xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision 97043ac98e13a726dbf8b3b41654dca759e3da2c)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <runtime_svc.h>
47 #include <stddef.h>
48 #include <tsp.h>
49 #include <uuid.h>
50 #include "tspd_private.h"
51 
52 /*******************************************************************************
53  * Single structure to hold information about the various entry points into the
54  * Secure Payload. It is initialised once on the primary core after a cold boot.
55  ******************************************************************************/
56 entry_info_t *tsp_entry_info;
57 
58 /*******************************************************************************
59  * Array to keep track of per-cpu Secure Payload state
60  ******************************************************************************/
61 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
62 
63 
64 /* TSP UID */
65 DEFINE_SVC_UUID(tsp_uuid,
66 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
67 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
68 
69 int32_t tspd_init(meminfo_t *bl32_meminfo);
70 
71 
72 /*******************************************************************************
73  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
74  * (aarch32/aarch64) if not already known and initialises the context for entry
75  * into the SP for its initialisation.
76  ******************************************************************************/
77 int32_t tspd_setup(void)
78 {
79 	el_change_info_t *image_info;
80 	int32_t rc;
81 	uint64_t mpidr = read_mpidr();
82 	uint32_t linear_id;
83 
84 	linear_id = platform_get_core_pos(mpidr);
85 
86 	/*
87 	 * Get information about the Secure Payload (BL32) image. Its
88 	 * absence is a critical failure.  TODO: Add support to
89 	 * conditionally include the SPD service
90 	 */
91 	image_info = bl31_get_next_image_info(SECURE);
92 	assert(image_info);
93 
94 	/*
95 	 * If there's no valid entry point for SP, we return a non-zero value
96 	 * signalling failure initializing the service. We bail out without
97 	 * registering any handlers
98 	 */
99 	if (!image_info->entrypoint)
100 		return 1;
101 
102 	/*
103 	 * We could inspect the SP image and determine it's execution
104 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
105 	 * for the time being.
106 	 */
107 	rc = tspd_init_secure_context(image_info->entrypoint,
108 				     TSP_AARCH64,
109 				     mpidr,
110 				     &tspd_sp_context[linear_id]);
111 	assert(rc == 0);
112 
113 	/*
114 	 * All TSPD initialization done. Now register our init function with
115 	 * BL31 for deferred invocation
116 	 */
117 	bl31_register_bl32_init(&tspd_init);
118 
119 	return rc;
120 }
121 
122 /*******************************************************************************
123  * This function passes control to the Secure Payload image (BL32) for the first
124  * time on the primary cpu after a cold boot. It assumes that a valid secure
125  * context has already been created by tspd_setup() which can be directly used.
126  * It also assumes that a valid non-secure context has been initialised by PSCI
127  * so it does not need to save and restore any non-secure state. This function
128  * performs a synchronous entry into the Secure payload. The SP passes control
129  * back to this routine through a SMC. It also passes the extents of memory made
130  * available to BL32 by BL31.
131  ******************************************************************************/
132 int32_t tspd_init(meminfo_t *bl32_meminfo)
133 {
134 	uint64_t mpidr = read_mpidr();
135 	uint32_t linear_id = platform_get_core_pos(mpidr);
136 	uint64_t rc;
137 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
138 
139 	/*
140 	 * Arrange for passing a pointer to the meminfo structure
141 	 * describing the memory extents available to the secure
142 	 * payload.
143 	 * TODO: We are passing a pointer to BL31 internal memory
144 	 * whereas this structure should be copied to a communication
145 	 * buffer between the SP and SPD.
146 	 */
147 	write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
148 		      CTX_GPREG_X0,
149 		      (uint64_t) bl32_meminfo);
150 
151 	/*
152 	 * Arrange for an entry into the test secure payload. We expect an array
153 	 * of vectors in return
154 	 */
155 	rc = tspd_synchronous_sp_entry(tsp_ctx);
156 	assert(rc != 0);
157 	if (rc) {
158 		tsp_ctx->state = TSP_STATE_ON;
159 
160 		/*
161 		 * TSP has been successfully initialized. Register power
162 		 * managemnt hooks with PSCI
163 		 */
164 		psci_register_spd_pm_hook(&tspd_pm);
165 	}
166 
167 	return rc;
168 }
169 
170 
171 /*******************************************************************************
172  * This function is responsible for handling all SMCs in the Trusted OS/App
173  * range from the non-secure state as defined in the SMC Calling Convention
174  * Document. It is also responsible for communicating with the Secure payload
175  * to delegate work and return results back to the non-secure state. Lastly it
176  * will also return any information that the secure payload needs to do the
177  * work assigned to it.
178  ******************************************************************************/
179 uint64_t tspd_smc_handler(uint32_t smc_fid,
180 			 uint64_t x1,
181 			 uint64_t x2,
182 			 uint64_t x3,
183 			 uint64_t x4,
184 			 void *cookie,
185 			 void *handle,
186 			 uint64_t flags)
187 {
188 	cpu_context_t *ns_cpu_context;
189 	gp_regs_t *ns_gp_regs;
190 	unsigned long mpidr = read_mpidr();
191 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
192 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
193 
194 	/* Determine which security state this SMC originated from */
195 	ns = is_caller_non_secure(flags);
196 
197 	switch (smc_fid) {
198 
199 	/*
200 	 * This function ID is used only by the SP to indicate it has
201 	 * finished initialising itself after a cold boot
202 	 */
203 	case TSP_ENTRY_DONE:
204 		if (ns)
205 			SMC_RET1(handle, SMC_UNK);
206 
207 		/*
208 		 * Stash the SP entry points information. This is done
209 		 * only once on the primary cpu
210 		 */
211 		assert(tsp_entry_info == NULL);
212 		tsp_entry_info = (entry_info_t *) x1;
213 
214 		/*
215 		 * SP reports completion. The SPD must have initiated
216 		 * the original request through a synchronous entry
217 		 * into the SP. Jump back to the original C runtime
218 		 * context.
219 		 */
220 		tspd_synchronous_sp_exit(tsp_ctx, x1);
221 
222 		/* Should never reach here */
223 		assert(0);
224 
225 	/*
226 	 * These function IDs is used only by the SP to indicate it has
227 	 * finished:
228 	 * 1. turning itself on in response to an earlier psci
229 	 *    cpu_on request
230 	 * 2. resuming itself after an earlier psci cpu_suspend
231 	 *    request.
232 	 */
233 	case TSP_ON_DONE:
234 	case TSP_RESUME_DONE:
235 
236 	/*
237 	 * These function IDs is used only by the SP to indicate it has
238 	 * finished:
239 	 * 1. suspending itself after an earlier psci cpu_suspend
240 	 *    request.
241 	 * 2. turning itself off in response to an earlier psci
242 	 *    cpu_off request.
243 	 */
244 	case TSP_OFF_DONE:
245 	case TSP_SUSPEND_DONE:
246 		if (ns)
247 			SMC_RET1(handle, SMC_UNK);
248 
249 		/*
250 		 * SP reports completion. The SPD must have initiated the
251 		 * original request through a synchronous entry into the SP.
252 		 * Jump back to the original C runtime context, and pass x1 as
253 		 * return value to the caller
254 		 */
255 		tspd_synchronous_sp_exit(tsp_ctx, x1);
256 
257 		/* Should never reach here */
258 		assert(0);
259 
260 		/*
261 		 * Request from non-secure client to perform an
262 		 * arithmetic operation or response from secure
263 		 * payload to an earlier request.
264 		 */
265 	case TSP_FID_ADD:
266 	case TSP_FID_SUB:
267 	case TSP_FID_MUL:
268 	case TSP_FID_DIV:
269 		if (ns) {
270 			/*
271 			 * This is a fresh request from the non-secure client.
272 			 * The parameters are in x1 and x2. Figure out which
273 			 * registers need to be preserved, save the non-secure
274 			 * state and send the request to the secure payload.
275 			 */
276 			assert(handle == cm_get_context(mpidr, NON_SECURE));
277 			cm_el1_sysregs_context_save(NON_SECURE);
278 
279 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
280 			SMC_SET_GP(handle, CTX_GPREG_X1, x1);
281 			SMC_SET_GP(handle, CTX_GPREG_X2, x2);
282 
283 			/*
284 			 * We are done stashing the non-secure context. Ask the
285 			 * secure payload to do the work now.
286 			 */
287 
288 			/*
289 			 * Verify if there is a valid context to use, copy the
290 			 * operation type and parameters to the secure context
291 			 * and jump to the fast smc entry point in the secure
292 			 * payload. Entry into S-EL1 will take place upon exit
293 			 * from this function.
294 			 */
295 			assert(&tsp_ctx->cpu_ctx == cm_get_context(mpidr, SECURE));
296 			set_aapcs_args7(&tsp_ctx->cpu_ctx, smc_fid, x1, x2, 0, 0,
297 					0, 0, 0);
298 			cm_set_el3_elr(SECURE, (uint64_t) tsp_entry_info->fast_smc_entry);
299 			cm_el1_sysregs_context_restore(SECURE);
300 			cm_set_next_eret_context(SECURE);
301 
302 			return smc_fid;
303 		} else {
304 			/*
305 			 * This is the result from the secure client of an
306 			 * earlier request. The results are in x1-x2. Copy it
307 			 * into the non-secure context, save the secure state
308 			 * and return to the non-secure state.
309 			 */
310 			assert(handle == cm_get_context(mpidr, SECURE));
311 			cm_el1_sysregs_context_save(SECURE);
312 
313 			/* Get a reference to the non-secure context */
314 			ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
315 			assert(ns_cpu_context);
316 			ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
317 
318 			/* Restore non-secure state */
319 			cm_el1_sysregs_context_restore(NON_SECURE);
320 			cm_set_next_eret_context(NON_SECURE);
321 
322 			SMC_RET2(ns_gp_regs, x1, x2);
323 		}
324 
325 		break;
326 
327 		/*
328 		 * This is a request from the secure payload for more arguments
329 		 * for an ongoing arithmetic operation requested by the
330 		 * non-secure world. Simply return the arguments from the non-
331 		 * secure client in the original call.
332 		 */
333 	case TSP_GET_ARGS:
334 		if (ns)
335 			SMC_RET1(handle, SMC_UNK);
336 
337 		/* Get a reference to the non-secure context */
338 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
339 		assert(ns_cpu_context);
340 		ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
341 
342 		SMC_RET2(handle, read_ctx_reg(ns_gp_regs, CTX_GPREG_X1),
343 				read_ctx_reg(ns_gp_regs, CTX_GPREG_X2));
344 
345 	case TOS_CALL_COUNT:
346 		/*
347 		 * Return the number of service function IDs implemented to
348 		 * provide service to non-secure
349 		 */
350 		SMC_RET1(handle, TSP_NUM_FID);
351 
352 	case TOS_UID:
353 		/* Return TSP UID to the caller */
354 		SMC_UUID_RET(handle, tsp_uuid);
355 
356 	case TOS_CALL_VERSION:
357 		/* Return the version of current implementation */
358 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
359 
360 	default:
361 		break;
362 	}
363 
364 	SMC_RET1(handle, SMC_UNK);
365 }
366 
367 /* Define a SPD runtime service descriptor */
368 DECLARE_RT_SVC(
369 	spd,
370 
371 	OEN_TOS_START,
372 	OEN_TOS_END,
373 	SMC_TYPE_FAST,
374 	tspd_setup,
375 	tspd_smc_handler
376 );
377