1 /* 2 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * Redistributions of source code must retain the above copyright notice, this 8 * list of conditions and the following disclaimer. 9 * 10 * Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * Neither the name of ARM nor the names of its contributors may be used 15 * to endorse or promote products derived from this software without specific 16 * prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 32 /******************************************************************************* 33 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a 34 * plug-in component to the Secure Monitor, registered as a runtime service. The 35 * SPD is expected to be a functional extension of the Secure Payload (SP) that 36 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting 37 * the Trusted OS/Applications range to the dispatcher. The SPD will either 38 * handle the request locally or delegate it to the Secure Payload. It is also 39 * responsible for initialising and maintaining communication with the SP. 40 ******************************************************************************/ 41 #include <arch_helpers.h> 42 #include <assert.h> 43 #include <bl_common.h> 44 #include <bl31.h> 45 #include <context_mgmt.h> 46 #include <debug.h> 47 #include <errno.h> 48 #include <platform.h> 49 #include <runtime_svc.h> 50 #include <stddef.h> 51 #include <string.h> 52 #include <tsp.h> 53 #include <uuid.h> 54 #include "tspd_private.h" 55 56 /******************************************************************************* 57 * Address of the entrypoint vector table in the Secure Payload. It is 58 * initialised once on the primary core after a cold boot. 59 ******************************************************************************/ 60 tsp_vectors_t *tsp_vectors; 61 62 /******************************************************************************* 63 * Array to keep track of per-cpu Secure Payload state 64 ******************************************************************************/ 65 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT]; 66 67 68 /* TSP UID */ 69 DEFINE_SVC_UUID(tsp_uuid, 70 0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11, 71 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa); 72 73 int32_t tspd_init(void); 74 75 uint64_t tspd_handle_sp_preemption(void *handle) 76 { 77 cpu_context_t *ns_cpu_context; 78 assert(handle == cm_get_context(SECURE)); 79 cm_el1_sysregs_context_save(SECURE); 80 /* Get a reference to the non-secure context */ 81 ns_cpu_context = cm_get_context(NON_SECURE); 82 assert(ns_cpu_context); 83 84 /* 85 * Restore non-secure state. The secure system 86 * register context will be saved when required. 87 */ 88 cm_el1_sysregs_context_restore(NON_SECURE); 89 cm_set_next_eret_context(NON_SECURE); 90 91 SMC_RET1(ns_cpu_context, SMC_PREEMPTED); 92 } 93 /******************************************************************************* 94 * This function is the handler registered for S-EL1 interrupts by the TSPD. It 95 * validates the interrupt and upon success arranges entry into the TSP at 96 * 'tsp_fiq_entry()' for handling the interrupt. 97 ******************************************************************************/ 98 static uint64_t tspd_sel1_interrupt_handler(uint32_t id, 99 uint32_t flags, 100 void *handle, 101 void *cookie) 102 { 103 uint32_t linear_id; 104 tsp_context_t *tsp_ctx; 105 106 /* Check the security state when the exception was generated */ 107 assert(get_interrupt_src_ss(flags) == NON_SECURE); 108 109 /* Sanity check the pointer to this cpu's context */ 110 assert(handle == cm_get_context(NON_SECURE)); 111 112 /* Save the non-secure context before entering the TSP */ 113 cm_el1_sysregs_context_save(NON_SECURE); 114 115 /* Get a reference to this cpu's TSP context */ 116 linear_id = plat_my_core_pos(); 117 tsp_ctx = &tspd_sp_context[linear_id]; 118 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); 119 120 /* 121 * Determine if the TSP was previously preempted. Its last known 122 * context has to be preserved in this case. 123 * The TSP should return control to the TSPD after handling this 124 * FIQ. Preserve essential EL3 context to allow entry into the 125 * TSP at the FIQ entry point using the 'cpu_context' structure. 126 * There is no need to save the secure system register context 127 * since the TSP is supposed to preserve it during S-EL1 interrupt 128 * handling. 129 */ 130 if (get_std_smc_active_flag(tsp_ctx->state)) { 131 tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, 132 CTX_SPSR_EL3); 133 tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, 134 CTX_ELR_EL3); 135 #if TSPD_ROUTE_IRQ_TO_EL3 136 /*Need to save the previously interrupted secure context */ 137 memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE); 138 #endif 139 } 140 141 cm_el1_sysregs_context_restore(SECURE); 142 cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry, 143 SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS)); 144 145 cm_set_next_eret_context(SECURE); 146 147 /* 148 * Tell the TSP that it has to handle an FIQ synchronously. Also the 149 * instruction in normal world where the interrupt was generated is 150 * passed for debugging purposes. It is safe to retrieve this address 151 * from ELR_EL3 as the secure context will not take effect until 152 * el3_exit(). 153 */ 154 SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3()); 155 } 156 157 #if TSPD_ROUTE_IRQ_TO_EL3 158 /******************************************************************************* 159 * This function is the handler registered for S-EL1 interrupts by the TSPD. It 160 * validates the interrupt and upon success arranges entry into the TSP at 161 * 'tsp_fiq_entry()' for handling the interrupt. 162 ******************************************************************************/ 163 static uint64_t tspd_ns_interrupt_handler(uint32_t id, 164 uint32_t flags, 165 void *handle, 166 void *cookie) 167 { 168 /* Check the security state when the exception was generated */ 169 assert(get_interrupt_src_ss(flags) == SECURE); 170 171 /* 172 * Disable the routing of NS interrupts from secure world to EL3 while 173 * interrupted on this core. 174 */ 175 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 176 177 return tspd_handle_sp_preemption(handle); 178 } 179 #endif 180 181 /******************************************************************************* 182 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type 183 * (aarch32/aarch64) if not already known and initialises the context for entry 184 * into the SP for its initialisation. 185 ******************************************************************************/ 186 int32_t tspd_setup(void) 187 { 188 entry_point_info_t *tsp_ep_info; 189 uint32_t linear_id; 190 191 linear_id = plat_my_core_pos(); 192 193 /* 194 * Get information about the Secure Payload (BL32) image. Its 195 * absence is a critical failure. TODO: Add support to 196 * conditionally include the SPD service 197 */ 198 tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 199 if (!tsp_ep_info) { 200 WARN("No TSP provided by BL2 boot loader, Booting device" 201 " without TSP initialization. SMC`s destined for TSP" 202 " will return SMC_UNK\n"); 203 return 1; 204 } 205 206 /* 207 * If there's no valid entry point for SP, we return a non-zero value 208 * signalling failure initializing the service. We bail out without 209 * registering any handlers 210 */ 211 if (!tsp_ep_info->pc) 212 return 1; 213 214 /* 215 * We could inspect the SP image and determine it's execution 216 * state i.e whether AArch32 or AArch64. Assuming it's AArch64 217 * for the time being. 218 */ 219 tspd_init_tsp_ep_state(tsp_ep_info, 220 TSP_AARCH64, 221 tsp_ep_info->pc, 222 &tspd_sp_context[linear_id]); 223 224 #if TSP_INIT_ASYNC 225 bl31_set_next_image_type(SECURE); 226 #else 227 /* 228 * All TSPD initialization done. Now register our init function with 229 * BL31 for deferred invocation 230 */ 231 bl31_register_bl32_init(&tspd_init); 232 #endif 233 return 0; 234 } 235 236 /******************************************************************************* 237 * This function passes control to the Secure Payload image (BL32) for the first 238 * time on the primary cpu after a cold boot. It assumes that a valid secure 239 * context has already been created by tspd_setup() which can be directly used. 240 * It also assumes that a valid non-secure context has been initialised by PSCI 241 * so it does not need to save and restore any non-secure state. This function 242 * performs a synchronous entry into the Secure payload. The SP passes control 243 * back to this routine through a SMC. 244 ******************************************************************************/ 245 int32_t tspd_init(void) 246 { 247 uint32_t linear_id = plat_my_core_pos(); 248 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; 249 entry_point_info_t *tsp_entry_point; 250 uint64_t rc; 251 252 /* 253 * Get information about the Secure Payload (BL32) image. Its 254 * absence is a critical failure. 255 */ 256 tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE); 257 assert(tsp_entry_point); 258 259 cm_init_my_context(tsp_entry_point); 260 261 /* 262 * Arrange for an entry into the test secure payload. It will be 263 * returned via TSP_ENTRY_DONE case 264 */ 265 rc = tspd_synchronous_sp_entry(tsp_ctx); 266 assert(rc != 0); 267 268 return rc; 269 } 270 271 272 /******************************************************************************* 273 * This function is responsible for handling all SMCs in the Trusted OS/App 274 * range from the non-secure state as defined in the SMC Calling Convention 275 * Document. It is also responsible for communicating with the Secure payload 276 * to delegate work and return results back to the non-secure state. Lastly it 277 * will also return any information that the secure payload needs to do the 278 * work assigned to it. 279 ******************************************************************************/ 280 uint64_t tspd_smc_handler(uint32_t smc_fid, 281 uint64_t x1, 282 uint64_t x2, 283 uint64_t x3, 284 uint64_t x4, 285 void *cookie, 286 void *handle, 287 uint64_t flags) 288 { 289 cpu_context_t *ns_cpu_context; 290 uint32_t linear_id = plat_my_core_pos(), ns; 291 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; 292 uint64_t rc; 293 #if TSP_INIT_ASYNC 294 entry_point_info_t *next_image_info; 295 #endif 296 297 /* Determine which security state this SMC originated from */ 298 ns = is_caller_non_secure(flags); 299 300 switch (smc_fid) { 301 302 /* 303 * This function ID is used by TSP to indicate that it was 304 * preempted by a normal world IRQ. 305 * 306 */ 307 case TSP_PREEMPTED: 308 if (ns) 309 SMC_RET1(handle, SMC_UNK); 310 311 return tspd_handle_sp_preemption(handle); 312 313 /* 314 * This function ID is used only by the TSP to indicate that it has 315 * finished handling a S-EL1 FIQ interrupt. Execution should resume 316 * in the normal world. 317 */ 318 case TSP_HANDLED_S_EL1_FIQ: 319 if (ns) 320 SMC_RET1(handle, SMC_UNK); 321 322 assert(handle == cm_get_context(SECURE)); 323 324 /* 325 * Restore the relevant EL3 state which saved to service 326 * this SMC. 327 */ 328 if (get_std_smc_active_flag(tsp_ctx->state)) { 329 SMC_SET_EL3(&tsp_ctx->cpu_ctx, 330 CTX_SPSR_EL3, 331 tsp_ctx->saved_spsr_el3); 332 SMC_SET_EL3(&tsp_ctx->cpu_ctx, 333 CTX_ELR_EL3, 334 tsp_ctx->saved_elr_el3); 335 #if TSPD_ROUTE_IRQ_TO_EL3 336 /* 337 * Need to restore the previously interrupted 338 * secure context. 339 */ 340 memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx, 341 TSPD_SP_CTX_SIZE); 342 #endif 343 } 344 345 /* Get a reference to the non-secure context */ 346 ns_cpu_context = cm_get_context(NON_SECURE); 347 assert(ns_cpu_context); 348 349 /* 350 * Restore non-secure state. There is no need to save the 351 * secure system register context since the TSP was supposed 352 * to preserve it during S-EL1 interrupt handling. 353 */ 354 cm_el1_sysregs_context_restore(NON_SECURE); 355 cm_set_next_eret_context(NON_SECURE); 356 357 SMC_RET0((uint64_t) ns_cpu_context); 358 359 360 /* 361 * This function ID is used only by the TSP to indicate that it was 362 * interrupted due to a EL3 FIQ interrupt. Execution should resume 363 * in the normal world. 364 */ 365 case TSP_EL3_FIQ: 366 if (ns) 367 SMC_RET1(handle, SMC_UNK); 368 369 assert(handle == cm_get_context(SECURE)); 370 371 /* Assert that standard SMC execution has been preempted */ 372 assert(get_std_smc_active_flag(tsp_ctx->state)); 373 374 /* Save the secure system register state */ 375 cm_el1_sysregs_context_save(SECURE); 376 377 /* Get a reference to the non-secure context */ 378 ns_cpu_context = cm_get_context(NON_SECURE); 379 assert(ns_cpu_context); 380 381 /* Restore non-secure state */ 382 cm_el1_sysregs_context_restore(NON_SECURE); 383 cm_set_next_eret_context(NON_SECURE); 384 385 SMC_RET1(ns_cpu_context, TSP_EL3_FIQ); 386 387 388 /* 389 * This function ID is used only by the SP to indicate it has 390 * finished initialising itself after a cold boot 391 */ 392 case TSP_ENTRY_DONE: 393 if (ns) 394 SMC_RET1(handle, SMC_UNK); 395 396 /* 397 * Stash the SP entry points information. This is done 398 * only once on the primary cpu 399 */ 400 assert(tsp_vectors == NULL); 401 tsp_vectors = (tsp_vectors_t *) x1; 402 403 if (tsp_vectors) { 404 set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); 405 406 /* 407 * TSP has been successfully initialized. Register power 408 * managemnt hooks with PSCI 409 */ 410 psci_register_spd_pm_hook(&tspd_pm); 411 412 /* 413 * Register an interrupt handler for S-EL1 interrupts 414 * when generated during code executing in the 415 * non-secure state. 416 */ 417 flags = 0; 418 set_interrupt_rm_flag(flags, NON_SECURE); 419 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, 420 tspd_sel1_interrupt_handler, 421 flags); 422 if (rc) 423 panic(); 424 425 #if TSPD_ROUTE_IRQ_TO_EL3 426 /* 427 * Register an interrupt handler for NS interrupts when 428 * generated during code executing in secure state are 429 * routed to EL3. 430 */ 431 flags = 0; 432 set_interrupt_rm_flag(flags, SECURE); 433 434 rc = register_interrupt_type_handler(INTR_TYPE_NS, 435 tspd_ns_interrupt_handler, 436 flags); 437 if (rc) 438 panic(); 439 440 /* 441 * Disable the interrupt NS locally since it will be enabled globally 442 * within cm_init_my_context. 443 */ 444 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 445 #endif 446 } 447 448 449 #if TSP_INIT_ASYNC 450 /* Save the Secure EL1 system register context */ 451 assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx); 452 cm_el1_sysregs_context_save(SECURE); 453 454 /* Program EL3 registers to enable entry into the next EL */ 455 next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE); 456 assert(next_image_info); 457 assert(NON_SECURE == 458 GET_SECURITY_STATE(next_image_info->h.attr)); 459 460 cm_init_my_context(next_image_info); 461 cm_prepare_el3_exit(NON_SECURE); 462 SMC_RET0(cm_get_context(NON_SECURE)); 463 #else 464 /* 465 * SP reports completion. The SPD must have initiated 466 * the original request through a synchronous entry 467 * into the SP. Jump back to the original C runtime 468 * context. 469 */ 470 tspd_synchronous_sp_exit(tsp_ctx, x1); 471 #endif 472 473 /* 474 * These function IDs is used only by the SP to indicate it has 475 * finished: 476 * 1. turning itself on in response to an earlier psci 477 * cpu_on request 478 * 2. resuming itself after an earlier psci cpu_suspend 479 * request. 480 */ 481 case TSP_ON_DONE: 482 case TSP_RESUME_DONE: 483 484 /* 485 * These function IDs is used only by the SP to indicate it has 486 * finished: 487 * 1. suspending itself after an earlier psci cpu_suspend 488 * request. 489 * 2. turning itself off in response to an earlier psci 490 * cpu_off request. 491 */ 492 case TSP_OFF_DONE: 493 case TSP_SUSPEND_DONE: 494 case TSP_SYSTEM_OFF_DONE: 495 case TSP_SYSTEM_RESET_DONE: 496 if (ns) 497 SMC_RET1(handle, SMC_UNK); 498 499 /* 500 * SP reports completion. The SPD must have initiated the 501 * original request through a synchronous entry into the SP. 502 * Jump back to the original C runtime context, and pass x1 as 503 * return value to the caller 504 */ 505 tspd_synchronous_sp_exit(tsp_ctx, x1); 506 507 /* 508 * Request from non-secure client to perform an 509 * arithmetic operation or response from secure 510 * payload to an earlier request. 511 */ 512 case TSP_FAST_FID(TSP_ADD): 513 case TSP_FAST_FID(TSP_SUB): 514 case TSP_FAST_FID(TSP_MUL): 515 case TSP_FAST_FID(TSP_DIV): 516 517 case TSP_STD_FID(TSP_ADD): 518 case TSP_STD_FID(TSP_SUB): 519 case TSP_STD_FID(TSP_MUL): 520 case TSP_STD_FID(TSP_DIV): 521 if (ns) { 522 /* 523 * This is a fresh request from the non-secure client. 524 * The parameters are in x1 and x2. Figure out which 525 * registers need to be preserved, save the non-secure 526 * state and send the request to the secure payload. 527 */ 528 assert(handle == cm_get_context(NON_SECURE)); 529 530 /* Check if we are already preempted */ 531 if (get_std_smc_active_flag(tsp_ctx->state)) 532 SMC_RET1(handle, SMC_UNK); 533 534 cm_el1_sysregs_context_save(NON_SECURE); 535 536 /* Save x1 and x2 for use by TSP_GET_ARGS call below */ 537 store_tsp_args(tsp_ctx, x1, x2); 538 539 /* 540 * We are done stashing the non-secure context. Ask the 541 * secure payload to do the work now. 542 */ 543 544 /* 545 * Verify if there is a valid context to use, copy the 546 * operation type and parameters to the secure context 547 * and jump to the fast smc entry point in the secure 548 * payload. Entry into S-EL1 will take place upon exit 549 * from this function. 550 */ 551 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); 552 553 /* Set appropriate entry for SMC. 554 * We expect the TSP to manage the PSTATE.I and PSTATE.F 555 * flags as appropriate. 556 */ 557 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { 558 cm_set_elr_el3(SECURE, (uint64_t) 559 &tsp_vectors->fast_smc_entry); 560 } else { 561 set_std_smc_active_flag(tsp_ctx->state); 562 cm_set_elr_el3(SECURE, (uint64_t) 563 &tsp_vectors->std_smc_entry); 564 #if TSPD_ROUTE_IRQ_TO_EL3 565 /* 566 * Enable the routing of NS interrupts to EL3 567 * during STD SMC processing on this core. 568 */ 569 enable_intr_rm_local(INTR_TYPE_NS, SECURE); 570 #endif 571 } 572 573 cm_el1_sysregs_context_restore(SECURE); 574 cm_set_next_eret_context(SECURE); 575 SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2); 576 } else { 577 /* 578 * This is the result from the secure client of an 579 * earlier request. The results are in x1-x3. Copy it 580 * into the non-secure context, save the secure state 581 * and return to the non-secure state. 582 */ 583 assert(handle == cm_get_context(SECURE)); 584 cm_el1_sysregs_context_save(SECURE); 585 586 /* Get a reference to the non-secure context */ 587 ns_cpu_context = cm_get_context(NON_SECURE); 588 assert(ns_cpu_context); 589 590 /* Restore non-secure state */ 591 cm_el1_sysregs_context_restore(NON_SECURE); 592 cm_set_next_eret_context(NON_SECURE); 593 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) { 594 clr_std_smc_active_flag(tsp_ctx->state); 595 #if TSPD_ROUTE_IRQ_TO_EL3 596 /* 597 * Disable the routing of NS interrupts to EL3 598 * after STD SMC processing is finished on this 599 * core. 600 */ 601 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 602 #endif 603 } 604 605 SMC_RET3(ns_cpu_context, x1, x2, x3); 606 } 607 608 break; 609 610 /* 611 * Request from non secure world to resume the preempted 612 * Standard SMC call. 613 */ 614 case TSP_FID_RESUME: 615 /* RESUME should be invoked only by normal world */ 616 if (!ns) { 617 assert(0); 618 break; 619 } 620 621 /* 622 * This is a resume request from the non-secure client. 623 * save the non-secure state and send the request to 624 * the secure payload. 625 */ 626 assert(handle == cm_get_context(NON_SECURE)); 627 628 /* Check if we are already preempted before resume */ 629 if (!get_std_smc_active_flag(tsp_ctx->state)) 630 SMC_RET1(handle, SMC_UNK); 631 632 cm_el1_sysregs_context_save(NON_SECURE); 633 634 /* 635 * We are done stashing the non-secure context. Ask the 636 * secure payload to do the work now. 637 */ 638 #if TSPD_ROUTE_IRQ_TO_EL3 639 /* 640 * Enable the routing of NS interrupts to EL3 during resumption 641 * of STD SMC call on this core. 642 */ 643 enable_intr_rm_local(INTR_TYPE_NS, SECURE); 644 #endif 645 646 647 648 /* We just need to return to the preempted point in 649 * TSP and the execution will resume as normal. 650 */ 651 cm_el1_sysregs_context_restore(SECURE); 652 cm_set_next_eret_context(SECURE); 653 SMC_RET0(&tsp_ctx->cpu_ctx); 654 655 /* 656 * This is a request from the secure payload for more arguments 657 * for an ongoing arithmetic operation requested by the 658 * non-secure world. Simply return the arguments from the non- 659 * secure client in the original call. 660 */ 661 case TSP_GET_ARGS: 662 if (ns) 663 SMC_RET1(handle, SMC_UNK); 664 665 get_tsp_args(tsp_ctx, x1, x2); 666 SMC_RET2(handle, x1, x2); 667 668 case TOS_CALL_COUNT: 669 /* 670 * Return the number of service function IDs implemented to 671 * provide service to non-secure 672 */ 673 SMC_RET1(handle, TSP_NUM_FID); 674 675 case TOS_UID: 676 /* Return TSP UID to the caller */ 677 SMC_UUID_RET(handle, tsp_uuid); 678 679 case TOS_CALL_VERSION: 680 /* Return the version of current implementation */ 681 SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR); 682 683 default: 684 break; 685 } 686 687 SMC_RET1(handle, SMC_UNK); 688 } 689 690 /* Define a SPD runtime service descriptor for fast SMC calls */ 691 DECLARE_RT_SVC( 692 tspd_fast, 693 694 OEN_TOS_START, 695 OEN_TOS_END, 696 SMC_TYPE_FAST, 697 tspd_setup, 698 tspd_smc_handler 699 ); 700 701 /* Define a SPD runtime service descriptor for standard SMC calls */ 702 DECLARE_RT_SVC( 703 tspd_std, 704 705 OEN_TOS_START, 706 OEN_TOS_END, 707 SMC_TYPE_STD, 708 NULL, 709 tspd_smc_handler 710 ); 711