xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision 5471841870074043dc53f2bd1a52bc48970038e2)
1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <string.h>
52 #include <tsp.h>
53 #include <uuid.h>
54 #include "tspd_private.h"
55 
56 /*******************************************************************************
57  * Address of the entrypoint vector table in the Secure Payload. It is
58  * initialised once on the primary core after a cold boot.
59  ******************************************************************************/
60 tsp_vectors_t *tsp_vectors;
61 
62 /*******************************************************************************
63  * Array to keep track of per-cpu Secure Payload state
64  ******************************************************************************/
65 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
66 
67 
68 /* TSP UID */
69 DEFINE_SVC_UUID(tsp_uuid,
70 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
71 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
72 
73 int32_t tspd_init(void);
74 
75 uint64_t tspd_handle_sp_preemption(void *handle)
76 {
77 	cpu_context_t *ns_cpu_context;
78 	assert(handle == cm_get_context(SECURE));
79 	cm_el1_sysregs_context_save(SECURE);
80 	/* Get a reference to the non-secure context */
81 	ns_cpu_context = cm_get_context(NON_SECURE);
82 	assert(ns_cpu_context);
83 
84 	/*
85 	 * Restore non-secure state. The secure system
86 	 * register context will be saved when required.
87 	 */
88 	cm_el1_sysregs_context_restore(NON_SECURE);
89 	cm_set_next_eret_context(NON_SECURE);
90 
91 	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
92 }
93 /*******************************************************************************
94  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
95  * validates the interrupt and upon success arranges entry into the TSP at
96  * 'tsp_fiq_entry()' for handling the interrupt.
97  ******************************************************************************/
98 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
99 					    uint32_t flags,
100 					    void *handle,
101 					    void *cookie)
102 {
103 	uint32_t linear_id;
104 	tsp_context_t *tsp_ctx;
105 
106 	/* Check the security state when the exception was generated */
107 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
108 
109 	/* Sanity check the pointer to this cpu's context */
110 	assert(handle == cm_get_context(NON_SECURE));
111 
112 	/* Save the non-secure context before entering the TSP */
113 	cm_el1_sysregs_context_save(NON_SECURE);
114 
115 	/* Get a reference to this cpu's TSP context */
116 	linear_id = plat_my_core_pos();
117 	tsp_ctx = &tspd_sp_context[linear_id];
118 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
119 
120 	/*
121 	 * Determine if the TSP was previously preempted. Its last known
122 	 * context has to be preserved in this case.
123 	 * The TSP should return control to the TSPD after handling this
124 	 * FIQ. Preserve essential EL3 context to allow entry into the
125 	 * TSP at the FIQ entry point using the 'cpu_context' structure.
126 	 * There is no need to save the secure system register context
127 	 * since the TSP is supposed to preserve it during S-EL1 interrupt
128 	 * handling.
129 	 */
130 	if (get_std_smc_active_flag(tsp_ctx->state)) {
131 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
132 						      CTX_SPSR_EL3);
133 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
134 						     CTX_ELR_EL3);
135 #if TSPD_ROUTE_IRQ_TO_EL3
136 		/*Need to save the previously interrupted secure context */
137 		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
138 #endif
139 	}
140 
141 	cm_el1_sysregs_context_restore(SECURE);
142 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
143 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
144 
145 	cm_set_next_eret_context(SECURE);
146 
147 	/*
148 	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
149 	 * instruction in normal world where the interrupt was generated is
150 	 * passed for debugging purposes. It is safe to retrieve this address
151 	 * from ELR_EL3 as the secure context will not take effect until
152 	 * el3_exit().
153 	 */
154 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
155 }
156 
157 #if TSPD_ROUTE_IRQ_TO_EL3
158 /*******************************************************************************
159  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
160  * validates the interrupt and upon success arranges entry into the TSP at
161  * 'tsp_fiq_entry()' for handling the interrupt.
162  ******************************************************************************/
163 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
164 					    uint32_t flags,
165 					    void *handle,
166 					    void *cookie)
167 {
168 	/* Check the security state when the exception was generated */
169 	assert(get_interrupt_src_ss(flags) == SECURE);
170 
171 	/*
172 	 * Disable the routing of NS interrupts from secure world to EL3 while
173 	 * interrupted on this core.
174 	 */
175 	disable_intr_rm_local(INTR_TYPE_NS, SECURE);
176 
177 	return tspd_handle_sp_preemption(handle);
178 }
179 #endif
180 
181 /*******************************************************************************
182  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
183  * (aarch32/aarch64) if not already known and initialises the context for entry
184  * into the SP for its initialisation.
185  ******************************************************************************/
186 int32_t tspd_setup(void)
187 {
188 	entry_point_info_t *tsp_ep_info;
189 	uint32_t linear_id;
190 
191 	linear_id = plat_my_core_pos();
192 
193 	/*
194 	 * Get information about the Secure Payload (BL32) image. Its
195 	 * absence is a critical failure.  TODO: Add support to
196 	 * conditionally include the SPD service
197 	 */
198 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
199 	if (!tsp_ep_info) {
200 		WARN("No TSP provided by BL2 boot loader, Booting device"
201 			" without TSP initialization. SMC`s destined for TSP"
202 			" will return SMC_UNK\n");
203 		return 1;
204 	}
205 
206 	/*
207 	 * If there's no valid entry point for SP, we return a non-zero value
208 	 * signalling failure initializing the service. We bail out without
209 	 * registering any handlers
210 	 */
211 	if (!tsp_ep_info->pc)
212 		return 1;
213 
214 	/*
215 	 * We could inspect the SP image and determine it's execution
216 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
217 	 * for the time being.
218 	 */
219 	tspd_init_tsp_ep_state(tsp_ep_info,
220 				TSP_AARCH64,
221 				tsp_ep_info->pc,
222 				&tspd_sp_context[linear_id]);
223 
224 #if TSP_INIT_ASYNC
225 	bl31_set_next_image_type(SECURE);
226 #else
227 	/*
228 	 * All TSPD initialization done. Now register our init function with
229 	 * BL31 for deferred invocation
230 	 */
231 	bl31_register_bl32_init(&tspd_init);
232 #endif
233 	return 0;
234 }
235 
236 /*******************************************************************************
237  * This function passes control to the Secure Payload image (BL32) for the first
238  * time on the primary cpu after a cold boot. It assumes that a valid secure
239  * context has already been created by tspd_setup() which can be directly used.
240  * It also assumes that a valid non-secure context has been initialised by PSCI
241  * so it does not need to save and restore any non-secure state. This function
242  * performs a synchronous entry into the Secure payload. The SP passes control
243  * back to this routine through a SMC.
244  ******************************************************************************/
245 int32_t tspd_init(void)
246 {
247 	uint32_t linear_id = plat_my_core_pos();
248 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
249 	entry_point_info_t *tsp_entry_point;
250 	uint64_t rc;
251 
252 	/*
253 	 * Get information about the Secure Payload (BL32) image. Its
254 	 * absence is a critical failure.
255 	 */
256 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
257 	assert(tsp_entry_point);
258 
259 	cm_init_my_context(tsp_entry_point);
260 
261 	/*
262 	 * Arrange for an entry into the test secure payload. It will be
263 	 * returned via TSP_ENTRY_DONE case
264 	 */
265 	rc = tspd_synchronous_sp_entry(tsp_ctx);
266 	assert(rc != 0);
267 
268 	return rc;
269 }
270 
271 
272 /*******************************************************************************
273  * This function is responsible for handling all SMCs in the Trusted OS/App
274  * range from the non-secure state as defined in the SMC Calling Convention
275  * Document. It is also responsible for communicating with the Secure payload
276  * to delegate work and return results back to the non-secure state. Lastly it
277  * will also return any information that the secure payload needs to do the
278  * work assigned to it.
279  ******************************************************************************/
280 uint64_t tspd_smc_handler(uint32_t smc_fid,
281 			 uint64_t x1,
282 			 uint64_t x2,
283 			 uint64_t x3,
284 			 uint64_t x4,
285 			 void *cookie,
286 			 void *handle,
287 			 uint64_t flags)
288 {
289 	cpu_context_t *ns_cpu_context;
290 	uint32_t linear_id = plat_my_core_pos(), ns;
291 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
292 	uint64_t rc;
293 #if TSP_INIT_ASYNC
294 	entry_point_info_t *next_image_info;
295 #endif
296 
297 	/* Determine which security state this SMC originated from */
298 	ns = is_caller_non_secure(flags);
299 
300 	switch (smc_fid) {
301 
302 	/*
303 	 * This function ID is used by TSP to indicate that it was
304 	 * preempted by a normal world IRQ.
305 	 *
306 	 */
307 	case TSP_PREEMPTED:
308 		if (ns)
309 			SMC_RET1(handle, SMC_UNK);
310 
311 		return tspd_handle_sp_preemption(handle);
312 
313 	/*
314 	 * This function ID is used only by the TSP to indicate that it has
315 	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
316 	 * in the normal world.
317 	 */
318 	case TSP_HANDLED_S_EL1_FIQ:
319 		if (ns)
320 			SMC_RET1(handle, SMC_UNK);
321 
322 		assert(handle == cm_get_context(SECURE));
323 
324 		/*
325 		 * Restore the relevant EL3 state which saved to service
326 		 * this SMC.
327 		 */
328 		if (get_std_smc_active_flag(tsp_ctx->state)) {
329 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
330 				    CTX_SPSR_EL3,
331 				    tsp_ctx->saved_spsr_el3);
332 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
333 				    CTX_ELR_EL3,
334 				    tsp_ctx->saved_elr_el3);
335 #if TSPD_ROUTE_IRQ_TO_EL3
336 			/*
337 			 * Need to restore the previously interrupted
338 			 * secure context.
339 			 */
340 			memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
341 				TSPD_SP_CTX_SIZE);
342 #endif
343 		}
344 
345 		/* Get a reference to the non-secure context */
346 		ns_cpu_context = cm_get_context(NON_SECURE);
347 		assert(ns_cpu_context);
348 
349 		/*
350 		 * Restore non-secure state. There is no need to save the
351 		 * secure system register context since the TSP was supposed
352 		 * to preserve it during S-EL1 interrupt handling.
353 		 */
354 		cm_el1_sysregs_context_restore(NON_SECURE);
355 		cm_set_next_eret_context(NON_SECURE);
356 
357 		SMC_RET0((uint64_t) ns_cpu_context);
358 
359 
360 	/*
361 	 * This function ID is used only by the TSP to indicate that it was
362 	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
363 	 * in the normal world.
364 	 */
365 	case TSP_EL3_FIQ:
366 		if (ns)
367 			SMC_RET1(handle, SMC_UNK);
368 
369 		assert(handle == cm_get_context(SECURE));
370 
371 		/* Assert that standard SMC execution has been preempted */
372 		assert(get_std_smc_active_flag(tsp_ctx->state));
373 
374 		/* Save the secure system register state */
375 		cm_el1_sysregs_context_save(SECURE);
376 
377 		/* Get a reference to the non-secure context */
378 		ns_cpu_context = cm_get_context(NON_SECURE);
379 		assert(ns_cpu_context);
380 
381 		/* Restore non-secure state */
382 		cm_el1_sysregs_context_restore(NON_SECURE);
383 		cm_set_next_eret_context(NON_SECURE);
384 
385 		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
386 
387 
388 	/*
389 	 * This function ID is used only by the SP to indicate it has
390 	 * finished initialising itself after a cold boot
391 	 */
392 	case TSP_ENTRY_DONE:
393 		if (ns)
394 			SMC_RET1(handle, SMC_UNK);
395 
396 		/*
397 		 * Stash the SP entry points information. This is done
398 		 * only once on the primary cpu
399 		 */
400 		assert(tsp_vectors == NULL);
401 		tsp_vectors = (tsp_vectors_t *) x1;
402 
403 		if (tsp_vectors) {
404 			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
405 
406 			/*
407 			 * TSP has been successfully initialized. Register power
408 			 * managemnt hooks with PSCI
409 			 */
410 			psci_register_spd_pm_hook(&tspd_pm);
411 
412 			/*
413 			 * Register an interrupt handler for S-EL1 interrupts
414 			 * when generated during code executing in the
415 			 * non-secure state.
416 			 */
417 			flags = 0;
418 			set_interrupt_rm_flag(flags, NON_SECURE);
419 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
420 						tspd_sel1_interrupt_handler,
421 						flags);
422 			if (rc)
423 				panic();
424 
425 #if TSPD_ROUTE_IRQ_TO_EL3
426 			/*
427 			 * Register an interrupt handler for NS interrupts when
428 			 * generated during code executing in secure state are
429 			 * routed to EL3.
430 			 */
431 			flags = 0;
432 			set_interrupt_rm_flag(flags, SECURE);
433 
434 			rc = register_interrupt_type_handler(INTR_TYPE_NS,
435 						tspd_ns_interrupt_handler,
436 						flags);
437 			if (rc)
438 				panic();
439 
440 			/*
441 			 * Disable the interrupt NS locally since it will be enabled globally
442 			 * within cm_init_my_context.
443 			 */
444 			disable_intr_rm_local(INTR_TYPE_NS, SECURE);
445 #endif
446 		}
447 
448 
449 #if TSP_INIT_ASYNC
450 		/* Save the Secure EL1 system register context */
451 		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
452 		cm_el1_sysregs_context_save(SECURE);
453 
454 		/* Program EL3 registers to enable entry into the next EL */
455 		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
456 		assert(next_image_info);
457 		assert(NON_SECURE ==
458 				GET_SECURITY_STATE(next_image_info->h.attr));
459 
460 		cm_init_my_context(next_image_info);
461 		cm_prepare_el3_exit(NON_SECURE);
462 		SMC_RET0(cm_get_context(NON_SECURE));
463 #else
464 		/*
465 		 * SP reports completion. The SPD must have initiated
466 		 * the original request through a synchronous entry
467 		 * into the SP. Jump back to the original C runtime
468 		 * context.
469 		 */
470 		tspd_synchronous_sp_exit(tsp_ctx, x1);
471 #endif
472 
473 	/*
474 	 * These function IDs is used only by the SP to indicate it has
475 	 * finished:
476 	 * 1. turning itself on in response to an earlier psci
477 	 *    cpu_on request
478 	 * 2. resuming itself after an earlier psci cpu_suspend
479 	 *    request.
480 	 */
481 	case TSP_ON_DONE:
482 	case TSP_RESUME_DONE:
483 
484 	/*
485 	 * These function IDs is used only by the SP to indicate it has
486 	 * finished:
487 	 * 1. suspending itself after an earlier psci cpu_suspend
488 	 *    request.
489 	 * 2. turning itself off in response to an earlier psci
490 	 *    cpu_off request.
491 	 */
492 	case TSP_OFF_DONE:
493 	case TSP_SUSPEND_DONE:
494 	case TSP_SYSTEM_OFF_DONE:
495 	case TSP_SYSTEM_RESET_DONE:
496 		if (ns)
497 			SMC_RET1(handle, SMC_UNK);
498 
499 		/*
500 		 * SP reports completion. The SPD must have initiated the
501 		 * original request through a synchronous entry into the SP.
502 		 * Jump back to the original C runtime context, and pass x1 as
503 		 * return value to the caller
504 		 */
505 		tspd_synchronous_sp_exit(tsp_ctx, x1);
506 
507 		/*
508 		 * Request from non-secure client to perform an
509 		 * arithmetic operation or response from secure
510 		 * payload to an earlier request.
511 		 */
512 	case TSP_FAST_FID(TSP_ADD):
513 	case TSP_FAST_FID(TSP_SUB):
514 	case TSP_FAST_FID(TSP_MUL):
515 	case TSP_FAST_FID(TSP_DIV):
516 
517 	case TSP_STD_FID(TSP_ADD):
518 	case TSP_STD_FID(TSP_SUB):
519 	case TSP_STD_FID(TSP_MUL):
520 	case TSP_STD_FID(TSP_DIV):
521 		if (ns) {
522 			/*
523 			 * This is a fresh request from the non-secure client.
524 			 * The parameters are in x1 and x2. Figure out which
525 			 * registers need to be preserved, save the non-secure
526 			 * state and send the request to the secure payload.
527 			 */
528 			assert(handle == cm_get_context(NON_SECURE));
529 
530 			/* Check if we are already preempted */
531 			if (get_std_smc_active_flag(tsp_ctx->state))
532 				SMC_RET1(handle, SMC_UNK);
533 
534 			cm_el1_sysregs_context_save(NON_SECURE);
535 
536 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
537 			store_tsp_args(tsp_ctx, x1, x2);
538 
539 			/*
540 			 * We are done stashing the non-secure context. Ask the
541 			 * secure payload to do the work now.
542 			 */
543 
544 			/*
545 			 * Verify if there is a valid context to use, copy the
546 			 * operation type and parameters to the secure context
547 			 * and jump to the fast smc entry point in the secure
548 			 * payload. Entry into S-EL1 will take place upon exit
549 			 * from this function.
550 			 */
551 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
552 
553 			/* Set appropriate entry for SMC.
554 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
555 			 * flags as appropriate.
556 			 */
557 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
558 				cm_set_elr_el3(SECURE, (uint64_t)
559 						&tsp_vectors->fast_smc_entry);
560 			} else {
561 				set_std_smc_active_flag(tsp_ctx->state);
562 				cm_set_elr_el3(SECURE, (uint64_t)
563 						&tsp_vectors->std_smc_entry);
564 #if TSPD_ROUTE_IRQ_TO_EL3
565 				/*
566 				 * Enable the routing of NS interrupts to EL3
567 				 * during STD SMC processing on this core.
568 				 */
569 				enable_intr_rm_local(INTR_TYPE_NS, SECURE);
570 #endif
571 			}
572 
573 			cm_el1_sysregs_context_restore(SECURE);
574 			cm_set_next_eret_context(SECURE);
575 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
576 		} else {
577 			/*
578 			 * This is the result from the secure client of an
579 			 * earlier request. The results are in x1-x3. Copy it
580 			 * into the non-secure context, save the secure state
581 			 * and return to the non-secure state.
582 			 */
583 			assert(handle == cm_get_context(SECURE));
584 			cm_el1_sysregs_context_save(SECURE);
585 
586 			/* Get a reference to the non-secure context */
587 			ns_cpu_context = cm_get_context(NON_SECURE);
588 			assert(ns_cpu_context);
589 
590 			/* Restore non-secure state */
591 			cm_el1_sysregs_context_restore(NON_SECURE);
592 			cm_set_next_eret_context(NON_SECURE);
593 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) {
594 				clr_std_smc_active_flag(tsp_ctx->state);
595 #if TSPD_ROUTE_IRQ_TO_EL3
596 				/*
597 				 * Disable the routing of NS interrupts to EL3
598 				 * after STD SMC processing is finished on this
599 				 * core.
600 				 */
601 				disable_intr_rm_local(INTR_TYPE_NS, SECURE);
602 #endif
603 			}
604 
605 			SMC_RET3(ns_cpu_context, x1, x2, x3);
606 		}
607 
608 		break;
609 
610 		/*
611 		 * Request from non secure world to resume the preempted
612 		 * Standard SMC call.
613 		 */
614 	case TSP_FID_RESUME:
615 		/* RESUME should be invoked only by normal world */
616 		if (!ns) {
617 			assert(0);
618 			break;
619 		}
620 
621 		/*
622 		 * This is a resume request from the non-secure client.
623 		 * save the non-secure state and send the request to
624 		 * the secure payload.
625 		 */
626 		assert(handle == cm_get_context(NON_SECURE));
627 
628 		/* Check if we are already preempted before resume */
629 		if (!get_std_smc_active_flag(tsp_ctx->state))
630 			SMC_RET1(handle, SMC_UNK);
631 
632 		cm_el1_sysregs_context_save(NON_SECURE);
633 
634 		/*
635 		 * We are done stashing the non-secure context. Ask the
636 		 * secure payload to do the work now.
637 		 */
638 #if TSPD_ROUTE_IRQ_TO_EL3
639 		/*
640 		 * Enable the routing of NS interrupts to EL3 during resumption
641 		 * of STD SMC call on this core.
642 		 */
643 		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
644 #endif
645 
646 
647 
648 		/* We just need to return to the preempted point in
649 		 * TSP and the execution will resume as normal.
650 		 */
651 		cm_el1_sysregs_context_restore(SECURE);
652 		cm_set_next_eret_context(SECURE);
653 		SMC_RET0(&tsp_ctx->cpu_ctx);
654 
655 		/*
656 		 * This is a request from the secure payload for more arguments
657 		 * for an ongoing arithmetic operation requested by the
658 		 * non-secure world. Simply return the arguments from the non-
659 		 * secure client in the original call.
660 		 */
661 	case TSP_GET_ARGS:
662 		if (ns)
663 			SMC_RET1(handle, SMC_UNK);
664 
665 		get_tsp_args(tsp_ctx, x1, x2);
666 		SMC_RET2(handle, x1, x2);
667 
668 	case TOS_CALL_COUNT:
669 		/*
670 		 * Return the number of service function IDs implemented to
671 		 * provide service to non-secure
672 		 */
673 		SMC_RET1(handle, TSP_NUM_FID);
674 
675 	case TOS_UID:
676 		/* Return TSP UID to the caller */
677 		SMC_UUID_RET(handle, tsp_uuid);
678 
679 	case TOS_CALL_VERSION:
680 		/* Return the version of current implementation */
681 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
682 
683 	default:
684 		break;
685 	}
686 
687 	SMC_RET1(handle, SMC_UNK);
688 }
689 
690 /* Define a SPD runtime service descriptor for fast SMC calls */
691 DECLARE_RT_SVC(
692 	tspd_fast,
693 
694 	OEN_TOS_START,
695 	OEN_TOS_END,
696 	SMC_TYPE_FAST,
697 	tspd_setup,
698 	tspd_smc_handler
699 );
700 
701 /* Define a SPD runtime service descriptor for standard SMC calls */
702 DECLARE_RT_SVC(
703 	tspd_std,
704 
705 	OEN_TOS_START,
706 	OEN_TOS_END,
707 	SMC_TYPE_STD,
708 	NULL,
709 	tspd_smc_handler
710 );
711