xref: /rk3399_ARM-atf/services/std_svc/rmmd/rmmd_main.c (revision 8e85be4474baa2a51542d396d430d0441db55296)
1 /*
2  * Copyright (c) 2021-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <stdint.h>
11 #include <string.h>
12 
13 #include <arch_helpers.h>
14 #include <arch_features.h>
15 #include <bl31/bl31.h>
16 #include <common/debug.h>
17 #include <common/runtime_svc.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/cpu_data.h>
21 #include <lib/el3_runtime/pubsub.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/pmuv3.h>
24 #include <lib/extensions/sys_reg_trace.h>
25 #include <lib/gpt_rme/gpt_rme.h>
26 #include <lib/per_cpu/per_cpu.h>
27 
28 #include <lib/spinlock.h>
29 #include <lib/utils.h>
30 #include <lib/xlat_tables/xlat_tables_v2.h>
31 #include <plat/common/common_def.h>
32 #include <plat/common/platform.h>
33 #include <platform_def.h>
34 #include <services/rmmd_svc.h>
35 #include <smccc_helpers.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/spe.h>
39 #include <lib/extensions/trbe.h>
40 #include "rmmd_private.h"
41 
42 #define MECID_SHIFT			U(32)
43 #define MECID_MASK			0xFFFFU
44 
45 #define MEC_REFRESH_REASON_SHIFT	U(0)
46 #define MEC_REFRESH_REASON_MASK		BIT(0)
47 
48 /*******************************************************************************
49  * RMM boot failure flag
50  ******************************************************************************/
51 static bool rmm_boot_failed;
52 
53 /*******************************************************************************
54  * RMM context information.
55  ******************************************************************************/
56 PER_CPU_DEFINE(rmmd_rmm_context_t, rmm_context);
57 
58 /*******************************************************************************
59  * RMM entry point information. Discovered on the primary core and reused
60  * on secondary cores.
61  ******************************************************************************/
62 static entry_point_info_t *rmm_ep_info;
63 
64 /*******************************************************************************
65  * Static function declaration.
66  ******************************************************************************/
67 static int32_t rmm_init(void);
68 
69 /*******************************************************************************
70  * This function takes an RMM context pointer and performs a synchronous entry
71  * into it.
72  ******************************************************************************/
73 uint64_t rmmd_rmm_sync_entry(rmmd_rmm_context_t *rmm_ctx)
74 {
75 	uint64_t rc;
76 
77 	assert(rmm_ctx != NULL);
78 
79 	cm_set_context(&(rmm_ctx->cpu_ctx), REALM);
80 
81 	/* Restore the realm context assigned above */
82 	cm_el2_sysregs_context_restore(REALM);
83 	cm_set_next_eret_context(REALM);
84 
85 	/* Enter RMM */
86 	rc = rmmd_rmm_enter(&rmm_ctx->c_rt_ctx);
87 
88 	/*
89 	 * Save realm context. EL2 Non-secure context will be restored
90 	 * before exiting Non-secure world, therefore there is no need
91 	 * to clear EL2 context registers.
92 	 */
93 	cm_el2_sysregs_context_save(REALM);
94 
95 	return rc;
96 }
97 
98 /*******************************************************************************
99  * This function returns to the place where rmmd_rmm_sync_entry() was
100  * called originally.
101  ******************************************************************************/
102 __dead2 void rmmd_rmm_sync_exit(uint64_t rc)
103 {
104 	rmmd_rmm_context_t *ctx = PER_CPU_CUR(rmm_context);
105 
106 	/* Get context of the RMM in use by this CPU. */
107 	assert(cm_get_context(REALM) == &(ctx->cpu_ctx));
108 
109 	/*
110 	 * The RMMD must have initiated the original request through a
111 	 * synchronous entry into RMM. Jump back to the original C runtime
112 	 * context with the value of rc in x0;
113 	 */
114 	rmmd_rmm_exit(ctx->c_rt_ctx, rc);
115 
116 	panic();
117 }
118 
119 /*******************************************************************************
120  * Jump to the RMM for the first time.
121  ******************************************************************************/
122 static int32_t rmm_init(void)
123 {
124 	long rc;
125 	rmmd_rmm_context_t *ctx = PER_CPU_CUR(rmm_context);
126 
127 	INFO("RMM init start.\n");
128 
129 	rc = rmmd_rmm_sync_entry(ctx);
130 	if (rc != E_RMM_BOOT_SUCCESS) {
131 		ERROR("RMM init failed: %ld\n", rc);
132 		/* Mark the boot as failed for all the CPUs */
133 		rmm_boot_failed = true;
134 		return 0;
135 	}
136 
137 	INFO("RMM init end.\n");
138 
139 	return 1;
140 }
141 
142 /*******************************************************************************
143  * Load and read RMM manifest, setup RMM.
144  ******************************************************************************/
145 int rmmd_setup(void)
146 {
147 	size_t shared_buf_size __unused;
148 	uintptr_t shared_buf_base;
149 	uint32_t ep_attr;
150 	unsigned int linear_id = plat_my_core_pos();
151 
152 	rmmd_rmm_context_t *rmm_ctx = PER_CPU_CUR(rmm_context);
153 	struct rmm_manifest *manifest;
154 	int rc;
155 
156 	/* Make sure RME is supported. */
157 	if (is_feat_rme_present() == 0U) {
158 		/* Mark the RMM boot as failed for all the CPUs */
159 		rmm_boot_failed = true;
160 		return -ENOTSUP;
161 	}
162 
163 	rmm_ep_info = bl31_plat_get_next_image_ep_info(REALM);
164 	if ((rmm_ep_info == NULL) || (rmm_ep_info->pc == 0)) {
165 		WARN("No RMM image provided by BL2 boot loader, Booting "
166 		     "device without RMM initialization. SMCs destined for "
167 		     "RMM will return SMC_UNK\n");
168 
169 		/* Mark the boot as failed for all the CPUs */
170 		rmm_boot_failed = true;
171 		return -ENOENT;
172 	}
173 
174 	/* Initialise an entrypoint to set up the CPU context */
175 	ep_attr = EP_REALM;
176 	if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U) {
177 		ep_attr |= EP_EE_BIG;
178 	}
179 
180 	SET_PARAM_HEAD(rmm_ep_info, PARAM_EP, VERSION_1, ep_attr);
181 	rmm_ep_info->spsr = SPSR_64(MODE_EL2,
182 					MODE_SP_ELX,
183 					DISABLE_ALL_EXCEPTIONS);
184 
185 	shared_buf_size =
186 			plat_rmmd_get_el3_rmm_shared_mem(&shared_buf_base);
187 
188 	assert((shared_buf_size == SZ_4K) &&
189 					((void *)shared_buf_base != NULL));
190 
191 	/* Zero out and load the boot manifest at the beginning of the share area */
192 	manifest = (struct rmm_manifest *)shared_buf_base;
193 	(void)memset((void *)manifest, 0, sizeof(struct rmm_manifest));
194 
195 	rc = plat_rmmd_load_manifest(manifest);
196 	if (rc != 0) {
197 		ERROR("Error loading RMM Boot Manifest (%i)\n", rc);
198 		/* Mark the boot as failed for all the CPUs */
199 		rmm_boot_failed = true;
200 		return rc;
201 	}
202 	flush_dcache_range((uintptr_t)shared_buf_base, shared_buf_size);
203 
204 	/*
205 	 * Prepare coldboot arguments for RMM:
206 	 * arg0: This CPUID (primary processor).
207 	 * arg1: Version for this Boot Interface.
208 	 * arg2: PLATFORM_CORE_COUNT.
209 	 * arg3: Base address for the EL3 <-> RMM shared area. The boot
210 	 *       manifest will be stored at the beginning of this area.
211 	 * arg4: opaque activation token, as returned by previous calls
212 	 */
213 	rmm_ep_info->args.arg0 = linear_id;
214 	rmm_ep_info->args.arg1 = RMM_EL3_INTERFACE_VERSION;
215 	rmm_ep_info->args.arg2 = PLATFORM_CORE_COUNT;
216 	rmm_ep_info->args.arg3 = shared_buf_base;
217 	rmm_ep_info->args.arg4 = rmm_ctx->activation_token;
218 
219 	/* Initialise RMM context with this entry point information */
220 	cm_setup_context(&rmm_ctx->cpu_ctx, rmm_ep_info);
221 
222 	INFO("RMM setup done.\n");
223 
224 	/* Register init function for deferred init.  */
225 	bl31_register_rmm_init(&rmm_init);
226 
227 	return 0;
228 }
229 
230 /*******************************************************************************
231  * Forward SMC to the other security state
232  ******************************************************************************/
233 static uint64_t	rmmd_smc_forward(uint32_t src_sec_state,
234 				 uint32_t dst_sec_state, uint64_t x0,
235 				 uint64_t x1, uint64_t x2, uint64_t x3,
236 				 uint64_t x4, void *handle)
237 {
238 	cpu_context_t *ctx = cm_get_context(dst_sec_state);
239 
240 	/* Save incoming security state */
241 	cm_el2_sysregs_context_save(src_sec_state);
242 
243 	/* Restore outgoing security state */
244 	cm_el2_sysregs_context_restore(dst_sec_state);
245 	cm_set_next_eret_context(dst_sec_state);
246 
247 	/*
248 	 * As per SMCCCv1.2, we need to preserve x4 to x7 unless
249 	 * being used as return args. Hence we differentiate the
250 	 * onward and backward path. Support upto 8 args in the
251 	 * onward path and 4 args in return path.
252 	 * Register x4 will be preserved by RMM in case it is not
253 	 * used in return path.
254 	 */
255 	if (src_sec_state == NON_SECURE) {
256 		SMC_RET8(ctx, x0, x1, x2, x3, x4,
257 			 SMC_GET_GP(handle, CTX_GPREG_X5),
258 			 SMC_GET_GP(handle, CTX_GPREG_X6),
259 			 SMC_GET_GP(handle, CTX_GPREG_X7));
260 	}
261 
262 	SMC_RET5(ctx, x0, x1, x2, x3, x4);
263 }
264 
265 /*******************************************************************************
266  * This function handles all SMCs in the range reserved for RMI. Each call is
267  * either forwarded to the other security state or handled by the RMM dispatcher
268  ******************************************************************************/
269 uint64_t rmmd_rmi_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2,
270 			  uint64_t x3, uint64_t x4, void *cookie,
271 			  void *handle, uint64_t flags)
272 {
273 	uint32_t src_sec_state;
274 
275 	/* If RMM failed to boot, treat any RMI SMC as unknown */
276 	if (rmm_boot_failed) {
277 		WARN("RMMD: Failed to boot up RMM. Ignoring RMI call\n");
278 		SMC_RET1(handle, SMC_UNK);
279 	}
280 
281 	/* Determine which security state this SMC originated from */
282 	src_sec_state = caller_sec_state(flags);
283 
284 	/* RMI must not be invoked by the Secure world */
285 	if (src_sec_state == SMC_FROM_SECURE) {
286 		WARN("RMMD: RMI invoked by secure world.\n");
287 		SMC_RET1(handle, SMC_UNK);
288 	}
289 
290 	/*
291 	 * Forward an RMI call from the Normal world to the Realm world as it
292 	 * is.
293 	 */
294 	if (src_sec_state == SMC_FROM_NON_SECURE) {
295 		/*
296 		 * If SVE hint bit is set in the flags then update the SMC
297 		 * function id and pass it on to the lower EL.
298 		 */
299 		if (is_sve_hint_set(flags)) {
300 			smc_fid |= (FUNCID_SVE_HINT_MASK <<
301 				    FUNCID_SVE_HINT_SHIFT);
302 		}
303 		VERBOSE("RMMD: RMI call from non-secure world.\n");
304 		return rmmd_smc_forward(NON_SECURE, REALM, smc_fid,
305 					x1, x2, x3, x4, handle);
306 	}
307 
308 	if (src_sec_state != SMC_FROM_REALM) {
309 		SMC_RET1(handle, SMC_UNK);
310 	}
311 
312 	switch (smc_fid) {
313 	case RMM_RMI_REQ_COMPLETE: {
314 		uint64_t x5 = SMC_GET_GP(handle, CTX_GPREG_X5);
315 
316 		return rmmd_smc_forward(REALM, NON_SECURE, x1,
317 					x2, x3, x4, x5, handle);
318 	}
319 	default:
320 		WARN("RMMD: Unsupported RMM call 0x%08x\n", smc_fid);
321 		SMC_RET1(handle, SMC_UNK);
322 	}
323 }
324 
325 /*******************************************************************************
326  * This cpu has been turned on. Enter RMM to initialise R-EL2.  Entry into RMM
327  * is done after initialising minimal architectural state that guarantees safe
328  * execution.
329  ******************************************************************************/
330 static void *rmmd_cpu_on_finish_handler(const void *arg)
331 {
332 	long rc;
333 	uint32_t linear_id = plat_my_core_pos();
334 	rmmd_rmm_context_t *ctx = PER_CPU_CUR(rmm_context);
335 	/* Create a local copy of ep info to avoid race conditions */
336 	entry_point_info_t local_rmm_ep_info = *rmm_ep_info;
337 
338 	if (rmm_boot_failed) {
339 		/* RMM Boot failed on a previous CPU. Abort. */
340 		ERROR("RMM Failed to initialize. Ignoring for CPU%d\n",
341 								linear_id);
342 		return NULL;
343 	}
344 
345 	/*
346 	 * Prepare warmboot arguments for RMM:
347 	 * arg0: This CPUID.
348 	 * arg1: opaque activation token, as returned by previous calls
349 	 * arg2 to arg3: Not used.
350 	 */
351 	local_rmm_ep_info.args.arg0 = linear_id;
352 	local_rmm_ep_info.args.arg1 = ctx->activation_token;
353 	local_rmm_ep_info.args.arg2 = 0ULL;
354 	local_rmm_ep_info.args.arg3 = 0ULL;
355 
356 	/* Initialise RMM context with this entry point information */
357 	cm_setup_context(&ctx->cpu_ctx, &local_rmm_ep_info);
358 
359 	rc = rmmd_rmm_sync_entry(ctx);
360 
361 	if (rc != E_RMM_BOOT_SUCCESS) {
362 		ERROR("RMM init failed on CPU%d: %ld\n", linear_id, rc);
363 		/*
364 		 * TODO: Investigate handling of rmm_boot_failed under
365 		 * concurrent access, or explore alternative approaches
366 		 * to fixup the logic.
367 		 */
368 		rmm_boot_failed = true;
369 	}
370 
371 	return NULL;
372 }
373 
374 /* Subscribe to PSCI CPU on to initialize RMM on secondary */
375 SUBSCRIBE_TO_EVENT(psci_cpu_on_finish, rmmd_cpu_on_finish_handler);
376 
377 /* Convert GPT lib error to RMMD GTS error */
378 static int gpt_to_gts_error(int error, uint32_t smc_fid, uint64_t address)
379 {
380 	int ret;
381 
382 	if (error == 0) {
383 		return E_RMM_OK;
384 	}
385 
386 	if (error == -EINVAL) {
387 		ret = E_RMM_BAD_ADDR;
388 	} else {
389 		/* This is the only other error code we expect */
390 		assert(error == -EPERM);
391 		ret = E_RMM_BAD_PAS;
392 	}
393 
394 	ERROR("RMMD: PAS Transition failed. GPT ret = %d, PA: 0x%"PRIx64 ", FID = 0x%x\n",
395 				error, address, smc_fid);
396 	return ret;
397 }
398 
399 static int rmm_el3_ifc_get_feat_register(uint64_t feat_reg_idx,
400 					 uint64_t *feat_reg)
401 {
402 	if (feat_reg_idx != RMM_EL3_FEAT_REG_0_IDX) {
403 		ERROR("RMMD: Failed to get feature register %ld\n", feat_reg_idx);
404 		return E_RMM_INVAL;
405 	}
406 
407 	*feat_reg = 0UL;
408 #if RMMD_ENABLE_EL3_TOKEN_SIGN
409 	*feat_reg |= RMM_EL3_FEAT_REG_0_EL3_TOKEN_SIGN_MASK;
410 #endif
411 	return E_RMM_OK;
412 }
413 
414 /*
415  * Update encryption key associated with mecid included in x1.
416  */
417 static int rmmd_mecid_key_update(uint64_t x1)
418 {
419 	uint64_t mecid_width, mecid_width_mask;
420 	uint16_t mecid;
421 	unsigned int reason;
422 	int ret;
423 
424 	/*
425 	 * Check whether FEAT_MEC is supported by the hardware. If not, return
426 	 * unknown SMC.
427 	 */
428 	if (is_feat_mec_supported() == false) {
429 		return E_RMM_UNK;
430 	}
431 
432 	/*
433 	 * Check whether the mecid parameter is at most MECIDR_EL2.MECIDWidthm1 + 1
434 	 * in length.
435 	 */
436 	mecid_width = ((read_mecidr_el2() >> MECIDR_EL2_MECIDWidthm1_SHIFT) &
437 		MECIDR_EL2_MECIDWidthm1_MASK) + 1UL;
438 	mecid_width_mask = ((1UL << mecid_width) - 1UL);
439 
440 	mecid = (x1 >> MECID_SHIFT) & MECID_MASK;
441 	if ((mecid & ~mecid_width_mask) != 0U) {
442 		return E_RMM_INVAL;
443 	}
444 
445 	reason = (x1 >> MEC_REFRESH_REASON_SHIFT) & MEC_REFRESH_REASON_MASK;
446 	ret = plat_rmmd_mecid_key_update(mecid, reason);
447 
448 	if (ret != 0) {
449 		return E_RMM_UNK;
450 	}
451 	return E_RMM_OK;
452 }
453 
454 /*******************************************************************************
455  * This function handles RMM-EL3 interface SMCs
456  ******************************************************************************/
457 uint64_t rmmd_rmm_el3_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2,
458 				uint64_t x3, uint64_t x4, void *cookie,
459 				void *handle, uint64_t flags)
460 {
461 	uint64_t remaining_len = 0UL;
462 	uint32_t src_sec_state;
463 	int ret;
464 
465 	/* If RMM failed to boot, treat any RMM-EL3 interface SMC as unknown */
466 	if (rmm_boot_failed) {
467 		WARN("RMMD: Failed to boot up RMM. Ignoring RMM-EL3 call\n");
468 		SMC_RET1(handle, SMC_UNK);
469 	}
470 
471 	/* Determine which security state this SMC originated from */
472 	src_sec_state = caller_sec_state(flags);
473 
474 	if (src_sec_state != SMC_FROM_REALM) {
475 		WARN("RMMD: RMM-EL3 call originated from secure or normal world\n");
476 		SMC_RET1(handle, SMC_UNK);
477 	}
478 
479 	switch (smc_fid) {
480 	case RMM_GTSI_DELEGATE:
481 		ret = gpt_delegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM);
482 		SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1));
483 	case RMM_GTSI_UNDELEGATE:
484 		ret = gpt_undelegate_pas(x1, PAGE_SIZE_4KB, SMC_FROM_REALM);
485 		SMC_RET1(handle, gpt_to_gts_error(ret, smc_fid, x1));
486 	case RMM_ATTEST_GET_REALM_KEY:
487 		ret = rmmd_attest_get_signing_key(x1, &x2, x3);
488 		SMC_RET2(handle, ret, x2);
489 	case RMM_ATTEST_GET_PLAT_TOKEN:
490 		ret = rmmd_attest_get_platform_token(x1, &x2, x3, &remaining_len);
491 		SMC_RET3(handle, ret, x2, remaining_len);
492 	case RMM_EL3_FEATURES:
493 		ret = rmm_el3_ifc_get_feat_register(x1, &x2);
494 		SMC_RET2(handle, ret, x2);
495 #if RMMD_ENABLE_EL3_TOKEN_SIGN
496 	case RMM_EL3_TOKEN_SIGN:
497 		return rmmd_el3_token_sign(handle, x1, x2, x3, x4);
498 #endif
499 
500 #if RMMD_ENABLE_IDE_KEY_PROG
501 	case RMM_IDE_KEY_PROG:
502 	{
503 		rp_ide_key_info_t ide_key_info;
504 
505 		ide_key_info.keyqw0 = x4;
506 		ide_key_info.keyqw1 = SMC_GET_GP(handle, CTX_GPREG_X5);
507 		ide_key_info.keyqw2 = SMC_GET_GP(handle, CTX_GPREG_X6);
508 		ide_key_info.keyqw3 = SMC_GET_GP(handle, CTX_GPREG_X7);
509 		ide_key_info.ifvqw0 = SMC_GET_GP(handle, CTX_GPREG_X8);
510 		ide_key_info.ifvqw1 = SMC_GET_GP(handle, CTX_GPREG_X9);
511 		uint64_t x10 = SMC_GET_GP(handle, CTX_GPREG_X10);
512 		uint64_t x11 = SMC_GET_GP(handle, CTX_GPREG_X11);
513 
514 		ret = rmmd_el3_ide_key_program(x1, x2, x3, &ide_key_info, x10, x11);
515 		SMC_RET1(handle, ret);
516 	}
517 	case RMM_IDE_KEY_SET_GO:
518 		ret = rmmd_el3_ide_key_set_go(x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5));
519 		SMC_RET1(handle, ret);
520 	case RMM_IDE_KEY_SET_STOP:
521 		ret = rmmd_el3_ide_key_set_stop(x1, x2, x3, x4, SMC_GET_GP(handle, CTX_GPREG_X5));
522 		SMC_RET1(handle, ret);
523 	case RMM_IDE_KM_PULL_RESPONSE: {
524 		uint64_t req_resp = 0, req_id = 0, cookie_var = 0;
525 
526 		ret = rmmd_el3_ide_km_pull_response(x1, x2, &req_resp, &req_id, &cookie_var);
527 		SMC_RET4(handle, ret, req_resp, req_id, cookie_var);
528 	}
529 #endif /* RMMD_ENABLE_IDE_KEY_PROG */
530 	case RMM_RESERVE_MEMORY:
531 		ret = rmmd_reserve_memory(x1, &x2);
532 		SMC_RET2(handle, ret, x2);
533 
534 	case RMM_BOOT_COMPLETE:
535 	{
536 		rmmd_rmm_context_t *ctx = PER_CPU_CUR(rmm_context);
537 
538 		ctx->activation_token = x2;
539 		VERBOSE("RMMD: running rmmd_rmm_sync_exit\n");
540 		rmmd_rmm_sync_exit(x1);
541 	}
542 	case RMM_MEC_REFRESH:
543 		ret = rmmd_mecid_key_update(x1);
544 		SMC_RET1(handle, ret);
545 	default:
546 		WARN("RMMD: Unsupported RMM-EL3 call 0x%08x\n", smc_fid);
547 		SMC_RET1(handle, SMC_UNK);
548 	}
549 }
550 
551 /**
552  * Helper to activate Primary CPU with the updated RMM, mainly used during
553  * LFA of RMM.
554  */
555 int rmmd_primary_activate(void)
556 {
557 	int rc;
558 
559 	rc = rmmd_setup();
560 	if (rc != 0) {
561 		ERROR("rmmd_setup failed during LFA: %d\n", rc);
562 		return rc;
563 	}
564 
565 	rc = rmm_init();
566 	if (rc == 0) {
567 		ERROR("rmm_init failed during LFA: %d\n", rc);
568 		return rc;
569 	}
570 
571 	INFO("RMM warm reset done on primary during LFA. \n");
572 
573 	return 0;
574 }
575 
576 /**
577  * Helper to activate Primary CPU with the updated RMM, mainly used during
578  * LFA of RMM.
579  */
580 int rmmd_secondary_activate(void)
581 {
582 	rmmd_cpu_on_finish_handler(NULL);
583 
584 	return 0;
585 }
586