xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision c6bc071020baebc660fc94390b50bc240e34c0a3)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <tsp.h>
52 #include <uuid.h>
53 #include "tspd_private.h"
54 
55 /*******************************************************************************
56  * Address of the entrypoint vector table in the Secure Payload. It is
57  * initialised once on the primary core after a cold boot.
58  ******************************************************************************/
59 tsp_vectors_t *tsp_vectors;
60 
61 /*******************************************************************************
62  * Array to keep track of per-cpu Secure Payload state
63  ******************************************************************************/
64 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65 
66 
67 /* TSP UID */
68 DEFINE_SVC_UUID(tsp_uuid,
69 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
70 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
71 
72 int32_t tspd_init(void);
73 
74 /*******************************************************************************
75  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
76  * validates the interrupt and upon success arranges entry into the TSP at
77  * 'tsp_fiq_entry()' for handling the interrupt.
78  ******************************************************************************/
79 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
80 					    uint32_t flags,
81 					    void *handle,
82 					    void *cookie)
83 {
84 	uint32_t linear_id;
85 	uint64_t mpidr;
86 	tsp_context_t *tsp_ctx;
87 
88 	/* Check the security state when the exception was generated */
89 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
90 
91 #if IMF_READ_INTERRUPT_ID
92 	/* Check the security status of the interrupt */
93 	assert(ic_get_interrupt_group(id) == SECURE);
94 #endif
95 
96 	/* Sanity check the pointer to this cpu's context */
97 	mpidr = read_mpidr();
98 	assert(handle == cm_get_context(mpidr, NON_SECURE));
99 
100 	/* Save the non-secure context before entering the TSP */
101 	cm_el1_sysregs_context_save(NON_SECURE);
102 
103 	/* Get a reference to this cpu's TSP context */
104 	linear_id = platform_get_core_pos(mpidr);
105 	tsp_ctx = &tspd_sp_context[linear_id];
106 	assert(&tsp_ctx->cpu_ctx == cm_get_context(mpidr, SECURE));
107 
108 	/*
109 	 * Determine if the TSP was previously preempted. Its last known
110 	 * context has to be preserved in this case.
111 	 * The TSP should return control to the TSPD after handling this
112 	 * FIQ. Preserve essential EL3 context to allow entry into the
113 	 * TSP at the FIQ entry point using the 'cpu_context' structure.
114 	 * There is no need to save the secure system register context
115 	 * since the TSP is supposed to preserve it during S-EL1 interrupt
116 	 * handling.
117 	 */
118 	if (get_std_smc_active_flag(tsp_ctx->state)) {
119 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
120 						      CTX_SPSR_EL3);
121 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
122 						     CTX_ELR_EL3);
123 	}
124 
125 	SMC_SET_EL3(&tsp_ctx->cpu_ctx,
126 		    CTX_SPSR_EL3,
127 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128 	SMC_SET_EL3(&tsp_ctx->cpu_ctx,
129 		    CTX_ELR_EL3,
130 		    (uint64_t) &tsp_vectors->fiq_entry);
131 	cm_el1_sysregs_context_restore(SECURE);
132 	cm_set_next_eret_context(SECURE);
133 
134 	/*
135 	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
136 	 * instruction in normal world where the interrupt was generated is
137 	 * passed for debugging purposes. It is safe to retrieve this address
138 	 * from ELR_EL3 as the secure context will not take effect until
139 	 * el3_exit().
140 	 */
141 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
142 }
143 
144 /*******************************************************************************
145  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
146  * (aarch32/aarch64) if not already known and initialises the context for entry
147  * into the SP for its initialisation.
148  ******************************************************************************/
149 int32_t tspd_setup(void)
150 {
151 	entry_point_info_t *image_info;
152 	int32_t rc;
153 	uint64_t mpidr = read_mpidr();
154 	uint32_t linear_id;
155 
156 	linear_id = platform_get_core_pos(mpidr);
157 
158 	/*
159 	 * Get information about the Secure Payload (BL32) image. Its
160 	 * absence is a critical failure.  TODO: Add support to
161 	 * conditionally include the SPD service
162 	 */
163 	image_info = bl31_get_next_image_info(SECURE);
164 	assert(image_info);
165 
166 	/*
167 	 * If there's no valid entry point for SP, we return a non-zero value
168 	 * signalling failure initializing the service. We bail out without
169 	 * registering any handlers
170 	 */
171 	if (!image_info->pc)
172 		return 1;
173 
174 	/*
175 	 * We could inspect the SP image and determine it's execution
176 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
177 	 * for the time being.
178 	 */
179 	rc = tspd_init_secure_context(image_info->pc,
180 				     TSP_AARCH64,
181 				     mpidr,
182 				     &tspd_sp_context[linear_id]);
183 	assert(rc == 0);
184 
185 	/*
186 	 * All TSPD initialization done. Now register our init function with
187 	 * BL31 for deferred invocation
188 	 */
189 	bl31_register_bl32_init(&tspd_init);
190 
191 	return rc;
192 }
193 
194 /*******************************************************************************
195  * This function passes control to the Secure Payload image (BL32) for the first
196  * time on the primary cpu after a cold boot. It assumes that a valid secure
197  * context has already been created by tspd_setup() which can be directly used.
198  * It also assumes that a valid non-secure context has been initialised by PSCI
199  * so it does not need to save and restore any non-secure state. This function
200  * performs a synchronous entry into the Secure payload. The SP passes control
201  * back to this routine through a SMC.
202  ******************************************************************************/
203 int32_t tspd_init(void)
204 {
205 	uint64_t mpidr = read_mpidr();
206 	uint32_t linear_id = platform_get_core_pos(mpidr), flags;
207 	uint64_t rc;
208 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
209 
210 	/*
211 	 * Arrange for an entry into the test secure payload. We expect an array
212 	 * of vectors in return
213 	 */
214 	rc = tspd_synchronous_sp_entry(tsp_ctx);
215 	assert(rc != 0);
216 	if (rc) {
217 		set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
218 
219 		/*
220 		 * TSP has been successfully initialized. Register power
221 		 * managemnt hooks with PSCI
222 		 */
223 		psci_register_spd_pm_hook(&tspd_pm);
224 	}
225 
226 	/*
227 	 * Register an interrupt handler for S-EL1 interrupts when generated
228 	 * during code executing in the non-secure state.
229 	 */
230 	flags = 0;
231 	set_interrupt_rm_flag(flags, NON_SECURE);
232 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
233 					     tspd_sel1_interrupt_handler,
234 					     flags);
235 	if (rc)
236 		panic();
237 
238 	return rc;
239 }
240 
241 
242 /*******************************************************************************
243  * This function is responsible for handling all SMCs in the Trusted OS/App
244  * range from the non-secure state as defined in the SMC Calling Convention
245  * Document. It is also responsible for communicating with the Secure payload
246  * to delegate work and return results back to the non-secure state. Lastly it
247  * will also return any information that the secure payload needs to do the
248  * work assigned to it.
249  ******************************************************************************/
250 uint64_t tspd_smc_handler(uint32_t smc_fid,
251 			 uint64_t x1,
252 			 uint64_t x2,
253 			 uint64_t x3,
254 			 uint64_t x4,
255 			 void *cookie,
256 			 void *handle,
257 			 uint64_t flags)
258 {
259 	cpu_context_t *ns_cpu_context;
260 	unsigned long mpidr = read_mpidr();
261 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
262 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
263 
264 	/* Determine which security state this SMC originated from */
265 	ns = is_caller_non_secure(flags);
266 
267 	switch (smc_fid) {
268 
269 	/*
270 	 * This function ID is used by TSP to indicate that it was
271 	 * preempted by a normal world IRQ.
272 	 *
273 	 */
274 	case TSP_PREEMPTED:
275 		if (ns)
276 			SMC_RET1(handle, SMC_UNK);
277 
278 		assert(handle == cm_get_context(mpidr, SECURE));
279 		cm_el1_sysregs_context_save(SECURE);
280 		/* Get a reference to the non-secure context */
281 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
282 		assert(ns_cpu_context);
283 
284 		/*
285 		 * Restore non-secure state. There is no need to save the
286 		 * secure system register context since the TSP was supposed
287 		 * to preserve it during S-EL1 interrupt handling.
288 		 */
289 		cm_el1_sysregs_context_restore(NON_SECURE);
290 		cm_set_next_eret_context(NON_SECURE);
291 
292 		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
293 
294 	/*
295 	 * This function ID is used only by the TSP to indicate that it has
296 	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
297 	 * in the normal world.
298 	 */
299 	case TSP_HANDLED_S_EL1_FIQ:
300 		if (ns)
301 			SMC_RET1(handle, SMC_UNK);
302 
303 		assert(handle == cm_get_context(mpidr, SECURE));
304 
305 		/*
306 		 * Restore the relevant EL3 state which saved to service
307 		 * this SMC.
308 		 */
309 		if (get_std_smc_active_flag(tsp_ctx->state)) {
310 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
311 				    CTX_SPSR_EL3,
312 				    tsp_ctx->saved_spsr_el3);
313 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
314 				    CTX_ELR_EL3,
315 				    tsp_ctx->saved_elr_el3);
316 		}
317 
318 		/* Get a reference to the non-secure context */
319 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
320 		assert(ns_cpu_context);
321 
322 		/*
323 		 * Restore non-secure state. There is no need to save the
324 		 * secure system register context since the TSP was supposed
325 		 * to preserve it during S-EL1 interrupt handling.
326 		 */
327 		cm_el1_sysregs_context_restore(NON_SECURE);
328 		cm_set_next_eret_context(NON_SECURE);
329 
330 		SMC_RET0((uint64_t) ns_cpu_context);
331 
332 
333 	/*
334 	 * This function ID is used only by the TSP to indicate that it was
335 	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
336 	 * in the normal world.
337 	 */
338 	case TSP_EL3_FIQ:
339 		if (ns)
340 			SMC_RET1(handle, SMC_UNK);
341 
342 		assert(handle == cm_get_context(mpidr, SECURE));
343 
344 		/* Assert that standard SMC execution has been preempted */
345 		assert(get_std_smc_active_flag(tsp_ctx->state));
346 
347 		/* Save the secure system register state */
348 		cm_el1_sysregs_context_save(SECURE);
349 
350 		/* Get a reference to the non-secure context */
351 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
352 		assert(ns_cpu_context);
353 
354 		/* Restore non-secure state */
355 		cm_el1_sysregs_context_restore(NON_SECURE);
356 		cm_set_next_eret_context(NON_SECURE);
357 
358 		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
359 
360 
361 	/*
362 	 * This function ID is used only by the SP to indicate it has
363 	 * finished initialising itself after a cold boot
364 	 */
365 	case TSP_ENTRY_DONE:
366 		if (ns)
367 			SMC_RET1(handle, SMC_UNK);
368 
369 		/*
370 		 * Stash the SP entry points information. This is done
371 		 * only once on the primary cpu
372 		 */
373 		assert(tsp_vectors == NULL);
374 		tsp_vectors = (tsp_vectors_t *) x1;
375 
376 		/*
377 		 * SP reports completion. The SPD must have initiated
378 		 * the original request through a synchronous entry
379 		 * into the SP. Jump back to the original C runtime
380 		 * context.
381 		 */
382 		tspd_synchronous_sp_exit(tsp_ctx, x1);
383 
384 	/*
385 	 * These function IDs is used only by the SP to indicate it has
386 	 * finished:
387 	 * 1. turning itself on in response to an earlier psci
388 	 *    cpu_on request
389 	 * 2. resuming itself after an earlier psci cpu_suspend
390 	 *    request.
391 	 */
392 	case TSP_ON_DONE:
393 	case TSP_RESUME_DONE:
394 
395 	/*
396 	 * These function IDs is used only by the SP to indicate it has
397 	 * finished:
398 	 * 1. suspending itself after an earlier psci cpu_suspend
399 	 *    request.
400 	 * 2. turning itself off in response to an earlier psci
401 	 *    cpu_off request.
402 	 */
403 	case TSP_OFF_DONE:
404 	case TSP_SUSPEND_DONE:
405 		if (ns)
406 			SMC_RET1(handle, SMC_UNK);
407 
408 		/*
409 		 * SP reports completion. The SPD must have initiated the
410 		 * original request through a synchronous entry into the SP.
411 		 * Jump back to the original C runtime context, and pass x1 as
412 		 * return value to the caller
413 		 */
414 		tspd_synchronous_sp_exit(tsp_ctx, x1);
415 
416 		/*
417 		 * Request from non-secure client to perform an
418 		 * arithmetic operation or response from secure
419 		 * payload to an earlier request.
420 		 */
421 	case TSP_FAST_FID(TSP_ADD):
422 	case TSP_FAST_FID(TSP_SUB):
423 	case TSP_FAST_FID(TSP_MUL):
424 	case TSP_FAST_FID(TSP_DIV):
425 
426 	case TSP_STD_FID(TSP_ADD):
427 	case TSP_STD_FID(TSP_SUB):
428 	case TSP_STD_FID(TSP_MUL):
429 	case TSP_STD_FID(TSP_DIV):
430 		if (ns) {
431 			/*
432 			 * This is a fresh request from the non-secure client.
433 			 * The parameters are in x1 and x2. Figure out which
434 			 * registers need to be preserved, save the non-secure
435 			 * state and send the request to the secure payload.
436 			 */
437 			assert(handle == cm_get_context(mpidr, NON_SECURE));
438 
439 			/* Check if we are already preempted */
440 			if (get_std_smc_active_flag(tsp_ctx->state))
441 				SMC_RET1(handle, SMC_UNK);
442 
443 			cm_el1_sysregs_context_save(NON_SECURE);
444 
445 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
446 			store_tsp_args(tsp_ctx, x1, x2);
447 
448 			/*
449 			 * We are done stashing the non-secure context. Ask the
450 			 * secure payload to do the work now.
451 			 */
452 
453 			/*
454 			 * Verify if there is a valid context to use, copy the
455 			 * operation type and parameters to the secure context
456 			 * and jump to the fast smc entry point in the secure
457 			 * payload. Entry into S-EL1 will take place upon exit
458 			 * from this function.
459 			 */
460 			assert(&tsp_ctx->cpu_ctx == cm_get_context(mpidr, SECURE));
461 
462 			/* Set appropriate entry for SMC.
463 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
464 			 * flags as appropriate.
465 			 */
466 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
467 				cm_set_elr_el3(SECURE, (uint64_t)
468 						&tsp_vectors->fast_smc_entry);
469 			} else {
470 				set_std_smc_active_flag(tsp_ctx->state);
471 				cm_set_elr_el3(SECURE, (uint64_t)
472 						&tsp_vectors->std_smc_entry);
473 			}
474 
475 			cm_el1_sysregs_context_restore(SECURE);
476 			cm_set_next_eret_context(SECURE);
477 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
478 		} else {
479 			/*
480 			 * This is the result from the secure client of an
481 			 * earlier request. The results are in x1-x3. Copy it
482 			 * into the non-secure context, save the secure state
483 			 * and return to the non-secure state.
484 			 */
485 			assert(handle == cm_get_context(mpidr, SECURE));
486 			cm_el1_sysregs_context_save(SECURE);
487 
488 			/* Get a reference to the non-secure context */
489 			ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
490 			assert(ns_cpu_context);
491 
492 			/* Restore non-secure state */
493 			cm_el1_sysregs_context_restore(NON_SECURE);
494 			cm_set_next_eret_context(NON_SECURE);
495 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
496 				clr_std_smc_active_flag(tsp_ctx->state);
497 			SMC_RET3(ns_cpu_context, x1, x2, x3);
498 		}
499 
500 		break;
501 
502 		/*
503 		 * Request from non secure world to resume the preempted
504 		 * Standard SMC call.
505 		 */
506 	case TSP_FID_RESUME:
507 			/* RESUME should be invoked only by normal world */
508 			if (!ns) {
509 				assert(0);
510 				break;
511 			}
512 
513 			/*
514 			 * This is a resume request from the non-secure client.
515 			 * save the non-secure state and send the request to
516 			 * the secure payload.
517 			 */
518 			assert(handle == cm_get_context(mpidr, NON_SECURE));
519 
520 			/* Check if we are already preempted before resume */
521 			if (!get_std_smc_active_flag(tsp_ctx->state))
522 				SMC_RET1(handle, SMC_UNK);
523 
524 			cm_el1_sysregs_context_save(NON_SECURE);
525 
526 			/*
527 			 * We are done stashing the non-secure context. Ask the
528 			 * secure payload to do the work now.
529 			 */
530 
531 			/* We just need to return to the preempted point in
532 			 * TSP and the execution will resume as normal.
533 			 */
534 			cm_el1_sysregs_context_restore(SECURE);
535 			cm_set_next_eret_context(SECURE);
536 
537 		/*
538 		 * This is a request from the secure payload for more arguments
539 		 * for an ongoing arithmetic operation requested by the
540 		 * non-secure world. Simply return the arguments from the non-
541 		 * secure client in the original call.
542 		 */
543 	case TSP_GET_ARGS:
544 		if (ns)
545 			SMC_RET1(handle, SMC_UNK);
546 
547 		/* Get a reference to the non-secure context */
548 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
549 		assert(ns_cpu_context);
550 
551 		get_tsp_args(tsp_ctx, x1, x2);
552 		SMC_RET2(handle, x1, x2);
553 
554 	case TOS_CALL_COUNT:
555 		/*
556 		 * Return the number of service function IDs implemented to
557 		 * provide service to non-secure
558 		 */
559 		SMC_RET1(handle, TSP_NUM_FID);
560 
561 	case TOS_UID:
562 		/* Return TSP UID to the caller */
563 		SMC_UUID_RET(handle, tsp_uuid);
564 
565 	case TOS_CALL_VERSION:
566 		/* Return the version of current implementation */
567 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
568 
569 	default:
570 		break;
571 	}
572 
573 	SMC_RET1(handle, SMC_UNK);
574 }
575 
576 /* Define a SPD runtime service descriptor for fast SMC calls */
577 DECLARE_RT_SVC(
578 	tspd_fast,
579 
580 	OEN_TOS_START,
581 	OEN_TOS_END,
582 	SMC_TYPE_FAST,
583 	tspd_setup,
584 	tspd_smc_handler
585 );
586 
587 /* Define a SPD runtime service descriptor for standard SMC calls */
588 DECLARE_RT_SVC(
589 	tspd_std,
590 
591 	OEN_TOS_START,
592 	OEN_TOS_END,
593 	SMC_TYPE_STD,
594 	NULL,
595 	tspd_smc_handler
596 );
597