xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision 50e27dadbcc4b442f1c5ceb343c6d55783afed54)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <tsp.h>
52 #include <uuid.h>
53 #include "tspd_private.h"
54 
55 /*******************************************************************************
56  * Address of the entrypoint vector table in the Secure Payload. It is
57  * initialised once on the primary core after a cold boot.
58  ******************************************************************************/
59 tsp_vectors_t *tsp_vectors;
60 
61 /*******************************************************************************
62  * Array to keep track of per-cpu Secure Payload state
63  ******************************************************************************/
64 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65 
66 
67 /* TSP UID */
68 DEFINE_SVC_UUID(tsp_uuid,
69 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
70 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
71 
72 int32_t tspd_init(void);
73 
74 /*******************************************************************************
75  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
76  * validates the interrupt and upon success arranges entry into the TSP at
77  * 'tsp_fiq_entry()' for handling the interrupt.
78  ******************************************************************************/
79 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
80 					    uint32_t flags,
81 					    void *handle,
82 					    void *cookie)
83 {
84 	uint32_t linear_id;
85 	uint64_t mpidr;
86 	tsp_context_t *tsp_ctx;
87 
88 	/* Check the security state when the exception was generated */
89 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
90 
91 #if IMF_READ_INTERRUPT_ID
92 	/* Check the security status of the interrupt */
93 	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
94 #endif
95 
96 	/* Sanity check the pointer to this cpu's context */
97 	mpidr = read_mpidr();
98 	assert(handle == cm_get_context(NON_SECURE));
99 
100 	/* Save the non-secure context before entering the TSP */
101 	cm_el1_sysregs_context_save(NON_SECURE);
102 
103 	/* Get a reference to this cpu's TSP context */
104 	linear_id = platform_get_core_pos(mpidr);
105 	tsp_ctx = &tspd_sp_context[linear_id];
106 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
107 
108 	/*
109 	 * Determine if the TSP was previously preempted. Its last known
110 	 * context has to be preserved in this case.
111 	 * The TSP should return control to the TSPD after handling this
112 	 * FIQ. Preserve essential EL3 context to allow entry into the
113 	 * TSP at the FIQ entry point using the 'cpu_context' structure.
114 	 * There is no need to save the secure system register context
115 	 * since the TSP is supposed to preserve it during S-EL1 interrupt
116 	 * handling.
117 	 */
118 	if (get_std_smc_active_flag(tsp_ctx->state)) {
119 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
120 						      CTX_SPSR_EL3);
121 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
122 						     CTX_ELR_EL3);
123 	}
124 
125 	cm_el1_sysregs_context_restore(SECURE);
126 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
127 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128 	cm_set_next_eret_context(SECURE);
129 
130 	/*
131 	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
132 	 * instruction in normal world where the interrupt was generated is
133 	 * passed for debugging purposes. It is safe to retrieve this address
134 	 * from ELR_EL3 as the secure context will not take effect until
135 	 * el3_exit().
136 	 */
137 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
138 }
139 
140 /*******************************************************************************
141  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
142  * (aarch32/aarch64) if not already known and initialises the context for entry
143  * into the SP for its initialisation.
144  ******************************************************************************/
145 int32_t tspd_setup(void)
146 {
147 	entry_point_info_t *tsp_ep_info;
148 	uint64_t mpidr = read_mpidr();
149 	uint32_t linear_id;
150 
151 	linear_id = platform_get_core_pos(mpidr);
152 
153 	/*
154 	 * Get information about the Secure Payload (BL32) image. Its
155 	 * absence is a critical failure.  TODO: Add support to
156 	 * conditionally include the SPD service
157 	 */
158 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
159 	if (!tsp_ep_info) {
160 		WARN("No TSP provided by BL2 boot loader, Booting device"
161 			" without TSP initialization. SMC`s destined for TSP"
162 			" will return SMC_UNK\n");
163 		return 1;
164 	}
165 
166 	/*
167 	 * If there's no valid entry point for SP, we return a non-zero value
168 	 * signalling failure initializing the service. We bail out without
169 	 * registering any handlers
170 	 */
171 	if (!tsp_ep_info->pc)
172 		return 1;
173 
174 	/*
175 	 * We could inspect the SP image and determine it's execution
176 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
177 	 * for the time being.
178 	 */
179 	tspd_init_tsp_ep_state(tsp_ep_info,
180 				TSP_AARCH64,
181 				tsp_ep_info->pc,
182 				&tspd_sp_context[linear_id]);
183 
184 	/*
185 	 * All TSPD initialization done. Now register our init function with
186 	 * BL31 for deferred invocation
187 	 */
188 	bl31_register_bl32_init(&tspd_init);
189 
190 	return 0;
191 }
192 
193 /*******************************************************************************
194  * This function passes control to the Secure Payload image (BL32) for the first
195  * time on the primary cpu after a cold boot. It assumes that a valid secure
196  * context has already been created by tspd_setup() which can be directly used.
197  * It also assumes that a valid non-secure context has been initialised by PSCI
198  * so it does not need to save and restore any non-secure state. This function
199  * performs a synchronous entry into the Secure payload. The SP passes control
200  * back to this routine through a SMC.
201  ******************************************************************************/
202 int32_t tspd_init(void)
203 {
204 	uint64_t mpidr = read_mpidr();
205 	uint32_t linear_id = platform_get_core_pos(mpidr), flags;
206 	uint64_t rc;
207 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
208 	entry_point_info_t *tsp_entry_point;
209 
210 	/*
211 	 * Get information about the Secure Payload (BL32) image. Its
212 	 * absence is a critical failure.
213 	 */
214 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
215 	assert(tsp_entry_point);
216 
217 	cm_init_context(mpidr, tsp_entry_point);
218 
219 	/*
220 	 * Arrange for an entry into the test secure payload. We expect an array
221 	 * of vectors in return
222 	 */
223 	rc = tspd_synchronous_sp_entry(tsp_ctx);
224 	assert(rc != 0);
225 	if (rc) {
226 		set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
227 
228 		/*
229 		 * TSP has been successfully initialized. Register power
230 		 * managemnt hooks with PSCI
231 		 */
232 		psci_register_spd_pm_hook(&tspd_pm);
233 	}
234 
235 	/*
236 	 * Register an interrupt handler for S-EL1 interrupts when generated
237 	 * during code executing in the non-secure state.
238 	 */
239 	flags = 0;
240 	set_interrupt_rm_flag(flags, NON_SECURE);
241 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
242 					     tspd_sel1_interrupt_handler,
243 					     flags);
244 	if (rc)
245 		panic();
246 
247 	return rc;
248 }
249 
250 
251 /*******************************************************************************
252  * This function is responsible for handling all SMCs in the Trusted OS/App
253  * range from the non-secure state as defined in the SMC Calling Convention
254  * Document. It is also responsible for communicating with the Secure payload
255  * to delegate work and return results back to the non-secure state. Lastly it
256  * will also return any information that the secure payload needs to do the
257  * work assigned to it.
258  ******************************************************************************/
259 uint64_t tspd_smc_handler(uint32_t smc_fid,
260 			 uint64_t x1,
261 			 uint64_t x2,
262 			 uint64_t x3,
263 			 uint64_t x4,
264 			 void *cookie,
265 			 void *handle,
266 			 uint64_t flags)
267 {
268 	cpu_context_t *ns_cpu_context;
269 	unsigned long mpidr = read_mpidr();
270 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
271 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
272 
273 	/* Determine which security state this SMC originated from */
274 	ns = is_caller_non_secure(flags);
275 
276 	switch (smc_fid) {
277 
278 	/*
279 	 * This function ID is used by TSP to indicate that it was
280 	 * preempted by a normal world IRQ.
281 	 *
282 	 */
283 	case TSP_PREEMPTED:
284 		if (ns)
285 			SMC_RET1(handle, SMC_UNK);
286 
287 		assert(handle == cm_get_context(SECURE));
288 		cm_el1_sysregs_context_save(SECURE);
289 		/* Get a reference to the non-secure context */
290 		ns_cpu_context = cm_get_context(NON_SECURE);
291 		assert(ns_cpu_context);
292 
293 		/*
294 		 * Restore non-secure state. There is no need to save the
295 		 * secure system register context since the TSP was supposed
296 		 * to preserve it during S-EL1 interrupt handling.
297 		 */
298 		cm_el1_sysregs_context_restore(NON_SECURE);
299 		cm_set_next_eret_context(NON_SECURE);
300 
301 		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
302 
303 	/*
304 	 * This function ID is used only by the TSP to indicate that it has
305 	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
306 	 * in the normal world.
307 	 */
308 	case TSP_HANDLED_S_EL1_FIQ:
309 		if (ns)
310 			SMC_RET1(handle, SMC_UNK);
311 
312 		assert(handle == cm_get_context(SECURE));
313 
314 		/*
315 		 * Restore the relevant EL3 state which saved to service
316 		 * this SMC.
317 		 */
318 		if (get_std_smc_active_flag(tsp_ctx->state)) {
319 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
320 				    CTX_SPSR_EL3,
321 				    tsp_ctx->saved_spsr_el3);
322 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
323 				    CTX_ELR_EL3,
324 				    tsp_ctx->saved_elr_el3);
325 		}
326 
327 		/* Get a reference to the non-secure context */
328 		ns_cpu_context = cm_get_context(NON_SECURE);
329 		assert(ns_cpu_context);
330 
331 		/*
332 		 * Restore non-secure state. There is no need to save the
333 		 * secure system register context since the TSP was supposed
334 		 * to preserve it during S-EL1 interrupt handling.
335 		 */
336 		cm_el1_sysregs_context_restore(NON_SECURE);
337 		cm_set_next_eret_context(NON_SECURE);
338 
339 		SMC_RET0((uint64_t) ns_cpu_context);
340 
341 
342 	/*
343 	 * This function ID is used only by the TSP to indicate that it was
344 	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
345 	 * in the normal world.
346 	 */
347 	case TSP_EL3_FIQ:
348 		if (ns)
349 			SMC_RET1(handle, SMC_UNK);
350 
351 		assert(handle == cm_get_context(SECURE));
352 
353 		/* Assert that standard SMC execution has been preempted */
354 		assert(get_std_smc_active_flag(tsp_ctx->state));
355 
356 		/* Save the secure system register state */
357 		cm_el1_sysregs_context_save(SECURE);
358 
359 		/* Get a reference to the non-secure context */
360 		ns_cpu_context = cm_get_context(NON_SECURE);
361 		assert(ns_cpu_context);
362 
363 		/* Restore non-secure state */
364 		cm_el1_sysregs_context_restore(NON_SECURE);
365 		cm_set_next_eret_context(NON_SECURE);
366 
367 		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
368 
369 
370 	/*
371 	 * This function ID is used only by the SP to indicate it has
372 	 * finished initialising itself after a cold boot
373 	 */
374 	case TSP_ENTRY_DONE:
375 		if (ns)
376 			SMC_RET1(handle, SMC_UNK);
377 
378 		/*
379 		 * Stash the SP entry points information. This is done
380 		 * only once on the primary cpu
381 		 */
382 		assert(tsp_vectors == NULL);
383 		tsp_vectors = (tsp_vectors_t *) x1;
384 
385 		/*
386 		 * SP reports completion. The SPD must have initiated
387 		 * the original request through a synchronous entry
388 		 * into the SP. Jump back to the original C runtime
389 		 * context.
390 		 */
391 		tspd_synchronous_sp_exit(tsp_ctx, x1);
392 
393 	/*
394 	 * These function IDs is used only by the SP to indicate it has
395 	 * finished:
396 	 * 1. turning itself on in response to an earlier psci
397 	 *    cpu_on request
398 	 * 2. resuming itself after an earlier psci cpu_suspend
399 	 *    request.
400 	 */
401 	case TSP_ON_DONE:
402 	case TSP_RESUME_DONE:
403 
404 	/*
405 	 * These function IDs is used only by the SP to indicate it has
406 	 * finished:
407 	 * 1. suspending itself after an earlier psci cpu_suspend
408 	 *    request.
409 	 * 2. turning itself off in response to an earlier psci
410 	 *    cpu_off request.
411 	 */
412 	case TSP_OFF_DONE:
413 	case TSP_SUSPEND_DONE:
414 		if (ns)
415 			SMC_RET1(handle, SMC_UNK);
416 
417 		/*
418 		 * SP reports completion. The SPD must have initiated the
419 		 * original request through a synchronous entry into the SP.
420 		 * Jump back to the original C runtime context, and pass x1 as
421 		 * return value to the caller
422 		 */
423 		tspd_synchronous_sp_exit(tsp_ctx, x1);
424 
425 		/*
426 		 * Request from non-secure client to perform an
427 		 * arithmetic operation or response from secure
428 		 * payload to an earlier request.
429 		 */
430 	case TSP_FAST_FID(TSP_ADD):
431 	case TSP_FAST_FID(TSP_SUB):
432 	case TSP_FAST_FID(TSP_MUL):
433 	case TSP_FAST_FID(TSP_DIV):
434 
435 	case TSP_STD_FID(TSP_ADD):
436 	case TSP_STD_FID(TSP_SUB):
437 	case TSP_STD_FID(TSP_MUL):
438 	case TSP_STD_FID(TSP_DIV):
439 		if (ns) {
440 			/*
441 			 * This is a fresh request from the non-secure client.
442 			 * The parameters are in x1 and x2. Figure out which
443 			 * registers need to be preserved, save the non-secure
444 			 * state and send the request to the secure payload.
445 			 */
446 			assert(handle == cm_get_context(NON_SECURE));
447 
448 			/* Check if we are already preempted */
449 			if (get_std_smc_active_flag(tsp_ctx->state))
450 				SMC_RET1(handle, SMC_UNK);
451 
452 			cm_el1_sysregs_context_save(NON_SECURE);
453 
454 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
455 			store_tsp_args(tsp_ctx, x1, x2);
456 
457 			/*
458 			 * We are done stashing the non-secure context. Ask the
459 			 * secure payload to do the work now.
460 			 */
461 
462 			/*
463 			 * Verify if there is a valid context to use, copy the
464 			 * operation type and parameters to the secure context
465 			 * and jump to the fast smc entry point in the secure
466 			 * payload. Entry into S-EL1 will take place upon exit
467 			 * from this function.
468 			 */
469 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
470 
471 			/* Set appropriate entry for SMC.
472 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
473 			 * flags as appropriate.
474 			 */
475 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
476 				cm_set_elr_el3(SECURE, (uint64_t)
477 						&tsp_vectors->fast_smc_entry);
478 			} else {
479 				set_std_smc_active_flag(tsp_ctx->state);
480 				cm_set_elr_el3(SECURE, (uint64_t)
481 						&tsp_vectors->std_smc_entry);
482 			}
483 
484 			cm_el1_sysregs_context_restore(SECURE);
485 			cm_set_next_eret_context(SECURE);
486 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
487 		} else {
488 			/*
489 			 * This is the result from the secure client of an
490 			 * earlier request. The results are in x1-x3. Copy it
491 			 * into the non-secure context, save the secure state
492 			 * and return to the non-secure state.
493 			 */
494 			assert(handle == cm_get_context(SECURE));
495 			cm_el1_sysregs_context_save(SECURE);
496 
497 			/* Get a reference to the non-secure context */
498 			ns_cpu_context = cm_get_context(NON_SECURE);
499 			assert(ns_cpu_context);
500 
501 			/* Restore non-secure state */
502 			cm_el1_sysregs_context_restore(NON_SECURE);
503 			cm_set_next_eret_context(NON_SECURE);
504 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
505 				clr_std_smc_active_flag(tsp_ctx->state);
506 			SMC_RET3(ns_cpu_context, x1, x2, x3);
507 		}
508 
509 		break;
510 
511 		/*
512 		 * Request from non secure world to resume the preempted
513 		 * Standard SMC call.
514 		 */
515 	case TSP_FID_RESUME:
516 		/* RESUME should be invoked only by normal world */
517 		if (!ns) {
518 			assert(0);
519 			break;
520 		}
521 
522 		/*
523 		 * This is a resume request from the non-secure client.
524 		 * save the non-secure state and send the request to
525 		 * the secure payload.
526 		 */
527 		assert(handle == cm_get_context(NON_SECURE));
528 
529 		/* Check if we are already preempted before resume */
530 		if (!get_std_smc_active_flag(tsp_ctx->state))
531 			SMC_RET1(handle, SMC_UNK);
532 
533 		cm_el1_sysregs_context_save(NON_SECURE);
534 
535 		/*
536 		 * We are done stashing the non-secure context. Ask the
537 		 * secure payload to do the work now.
538 		 */
539 
540 		/* We just need to return to the preempted point in
541 		 * TSP and the execution will resume as normal.
542 		 */
543 		cm_el1_sysregs_context_restore(SECURE);
544 		cm_set_next_eret_context(SECURE);
545 		SMC_RET0(&tsp_ctx->cpu_ctx);
546 
547 		/*
548 		 * This is a request from the secure payload for more arguments
549 		 * for an ongoing arithmetic operation requested by the
550 		 * non-secure world. Simply return the arguments from the non-
551 		 * secure client in the original call.
552 		 */
553 	case TSP_GET_ARGS:
554 		if (ns)
555 			SMC_RET1(handle, SMC_UNK);
556 
557 		get_tsp_args(tsp_ctx, x1, x2);
558 		SMC_RET2(handle, x1, x2);
559 
560 	case TOS_CALL_COUNT:
561 		/*
562 		 * Return the number of service function IDs implemented to
563 		 * provide service to non-secure
564 		 */
565 		SMC_RET1(handle, TSP_NUM_FID);
566 
567 	case TOS_UID:
568 		/* Return TSP UID to the caller */
569 		SMC_UUID_RET(handle, tsp_uuid);
570 
571 	case TOS_CALL_VERSION:
572 		/* Return the version of current implementation */
573 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
574 
575 	default:
576 		break;
577 	}
578 
579 	SMC_RET1(handle, SMC_UNK);
580 }
581 
582 /* Define a SPD runtime service descriptor for fast SMC calls */
583 DECLARE_RT_SVC(
584 	tspd_fast,
585 
586 	OEN_TOS_START,
587 	OEN_TOS_END,
588 	SMC_TYPE_FAST,
589 	tspd_setup,
590 	tspd_smc_handler
591 );
592 
593 /* Define a SPD runtime service descriptor for standard SMC calls */
594 DECLARE_RT_SVC(
595 	tspd_std,
596 
597 	OEN_TOS_START,
598 	OEN_TOS_END,
599 	SMC_TYPE_STD,
600 	NULL,
601 	tspd_smc_handler
602 );
603