xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision add403514d0f792b9df3c81006cd9a9395b213f6)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <tsp.h>
52 #include <uuid.h>
53 #include "tspd_private.h"
54 
55 /*******************************************************************************
56  * Address of the entrypoint vector table in the Secure Payload. It is
57  * initialised once on the primary core after a cold boot.
58  ******************************************************************************/
59 tsp_vectors_t *tsp_vectors;
60 
61 /*******************************************************************************
62  * Array to keep track of per-cpu Secure Payload state
63  ******************************************************************************/
64 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65 
66 
67 /* TSP UID */
68 DEFINE_SVC_UUID(tsp_uuid,
69 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
70 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
71 
72 int32_t tspd_init(void);
73 
74 /*******************************************************************************
75  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
76  * validates the interrupt and upon success arranges entry into the TSP at
77  * 'tsp_fiq_entry()' for handling the interrupt.
78  ******************************************************************************/
79 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
80 					    uint32_t flags,
81 					    void *handle,
82 					    void *cookie)
83 {
84 	uint32_t linear_id;
85 	uint64_t mpidr;
86 	tsp_context_t *tsp_ctx;
87 
88 	/* Check the security state when the exception was generated */
89 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
90 
91 #if IMF_READ_INTERRUPT_ID
92 	/* Check the security status of the interrupt */
93 	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
94 #endif
95 
96 	/* Sanity check the pointer to this cpu's context */
97 	mpidr = read_mpidr();
98 	assert(handle == cm_get_context(NON_SECURE));
99 
100 	/* Save the non-secure context before entering the TSP */
101 	cm_el1_sysregs_context_save(NON_SECURE);
102 
103 	/* Get a reference to this cpu's TSP context */
104 	linear_id = platform_get_core_pos(mpidr);
105 	tsp_ctx = &tspd_sp_context[linear_id];
106 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
107 
108 	/*
109 	 * Determine if the TSP was previously preempted. Its last known
110 	 * context has to be preserved in this case.
111 	 * The TSP should return control to the TSPD after handling this
112 	 * FIQ. Preserve essential EL3 context to allow entry into the
113 	 * TSP at the FIQ entry point using the 'cpu_context' structure.
114 	 * There is no need to save the secure system register context
115 	 * since the TSP is supposed to preserve it during S-EL1 interrupt
116 	 * handling.
117 	 */
118 	if (get_std_smc_active_flag(tsp_ctx->state)) {
119 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
120 						      CTX_SPSR_EL3);
121 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
122 						     CTX_ELR_EL3);
123 	}
124 
125 	cm_el1_sysregs_context_restore(SECURE);
126 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
127 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128 	cm_set_next_eret_context(SECURE);
129 
130 	/*
131 	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
132 	 * instruction in normal world where the interrupt was generated is
133 	 * passed for debugging purposes. It is safe to retrieve this address
134 	 * from ELR_EL3 as the secure context will not take effect until
135 	 * el3_exit().
136 	 */
137 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
138 }
139 
140 /*******************************************************************************
141  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
142  * (aarch32/aarch64) if not already known and initialises the context for entry
143  * into the SP for its initialisation.
144  ******************************************************************************/
145 int32_t tspd_setup(void)
146 {
147 	entry_point_info_t *tsp_ep_info;
148 	uint64_t mpidr = read_mpidr();
149 	uint32_t linear_id;
150 
151 	linear_id = platform_get_core_pos(mpidr);
152 
153 	/*
154 	 * Get information about the Secure Payload (BL32) image. Its
155 	 * absence is a critical failure.  TODO: Add support to
156 	 * conditionally include the SPD service
157 	 */
158 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
159 	if (!tsp_ep_info) {
160 		WARN("No TSP provided by BL2 boot loader, Booting device"
161 			" without TSP initialization. SMC`s destined for TSP"
162 			" will return SMC_UNK\n");
163 		return 1;
164 	}
165 
166 	/*
167 	 * If there's no valid entry point for SP, we return a non-zero value
168 	 * signalling failure initializing the service. We bail out without
169 	 * registering any handlers
170 	 */
171 	if (!tsp_ep_info->pc)
172 		return 1;
173 
174 	/*
175 	 * We could inspect the SP image and determine it's execution
176 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
177 	 * for the time being.
178 	 */
179 	tspd_init_tsp_ep_state(tsp_ep_info,
180 				TSP_AARCH64,
181 				tsp_ep_info->pc,
182 				&tspd_sp_context[linear_id]);
183 
184 #if TSP_INIT_ASYNC
185 	bl31_set_next_image_type(SECURE);
186 #else
187 	/*
188 	 * All TSPD initialization done. Now register our init function with
189 	 * BL31 for deferred invocation
190 	 */
191 	bl31_register_bl32_init(&tspd_init);
192 #endif
193 	return 0;
194 }
195 
196 /*******************************************************************************
197  * This function passes control to the Secure Payload image (BL32) for the first
198  * time on the primary cpu after a cold boot. It assumes that a valid secure
199  * context has already been created by tspd_setup() which can be directly used.
200  * It also assumes that a valid non-secure context has been initialised by PSCI
201  * so it does not need to save and restore any non-secure state. This function
202  * performs a synchronous entry into the Secure payload. The SP passes control
203  * back to this routine through a SMC.
204  ******************************************************************************/
205 int32_t tspd_init(void)
206 {
207 	uint64_t mpidr = read_mpidr();
208 	uint32_t linear_id = platform_get_core_pos(mpidr);
209 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
210 	entry_point_info_t *tsp_entry_point;
211 	uint64_t rc;
212 
213 	/*
214 	 * Get information about the Secure Payload (BL32) image. Its
215 	 * absence is a critical failure.
216 	 */
217 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
218 	assert(tsp_entry_point);
219 
220 	cm_init_context(mpidr, tsp_entry_point);
221 
222 	/*
223 	 * Arrange for an entry into the test secure payload. It will be
224 	 * returned via TSP_ENTRY_DONE case
225 	 */
226 	rc = tspd_synchronous_sp_entry(tsp_ctx);
227 	assert(rc != 0);
228 
229 	return rc;
230 }
231 
232 
233 /*******************************************************************************
234  * This function is responsible for handling all SMCs in the Trusted OS/App
235  * range from the non-secure state as defined in the SMC Calling Convention
236  * Document. It is also responsible for communicating with the Secure payload
237  * to delegate work and return results back to the non-secure state. Lastly it
238  * will also return any information that the secure payload needs to do the
239  * work assigned to it.
240  ******************************************************************************/
241 uint64_t tspd_smc_handler(uint32_t smc_fid,
242 			 uint64_t x1,
243 			 uint64_t x2,
244 			 uint64_t x3,
245 			 uint64_t x4,
246 			 void *cookie,
247 			 void *handle,
248 			 uint64_t flags)
249 {
250 	cpu_context_t *ns_cpu_context;
251 	unsigned long mpidr = read_mpidr();
252 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
253 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
254 	uint64_t rc;
255 #if TSP_INIT_ASYNC
256 	entry_point_info_t *next_image_info;
257 #endif
258 
259 	/* Determine which security state this SMC originated from */
260 	ns = is_caller_non_secure(flags);
261 
262 	switch (smc_fid) {
263 
264 	/*
265 	 * This function ID is used by TSP to indicate that it was
266 	 * preempted by a normal world IRQ.
267 	 *
268 	 */
269 	case TSP_PREEMPTED:
270 		if (ns)
271 			SMC_RET1(handle, SMC_UNK);
272 
273 		assert(handle == cm_get_context(SECURE));
274 		cm_el1_sysregs_context_save(SECURE);
275 		/* Get a reference to the non-secure context */
276 		ns_cpu_context = cm_get_context(NON_SECURE);
277 		assert(ns_cpu_context);
278 
279 		/*
280 		 * Restore non-secure state. There is no need to save the
281 		 * secure system register context since the TSP was supposed
282 		 * to preserve it during S-EL1 interrupt handling.
283 		 */
284 		cm_el1_sysregs_context_restore(NON_SECURE);
285 		cm_set_next_eret_context(NON_SECURE);
286 
287 		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
288 
289 	/*
290 	 * This function ID is used only by the TSP to indicate that it has
291 	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
292 	 * in the normal world.
293 	 */
294 	case TSP_HANDLED_S_EL1_FIQ:
295 		if (ns)
296 			SMC_RET1(handle, SMC_UNK);
297 
298 		assert(handle == cm_get_context(SECURE));
299 
300 		/*
301 		 * Restore the relevant EL3 state which saved to service
302 		 * this SMC.
303 		 */
304 		if (get_std_smc_active_flag(tsp_ctx->state)) {
305 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
306 				    CTX_SPSR_EL3,
307 				    tsp_ctx->saved_spsr_el3);
308 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
309 				    CTX_ELR_EL3,
310 				    tsp_ctx->saved_elr_el3);
311 		}
312 
313 		/* Get a reference to the non-secure context */
314 		ns_cpu_context = cm_get_context(NON_SECURE);
315 		assert(ns_cpu_context);
316 
317 		/*
318 		 * Restore non-secure state. There is no need to save the
319 		 * secure system register context since the TSP was supposed
320 		 * to preserve it during S-EL1 interrupt handling.
321 		 */
322 		cm_el1_sysregs_context_restore(NON_SECURE);
323 		cm_set_next_eret_context(NON_SECURE);
324 
325 		SMC_RET0((uint64_t) ns_cpu_context);
326 
327 
328 	/*
329 	 * This function ID is used only by the TSP to indicate that it was
330 	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
331 	 * in the normal world.
332 	 */
333 	case TSP_EL3_FIQ:
334 		if (ns)
335 			SMC_RET1(handle, SMC_UNK);
336 
337 		assert(handle == cm_get_context(SECURE));
338 
339 		/* Assert that standard SMC execution has been preempted */
340 		assert(get_std_smc_active_flag(tsp_ctx->state));
341 
342 		/* Save the secure system register state */
343 		cm_el1_sysregs_context_save(SECURE);
344 
345 		/* Get a reference to the non-secure context */
346 		ns_cpu_context = cm_get_context(NON_SECURE);
347 		assert(ns_cpu_context);
348 
349 		/* Restore non-secure state */
350 		cm_el1_sysregs_context_restore(NON_SECURE);
351 		cm_set_next_eret_context(NON_SECURE);
352 
353 		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
354 
355 
356 	/*
357 	 * This function ID is used only by the SP to indicate it has
358 	 * finished initialising itself after a cold boot
359 	 */
360 	case TSP_ENTRY_DONE:
361 		if (ns)
362 			SMC_RET1(handle, SMC_UNK);
363 
364 		/*
365 		 * Stash the SP entry points information. This is done
366 		 * only once on the primary cpu
367 		 */
368 		assert(tsp_vectors == NULL);
369 		tsp_vectors = (tsp_vectors_t *) x1;
370 
371 		if (tsp_vectors) {
372 			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
373 
374 			/*
375 			 * TSP has been successfully initialized. Register power
376 			 * managemnt hooks with PSCI
377 			 */
378 			psci_register_spd_pm_hook(&tspd_pm);
379 
380 			/*
381 			 * Register an interrupt handler for S-EL1 interrupts
382 			 * when generated during code executing in the
383 			 * non-secure state.
384 			 */
385 			flags = 0;
386 			set_interrupt_rm_flag(flags, NON_SECURE);
387 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
388 						tspd_sel1_interrupt_handler,
389 						flags);
390 			if (rc)
391 				panic();
392 		}
393 
394 
395 #if TSP_INIT_ASYNC
396 		/* Save the Secure EL1 system register context */
397 		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
398 		cm_el1_sysregs_context_save(SECURE);
399 
400 		/* Program EL3 registers to enable entry into the next EL */
401 		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
402 		assert(next_image_info);
403 		assert(NON_SECURE ==
404 				GET_SECURITY_STATE(next_image_info->h.attr));
405 
406 		cm_init_context(read_mpidr_el1(), next_image_info);
407 		cm_prepare_el3_exit(NON_SECURE);
408 		SMC_RET0(cm_get_context(NON_SECURE));
409 #else
410 		/*
411 		 * SP reports completion. The SPD must have initiated
412 		 * the original request through a synchronous entry
413 		 * into the SP. Jump back to the original C runtime
414 		 * context.
415 		 */
416 		tspd_synchronous_sp_exit(tsp_ctx, x1);
417 #endif
418 
419 	/*
420 	 * These function IDs is used only by the SP to indicate it has
421 	 * finished:
422 	 * 1. turning itself on in response to an earlier psci
423 	 *    cpu_on request
424 	 * 2. resuming itself after an earlier psci cpu_suspend
425 	 *    request.
426 	 */
427 	case TSP_ON_DONE:
428 	case TSP_RESUME_DONE:
429 
430 	/*
431 	 * These function IDs is used only by the SP to indicate it has
432 	 * finished:
433 	 * 1. suspending itself after an earlier psci cpu_suspend
434 	 *    request.
435 	 * 2. turning itself off in response to an earlier psci
436 	 *    cpu_off request.
437 	 */
438 	case TSP_OFF_DONE:
439 	case TSP_SUSPEND_DONE:
440 	case TSP_SYSTEM_OFF_DONE:
441 	case TSP_SYSTEM_RESET_DONE:
442 		if (ns)
443 			SMC_RET1(handle, SMC_UNK);
444 
445 		/*
446 		 * SP reports completion. The SPD must have initiated the
447 		 * original request through a synchronous entry into the SP.
448 		 * Jump back to the original C runtime context, and pass x1 as
449 		 * return value to the caller
450 		 */
451 		tspd_synchronous_sp_exit(tsp_ctx, x1);
452 
453 		/*
454 		 * Request from non-secure client to perform an
455 		 * arithmetic operation or response from secure
456 		 * payload to an earlier request.
457 		 */
458 	case TSP_FAST_FID(TSP_ADD):
459 	case TSP_FAST_FID(TSP_SUB):
460 	case TSP_FAST_FID(TSP_MUL):
461 	case TSP_FAST_FID(TSP_DIV):
462 
463 	case TSP_STD_FID(TSP_ADD):
464 	case TSP_STD_FID(TSP_SUB):
465 	case TSP_STD_FID(TSP_MUL):
466 	case TSP_STD_FID(TSP_DIV):
467 		if (ns) {
468 			/*
469 			 * This is a fresh request from the non-secure client.
470 			 * The parameters are in x1 and x2. Figure out which
471 			 * registers need to be preserved, save the non-secure
472 			 * state and send the request to the secure payload.
473 			 */
474 			assert(handle == cm_get_context(NON_SECURE));
475 
476 			/* Check if we are already preempted */
477 			if (get_std_smc_active_flag(tsp_ctx->state))
478 				SMC_RET1(handle, SMC_UNK);
479 
480 			cm_el1_sysregs_context_save(NON_SECURE);
481 
482 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
483 			store_tsp_args(tsp_ctx, x1, x2);
484 
485 			/*
486 			 * We are done stashing the non-secure context. Ask the
487 			 * secure payload to do the work now.
488 			 */
489 
490 			/*
491 			 * Verify if there is a valid context to use, copy the
492 			 * operation type and parameters to the secure context
493 			 * and jump to the fast smc entry point in the secure
494 			 * payload. Entry into S-EL1 will take place upon exit
495 			 * from this function.
496 			 */
497 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
498 
499 			/* Set appropriate entry for SMC.
500 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
501 			 * flags as appropriate.
502 			 */
503 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
504 				cm_set_elr_el3(SECURE, (uint64_t)
505 						&tsp_vectors->fast_smc_entry);
506 			} else {
507 				set_std_smc_active_flag(tsp_ctx->state);
508 				cm_set_elr_el3(SECURE, (uint64_t)
509 						&tsp_vectors->std_smc_entry);
510 			}
511 
512 			cm_el1_sysregs_context_restore(SECURE);
513 			cm_set_next_eret_context(SECURE);
514 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
515 		} else {
516 			/*
517 			 * This is the result from the secure client of an
518 			 * earlier request. The results are in x1-x3. Copy it
519 			 * into the non-secure context, save the secure state
520 			 * and return to the non-secure state.
521 			 */
522 			assert(handle == cm_get_context(SECURE));
523 			cm_el1_sysregs_context_save(SECURE);
524 
525 			/* Get a reference to the non-secure context */
526 			ns_cpu_context = cm_get_context(NON_SECURE);
527 			assert(ns_cpu_context);
528 
529 			/* Restore non-secure state */
530 			cm_el1_sysregs_context_restore(NON_SECURE);
531 			cm_set_next_eret_context(NON_SECURE);
532 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
533 				clr_std_smc_active_flag(tsp_ctx->state);
534 			SMC_RET3(ns_cpu_context, x1, x2, x3);
535 		}
536 
537 		break;
538 
539 		/*
540 		 * Request from non secure world to resume the preempted
541 		 * Standard SMC call.
542 		 */
543 	case TSP_FID_RESUME:
544 		/* RESUME should be invoked only by normal world */
545 		if (!ns) {
546 			assert(0);
547 			break;
548 		}
549 
550 		/*
551 		 * This is a resume request from the non-secure client.
552 		 * save the non-secure state and send the request to
553 		 * the secure payload.
554 		 */
555 		assert(handle == cm_get_context(NON_SECURE));
556 
557 		/* Check if we are already preempted before resume */
558 		if (!get_std_smc_active_flag(tsp_ctx->state))
559 			SMC_RET1(handle, SMC_UNK);
560 
561 		cm_el1_sysregs_context_save(NON_SECURE);
562 
563 		/*
564 		 * We are done stashing the non-secure context. Ask the
565 		 * secure payload to do the work now.
566 		 */
567 
568 		/* We just need to return to the preempted point in
569 		 * TSP and the execution will resume as normal.
570 		 */
571 		cm_el1_sysregs_context_restore(SECURE);
572 		cm_set_next_eret_context(SECURE);
573 		SMC_RET0(&tsp_ctx->cpu_ctx);
574 
575 		/*
576 		 * This is a request from the secure payload for more arguments
577 		 * for an ongoing arithmetic operation requested by the
578 		 * non-secure world. Simply return the arguments from the non-
579 		 * secure client in the original call.
580 		 */
581 	case TSP_GET_ARGS:
582 		if (ns)
583 			SMC_RET1(handle, SMC_UNK);
584 
585 		get_tsp_args(tsp_ctx, x1, x2);
586 		SMC_RET2(handle, x1, x2);
587 
588 	case TOS_CALL_COUNT:
589 		/*
590 		 * Return the number of service function IDs implemented to
591 		 * provide service to non-secure
592 		 */
593 		SMC_RET1(handle, TSP_NUM_FID);
594 
595 	case TOS_UID:
596 		/* Return TSP UID to the caller */
597 		SMC_UUID_RET(handle, tsp_uuid);
598 
599 	case TOS_CALL_VERSION:
600 		/* Return the version of current implementation */
601 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
602 
603 	default:
604 		break;
605 	}
606 
607 	SMC_RET1(handle, SMC_UNK);
608 }
609 
610 /* Define a SPD runtime service descriptor for fast SMC calls */
611 DECLARE_RT_SVC(
612 	tspd_fast,
613 
614 	OEN_TOS_START,
615 	OEN_TOS_END,
616 	SMC_TYPE_FAST,
617 	tspd_setup,
618 	tspd_smc_handler
619 );
620 
621 /* Define a SPD runtime service descriptor for standard SMC calls */
622 DECLARE_RT_SVC(
623 	tspd_std,
624 
625 	OEN_TOS_START,
626 	OEN_TOS_END,
627 	SMC_TYPE_STD,
628 	NULL,
629 	tspd_smc_handler
630 );
631