm_ep_info); 393 394 /* Enable architecture extensions */ 395 manage_extensions_realm(&ctx->cpu_ctx); 396 397 /* Initialize RMM EL2 context. */ 398 rmm_el2_context_init(&ctx->cpu_ctx.el2_sysregs_ctx); 399 400 rc = rmmd_rmm_sync_entry(ctx); 401 402 if (rc != E_RMM_BOOT_SUCCESS) { 403 ERROR("RMM init failed on CPU%d: %ld\n", linear_id, rc); 404 /* Mark the boot as failed for any other booting CPU */ 405 rmm_boot_failed = true; 406 } 407 408 return NULL; 409 } 410 411 /* Subscribe to PSCI CPU on to initialize RMM on secondary */ 412 SUBSCRIBE_TO_EVENT(psci_cpu_on_finish, rmmd_cpu_on_finish_handler); 413 414 /* Convert GPT lib error to RMMD GTS error */ 415 static int gpt_to_gts_error(int error, uint32_t smc_fid, uint64_t address) 416 { 417 int ret; 418 419 if (error == 0) { 420 return E_RMM_OK; 421 } 422 423 if (error == -EINVAL) { 424 ret = E_RMM_BAD_ADDR; 425 } else { 426 /* This is the only other error code we expect */ 427 assert(error == -EPERM); 428 ret = E_RMM_BAD_PAS; 429 } 430 431 ERROR("RMMD: PAS Transition failed. GPT ret = %d, PA: 0x%"PRIx64 ", FID = 0x%x\n", 432 error, address, smc_fid); 433 return ret; 434 } 435 436 /******************************************************************************* 437 * This function handles RMM-EL3 interface SMCs 438 ******************************************************************************/ 439 uint64_t rmmd_rmm_el3_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, 440 uint64_t x3, uint64_t x4, void *cookie, 441 void *handle, uint64_t flags) 442 { 443 uint32_t src_sec_state; 444 int ret; 445 446 /* If RMM failed to boot, treat any RMM-EL3 interface SMC as unknown */ 447 if (rmm_boot_failed) { 448 WARN("RMMD: Failed to boot up RMM. Ignoring RMM-EL3 call\n"); 449 SMC_RET1(handle, SMC_UNK); 450 } 451 452 /* Determine which security state this SMC originated from */ 453 src_sec_state = caller_sec_state(flags); 454 455 if (src_sec_state != SMC_FROM_REALM) { 456 WARN("RMMD: RMM-EL3 call originated from secure or normal world\n"); 457 SMC_RET1(handle, SMC_UNK); 458 } 459 460 switch (smc_fid) { 461 case RMM_GTSI_DELEGATE: 462 ret = gpt_delegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM); 463 SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1)); 464 case RMM_GTSI_UNDELEGATE: 465 ret = gpt_undelegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM); 466 SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1)); 467 case RMM_ATTEST_GET_PLAT_TOKEN: 468 ret = rmmd_attest_get_platform_token(x1, &x2, x3); 469 SMC_RET2(handle, ret, x2); 470 case RMM_ATTEST_GET_REALM_KEY: 471 ret = rmmd_attest_get_signing_key(x1, &x2, x3); 472 SMC_RET2(handle, ret, x2); 473 474 case RMM_BOOT_COMPLETE: 475 VERBOSE("RMMD: running rmmd_rmm_sync_exit\n"); 476 rmmd_rmm_sync_exit(x1); 477 478 default: 479 WARN("RMMD: Unsupported RMM-EL3 call 0x%08x\n", smc_fid); 480 SMC_RET1(handle, SMC_UNK); 481 } 482 } 483