xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision cd529320988a559c3408292f09e443233d2157c3)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <stdio.h>
42 #include <string.h>
43 #include <assert.h>
44 #include <arch_helpers.h>
45 #include <console.h>
46 #include <platform.h>
47 #include <psci_private.h>
48 #include <context_mgmt.h>
49 #include <runtime_svc.h>
50 #include <bl31.h>
51 #include <tsp.h>
52 #include <psci.h>
53 #include <tspd_private.h>
54 #include <debug.h>
55 
56 /*******************************************************************************
57  * Single structure to hold information about the various entry points into the
58  * Secure Payload. It is initialised once on the primary core after a cold boot.
59  ******************************************************************************/
60 entry_info *tsp_entry_info;
61 
62 /*******************************************************************************
63  * Array to keep track of per-cpu Secure Payload state
64  ******************************************************************************/
65 tsp_context tspd_sp_context[TSPD_CORE_COUNT];
66 
67 /*******************************************************************************
68  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
69  * (aarch32/aarch64) if not already known and initialises the context for entry
70  * into the SP for its initialisation.
71  ******************************************************************************/
72 int32_t tspd_setup(void)
73 {
74 	el_change_info *image_info;
75 	int32_t rc;
76 	uint64_t mpidr = read_mpidr();
77 	uint32_t linear_id;
78 
79 	linear_id = platform_get_core_pos(mpidr);
80 
81 	/*
82 	 * Get information about the Secure Payload (BL32) image. Its
83 	 * absence is a critical failure.  TODO: Add support to
84 	 * conditionally include the SPD service
85 	 */
86 	image_info = bl31_get_next_image_info(SECURE);
87 	assert(image_info);
88 
89 	/*
90 	 * We could inspect the SP image and determine it's execution
91 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
92 	 * for the time being.
93 	 */
94 	rc = tspd_init_secure_context(image_info->entrypoint,
95 				     TSP_AARCH64,
96 				     mpidr,
97 				     &tspd_sp_context[linear_id]);
98 	assert(rc == 0);
99 
100 	return rc;
101 }
102 
103 /*******************************************************************************
104  * This function passes control to the Secure Payload image (BL32) for the first
105  * time on the primary cpu after a cold boot. It assumes that a valid secure
106  * context has already been created by tspd_setup() which can be directly used.
107  * It also assumes that a valid non-secure context has been initialised by PSCI
108  * so it does not need to save and restore any non-secure state. This function
109  * performs a synchronous entry into the Secure payload. The SP passes control
110  * back to this routine through a SMC. It also passes the extents of memory made
111  * available to BL32 by BL31.
112  ******************************************************************************/
113 int32_t bl32_init(meminfo *bl32_meminfo)
114 {
115 	uint64_t mpidr = read_mpidr();
116 	uint32_t linear_id = platform_get_core_pos(mpidr);
117 	uint64_t rc;
118 	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];
119 
120 	/*
121 	 * Arrange for passing a pointer to the meminfo structure
122 	 * describing the memory extents available to the secure
123 	 * payload.
124 	 * TODO: We are passing a pointer to BL31 internal memory
125 	 * whereas this structure should be copied to a communication
126 	 * buffer between the SP and SPD.
127 	 */
128 	write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
129 		      CTX_GPREG_X0,
130 		      (uint64_t) bl32_meminfo);
131 
132 	/*
133 	 * Arrange for an entry into the test secure payload. We expect an array
134 	 * of vectors in return
135 	 */
136 	rc = tspd_synchronous_sp_entry(tsp_ctx);
137 	assert(rc != 0);
138 	if (rc)
139 		tsp_ctx->state = TSP_STATE_ON;
140 
141 	return rc;
142 }
143 
144 /*******************************************************************************
145  * This function is responsible for handling all SMCs in the Trusted OS/App
146  * range from the non-secure state as defined in the SMC Calling Convention
147  * Document. It is also responsible for communicating with the Secure payload
148  * to delegate work and return results back to the non-secure state. Lastly it
149  * will also return any information that the secure payload needs to do the
150  * work assigned to it.
151  ******************************************************************************/
152 uint64_t tspd_smc_handler(uint32_t smc_fid,
153 			 uint64_t x1,
154 			 uint64_t x2,
155 			 uint64_t x3,
156 			 uint64_t x4,
157 			 void *cookie,
158 			 void *handle,
159 			 uint64_t flags)
160 {
161 	cpu_context *ns_cpu_context;
162 	gp_regs *ns_gp_regs;
163 	unsigned long mpidr = read_mpidr();
164 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
165 	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];
166 
167 	/* Determine which security state this SMC originated from */
168 	ns = is_caller_non_secure(flags);
169 
170 	switch (smc_fid) {
171 
172 	/*
173 	 * This function ID is used only by the SP to indicate it has
174 	 * finished initialising itself after a cold boot
175 	 */
176 	case TSP_ENTRY_DONE:
177 		if (ns)
178 			SMC_RET1(handle, SMC_UNK);
179 
180 		/*
181 		 * Stash the SP entry points information. This is done
182 		 * only once on the primary cpu
183 		 */
184 		assert(tsp_entry_info == NULL);
185 		tsp_entry_info = (entry_info *) x1;
186 
187 		/*
188 		 * SP reports completion. The SPD must have initiated
189 		 * the original request through a synchronous entry
190 		 * into the SP. Jump back to the original C runtime
191 		 * context.
192 		 */
193 		tspd_synchronous_sp_exit(tsp_ctx, x1);
194 
195 		/* Should never reach here */
196 		assert(0);
197 
198 	/*
199 	 * These function IDs is used only by the SP to indicate it has
200 	 * finished:
201 	 * 1. turning itself on in response to an earlier psci
202 	 *    cpu_on request
203 	 * 2. resuming itself after an earlier psci cpu_suspend
204 	 *    request.
205 	 */
206 	case TSP_ON_DONE:
207 	case TSP_RESUME_DONE:
208 
209 	/*
210 	 * These function IDs is used only by the SP to indicate it has
211 	 * finished:
212 	 * 1. suspending itself after an earlier psci cpu_suspend
213 	 *    request.
214 	 * 2. turning itself off in response to an earlier psci
215 	 *    cpu_off request.
216 	 */
217 	case TSP_OFF_DONE:
218 	case TSP_SUSPEND_DONE:
219 		if (ns)
220 			SMC_RET1(handle, SMC_UNK);
221 
222 		/*
223 		 * SP reports completion. The SPD must have initiated the
224 		 * original request through a synchronous entry into the SP.
225 		 * Jump back to the original C runtime context, and pass x1 as
226 		 * return value to the caller
227 		 */
228 		tspd_synchronous_sp_exit(tsp_ctx, x1);
229 
230 		/* Should never reach here */
231 		assert(0);
232 
233 		/*
234 		 * Request from non-secure client to perform an
235 		 * arithmetic operation or response from secure
236 		 * payload to an earlier request.
237 		 */
238 	case TSP_FID_ADD:
239 	case TSP_FID_SUB:
240 	case TSP_FID_MUL:
241 	case TSP_FID_DIV:
242 		if (ns) {
243 			/*
244 			 * This is a fresh request from the non-secure client.
245 			 * The parameters are in x1 and x2. Figure out which
246 			 * registers need to be preserved, save the non-secure
247 			 * state and send the request to the secure payload.
248 			 */
249 			assert(handle == cm_get_context(mpidr, NON_SECURE));
250 			cm_el1_sysregs_context_save(NON_SECURE);
251 
252 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
253 			SMC_SET_GP(handle, CTX_GPREG_X1, x1);
254 			SMC_SET_GP(handle, CTX_GPREG_X2, x2);
255 
256 			/*
257 			 * We are done stashing the non-secure context. Ask the
258 			 * secure payload to do the work now.
259 			 */
260 
261 			/*
262 			 * Verify if there is a valid context to use, copy the
263 			 * operation type and parameters to the secure context
264 			 * and jump to the fast smc entry point in the secure
265 			 * payload. Entry into S-EL1 will take place upon exit
266 			 * from this function.
267 			 */
268 			assert(&tsp_ctx->cpu_ctx == cm_get_context(mpidr, SECURE));
269 			set_aapcs_args7(&tsp_ctx->cpu_ctx, smc_fid, x1, x2, 0, 0,
270 					0, 0, 0);
271 			cm_set_el3_elr(SECURE, (uint64_t) tsp_entry_info->fast_smc_entry);
272 			cm_el1_sysregs_context_restore(SECURE);
273 			cm_set_next_eret_context(SECURE);
274 
275 			return smc_fid;
276 		} else {
277 			/*
278 			 * This is the result from the secure client of an
279 			 * earlier request. The results are in x1-x2. Copy it
280 			 * into the non-secure context, save the secure state
281 			 * and return to the non-secure state.
282 			 */
283 			assert(handle == cm_get_context(mpidr, SECURE));
284 			cm_el1_sysregs_context_save(SECURE);
285 
286 			/* Get a reference to the non-secure context */
287 			ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
288 			assert(ns_cpu_context);
289 			ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
290 
291 			/* Restore non-secure state */
292 			cm_el1_sysregs_context_restore(NON_SECURE);
293 			cm_set_next_eret_context(NON_SECURE);
294 
295 			SMC_RET2(ns_gp_regs, x1, x2);
296 		}
297 
298 		break;
299 
300 		/*
301 		 * This is a request from the secure payload for more arguments
302 		 * for an ongoing arithmetic operation requested by the
303 		 * non-secure world. Simply return the arguments from the non-
304 		 * secure client in the original call.
305 		 */
306 	case TSP_GET_ARGS:
307 		if (ns)
308 			SMC_RET1(handle, SMC_UNK);
309 
310 		/* Get a reference to the non-secure context */
311 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
312 		assert(ns_cpu_context);
313 		ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
314 
315 		SMC_RET2(handle, read_ctx_reg(ns_gp_regs, CTX_GPREG_X1),
316 				read_ctx_reg(ns_gp_regs, CTX_GPREG_X2));
317 
318 	default:
319 		break;
320 	}
321 
322 	SMC_RET1(handle, SMC_UNK);
323 }
324 
325 /* Define a SPD runtime service descriptor */
326 DECLARE_RT_SVC(
327 	spd,
328 
329 	OEN_TOS_START,
330 	OEN_TOS_END,
331 	SMC_TYPE_FAST,
332 	tspd_setup,
333 	tspd_smc_handler
334 );
335