xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision 47fe640c97603b313994bb0d37a48d01e53213eb)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <tsp.h>
52 #include <uuid.h>
53 #include "tspd_private.h"
54 
55 /*******************************************************************************
56  * Address of the entrypoint vector table in the Secure Payload. It is
57  * initialised once on the primary core after a cold boot.
58  ******************************************************************************/
59 tsp_vectors_t *tsp_vectors;
60 
61 /*******************************************************************************
62  * Array to keep track of per-cpu Secure Payload state
63  ******************************************************************************/
64 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
65 
66 
67 /* TSP UID */
68 DEFINE_SVC_UUID(tsp_uuid,
69 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
70 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
71 
72 int32_t tspd_init(void);
73 
74 /*******************************************************************************
75  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
76  * validates the interrupt and upon success arranges entry into the TSP at
77  * 'tsp_fiq_entry()' for handling the interrupt.
78  ******************************************************************************/
79 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
80 					    uint32_t flags,
81 					    void *handle,
82 					    void *cookie)
83 {
84 	uint32_t linear_id;
85 	uint64_t mpidr;
86 	tsp_context_t *tsp_ctx;
87 
88 	/* Check the security state when the exception was generated */
89 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
90 
91 #if IMF_READ_INTERRUPT_ID
92 	/* Check the security status of the interrupt */
93 	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
94 #endif
95 
96 	/* Sanity check the pointer to this cpu's context */
97 	mpidr = read_mpidr();
98 	assert(handle == cm_get_context(NON_SECURE));
99 
100 	/* Save the non-secure context before entering the TSP */
101 	cm_el1_sysregs_context_save(NON_SECURE);
102 
103 	/* Get a reference to this cpu's TSP context */
104 	linear_id = platform_get_core_pos(mpidr);
105 	tsp_ctx = &tspd_sp_context[linear_id];
106 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
107 
108 	/*
109 	 * Determine if the TSP was previously preempted. Its last known
110 	 * context has to be preserved in this case.
111 	 * The TSP should return control to the TSPD after handling this
112 	 * FIQ. Preserve essential EL3 context to allow entry into the
113 	 * TSP at the FIQ entry point using the 'cpu_context' structure.
114 	 * There is no need to save the secure system register context
115 	 * since the TSP is supposed to preserve it during S-EL1 interrupt
116 	 * handling.
117 	 */
118 	if (get_std_smc_active_flag(tsp_ctx->state)) {
119 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
120 						      CTX_SPSR_EL3);
121 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
122 						     CTX_ELR_EL3);
123 	}
124 
125 	cm_el1_sysregs_context_restore(SECURE);
126 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
127 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
128 	cm_set_next_eret_context(SECURE);
129 
130 	/*
131 	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
132 	 * instruction in normal world where the interrupt was generated is
133 	 * passed for debugging purposes. It is safe to retrieve this address
134 	 * from ELR_EL3 as the secure context will not take effect until
135 	 * el3_exit().
136 	 */
137 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
138 }
139 
140 /*******************************************************************************
141  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
142  * (aarch32/aarch64) if not already known and initialises the context for entry
143  * into the SP for its initialisation.
144  ******************************************************************************/
145 int32_t tspd_setup(void)
146 {
147 	entry_point_info_t *image_info;
148 	int32_t rc;
149 	uint64_t mpidr = read_mpidr();
150 	uint32_t linear_id;
151 
152 	linear_id = platform_get_core_pos(mpidr);
153 
154 	/*
155 	 * Get information about the Secure Payload (BL32) image. Its
156 	 * absence is a critical failure.  TODO: Add support to
157 	 * conditionally include the SPD service
158 	 */
159 	image_info = bl31_plat_get_next_image_ep_info(SECURE);
160 	assert(image_info);
161 
162 	/*
163 	 * If there's no valid entry point for SP, we return a non-zero value
164 	 * signalling failure initializing the service. We bail out without
165 	 * registering any handlers
166 	 */
167 	if (!image_info->pc)
168 		return 1;
169 
170 	/*
171 	 * We could inspect the SP image and determine it's execution
172 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
173 	 * for the time being.
174 	 */
175 	rc = tspd_init_secure_context(image_info->pc,
176 				     TSP_AARCH64,
177 				     mpidr,
178 				     &tspd_sp_context[linear_id]);
179 	assert(rc == 0);
180 
181 	/*
182 	 * All TSPD initialization done. Now register our init function with
183 	 * BL31 for deferred invocation
184 	 */
185 	bl31_register_bl32_init(&tspd_init);
186 
187 	return rc;
188 }
189 
190 /*******************************************************************************
191  * This function passes control to the Secure Payload image (BL32) for the first
192  * time on the primary cpu after a cold boot. It assumes that a valid secure
193  * context has already been created by tspd_setup() which can be directly used.
194  * It also assumes that a valid non-secure context has been initialised by PSCI
195  * so it does not need to save and restore any non-secure state. This function
196  * performs a synchronous entry into the Secure payload. The SP passes control
197  * back to this routine through a SMC.
198  ******************************************************************************/
199 int32_t tspd_init(void)
200 {
201 	uint64_t mpidr = read_mpidr();
202 	uint32_t linear_id = platform_get_core_pos(mpidr), flags;
203 	uint64_t rc;
204 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
205 
206 	/*
207 	 * Arrange for an entry into the test secure payload. We expect an array
208 	 * of vectors in return
209 	 */
210 	rc = tspd_synchronous_sp_entry(tsp_ctx);
211 	assert(rc != 0);
212 	if (rc) {
213 		set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
214 
215 		/*
216 		 * TSP has been successfully initialized. Register power
217 		 * managemnt hooks with PSCI
218 		 */
219 		psci_register_spd_pm_hook(&tspd_pm);
220 	}
221 
222 	/*
223 	 * Register an interrupt handler for S-EL1 interrupts when generated
224 	 * during code executing in the non-secure state.
225 	 */
226 	flags = 0;
227 	set_interrupt_rm_flag(flags, NON_SECURE);
228 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
229 					     tspd_sel1_interrupt_handler,
230 					     flags);
231 	if (rc)
232 		panic();
233 
234 	return rc;
235 }
236 
237 
238 /*******************************************************************************
239  * This function is responsible for handling all SMCs in the Trusted OS/App
240  * range from the non-secure state as defined in the SMC Calling Convention
241  * Document. It is also responsible for communicating with the Secure payload
242  * to delegate work and return results back to the non-secure state. Lastly it
243  * will also return any information that the secure payload needs to do the
244  * work assigned to it.
245  ******************************************************************************/
246 uint64_t tspd_smc_handler(uint32_t smc_fid,
247 			 uint64_t x1,
248 			 uint64_t x2,
249 			 uint64_t x3,
250 			 uint64_t x4,
251 			 void *cookie,
252 			 void *handle,
253 			 uint64_t flags)
254 {
255 	cpu_context_t *ns_cpu_context;
256 	unsigned long mpidr = read_mpidr();
257 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
258 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
259 
260 	/* Determine which security state this SMC originated from */
261 	ns = is_caller_non_secure(flags);
262 
263 	switch (smc_fid) {
264 
265 	/*
266 	 * This function ID is used by TSP to indicate that it was
267 	 * preempted by a normal world IRQ.
268 	 *
269 	 */
270 	case TSP_PREEMPTED:
271 		if (ns)
272 			SMC_RET1(handle, SMC_UNK);
273 
274 		assert(handle == cm_get_context(SECURE));
275 		cm_el1_sysregs_context_save(SECURE);
276 		/* Get a reference to the non-secure context */
277 		ns_cpu_context = cm_get_context(NON_SECURE);
278 		assert(ns_cpu_context);
279 
280 		/*
281 		 * Restore non-secure state. There is no need to save the
282 		 * secure system register context since the TSP was supposed
283 		 * to preserve it during S-EL1 interrupt handling.
284 		 */
285 		cm_el1_sysregs_context_restore(NON_SECURE);
286 		cm_set_next_eret_context(NON_SECURE);
287 
288 		SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
289 
290 	/*
291 	 * This function ID is used only by the TSP to indicate that it has
292 	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
293 	 * in the normal world.
294 	 */
295 	case TSP_HANDLED_S_EL1_FIQ:
296 		if (ns)
297 			SMC_RET1(handle, SMC_UNK);
298 
299 		assert(handle == cm_get_context(SECURE));
300 
301 		/*
302 		 * Restore the relevant EL3 state which saved to service
303 		 * this SMC.
304 		 */
305 		if (get_std_smc_active_flag(tsp_ctx->state)) {
306 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
307 				    CTX_SPSR_EL3,
308 				    tsp_ctx->saved_spsr_el3);
309 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
310 				    CTX_ELR_EL3,
311 				    tsp_ctx->saved_elr_el3);
312 		}
313 
314 		/* Get a reference to the non-secure context */
315 		ns_cpu_context = cm_get_context(NON_SECURE);
316 		assert(ns_cpu_context);
317 
318 		/*
319 		 * Restore non-secure state. There is no need to save the
320 		 * secure system register context since the TSP was supposed
321 		 * to preserve it during S-EL1 interrupt handling.
322 		 */
323 		cm_el1_sysregs_context_restore(NON_SECURE);
324 		cm_set_next_eret_context(NON_SECURE);
325 
326 		SMC_RET0((uint64_t) ns_cpu_context);
327 
328 
329 	/*
330 	 * This function ID is used only by the TSP to indicate that it was
331 	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
332 	 * in the normal world.
333 	 */
334 	case TSP_EL3_FIQ:
335 		if (ns)
336 			SMC_RET1(handle, SMC_UNK);
337 
338 		assert(handle == cm_get_context(SECURE));
339 
340 		/* Assert that standard SMC execution has been preempted */
341 		assert(get_std_smc_active_flag(tsp_ctx->state));
342 
343 		/* Save the secure system register state */
344 		cm_el1_sysregs_context_save(SECURE);
345 
346 		/* Get a reference to the non-secure context */
347 		ns_cpu_context = cm_get_context(NON_SECURE);
348 		assert(ns_cpu_context);
349 
350 		/* Restore non-secure state */
351 		cm_el1_sysregs_context_restore(NON_SECURE);
352 		cm_set_next_eret_context(NON_SECURE);
353 
354 		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);
355 
356 
357 	/*
358 	 * This function ID is used only by the SP to indicate it has
359 	 * finished initialising itself after a cold boot
360 	 */
361 	case TSP_ENTRY_DONE:
362 		if (ns)
363 			SMC_RET1(handle, SMC_UNK);
364 
365 		/*
366 		 * Stash the SP entry points information. This is done
367 		 * only once on the primary cpu
368 		 */
369 		assert(tsp_vectors == NULL);
370 		tsp_vectors = (tsp_vectors_t *) x1;
371 
372 		/*
373 		 * SP reports completion. The SPD must have initiated
374 		 * the original request through a synchronous entry
375 		 * into the SP. Jump back to the original C runtime
376 		 * context.
377 		 */
378 		tspd_synchronous_sp_exit(tsp_ctx, x1);
379 
380 	/*
381 	 * These function IDs is used only by the SP to indicate it has
382 	 * finished:
383 	 * 1. turning itself on in response to an earlier psci
384 	 *    cpu_on request
385 	 * 2. resuming itself after an earlier psci cpu_suspend
386 	 *    request.
387 	 */
388 	case TSP_ON_DONE:
389 	case TSP_RESUME_DONE:
390 
391 	/*
392 	 * These function IDs is used only by the SP to indicate it has
393 	 * finished:
394 	 * 1. suspending itself after an earlier psci cpu_suspend
395 	 *    request.
396 	 * 2. turning itself off in response to an earlier psci
397 	 *    cpu_off request.
398 	 */
399 	case TSP_OFF_DONE:
400 	case TSP_SUSPEND_DONE:
401 		if (ns)
402 			SMC_RET1(handle, SMC_UNK);
403 
404 		/*
405 		 * SP reports completion. The SPD must have initiated the
406 		 * original request through a synchronous entry into the SP.
407 		 * Jump back to the original C runtime context, and pass x1 as
408 		 * return value to the caller
409 		 */
410 		tspd_synchronous_sp_exit(tsp_ctx, x1);
411 
412 		/*
413 		 * Request from non-secure client to perform an
414 		 * arithmetic operation or response from secure
415 		 * payload to an earlier request.
416 		 */
417 	case TSP_FAST_FID(TSP_ADD):
418 	case TSP_FAST_FID(TSP_SUB):
419 	case TSP_FAST_FID(TSP_MUL):
420 	case TSP_FAST_FID(TSP_DIV):
421 
422 	case TSP_STD_FID(TSP_ADD):
423 	case TSP_STD_FID(TSP_SUB):
424 	case TSP_STD_FID(TSP_MUL):
425 	case TSP_STD_FID(TSP_DIV):
426 		if (ns) {
427 			/*
428 			 * This is a fresh request from the non-secure client.
429 			 * The parameters are in x1 and x2. Figure out which
430 			 * registers need to be preserved, save the non-secure
431 			 * state and send the request to the secure payload.
432 			 */
433 			assert(handle == cm_get_context(NON_SECURE));
434 
435 			/* Check if we are already preempted */
436 			if (get_std_smc_active_flag(tsp_ctx->state))
437 				SMC_RET1(handle, SMC_UNK);
438 
439 			cm_el1_sysregs_context_save(NON_SECURE);
440 
441 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
442 			store_tsp_args(tsp_ctx, x1, x2);
443 
444 			/*
445 			 * We are done stashing the non-secure context. Ask the
446 			 * secure payload to do the work now.
447 			 */
448 
449 			/*
450 			 * Verify if there is a valid context to use, copy the
451 			 * operation type and parameters to the secure context
452 			 * and jump to the fast smc entry point in the secure
453 			 * payload. Entry into S-EL1 will take place upon exit
454 			 * from this function.
455 			 */
456 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
457 
458 			/* Set appropriate entry for SMC.
459 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
460 			 * flags as appropriate.
461 			 */
462 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
463 				cm_set_elr_el3(SECURE, (uint64_t)
464 						&tsp_vectors->fast_smc_entry);
465 			} else {
466 				set_std_smc_active_flag(tsp_ctx->state);
467 				cm_set_elr_el3(SECURE, (uint64_t)
468 						&tsp_vectors->std_smc_entry);
469 			}
470 
471 			cm_el1_sysregs_context_restore(SECURE);
472 			cm_set_next_eret_context(SECURE);
473 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
474 		} else {
475 			/*
476 			 * This is the result from the secure client of an
477 			 * earlier request. The results are in x1-x3. Copy it
478 			 * into the non-secure context, save the secure state
479 			 * and return to the non-secure state.
480 			 */
481 			assert(handle == cm_get_context(SECURE));
482 			cm_el1_sysregs_context_save(SECURE);
483 
484 			/* Get a reference to the non-secure context */
485 			ns_cpu_context = cm_get_context(NON_SECURE);
486 			assert(ns_cpu_context);
487 
488 			/* Restore non-secure state */
489 			cm_el1_sysregs_context_restore(NON_SECURE);
490 			cm_set_next_eret_context(NON_SECURE);
491 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD)
492 				clr_std_smc_active_flag(tsp_ctx->state);
493 			SMC_RET3(ns_cpu_context, x1, x2, x3);
494 		}
495 
496 		break;
497 
498 		/*
499 		 * Request from non secure world to resume the preempted
500 		 * Standard SMC call.
501 		 */
502 	case TSP_FID_RESUME:
503 		/* RESUME should be invoked only by normal world */
504 		if (!ns) {
505 			assert(0);
506 			break;
507 		}
508 
509 		/*
510 		 * This is a resume request from the non-secure client.
511 		 * save the non-secure state and send the request to
512 		 * the secure payload.
513 		 */
514 		assert(handle == cm_get_context(NON_SECURE));
515 
516 		/* Check if we are already preempted before resume */
517 		if (!get_std_smc_active_flag(tsp_ctx->state))
518 			SMC_RET1(handle, SMC_UNK);
519 
520 		cm_el1_sysregs_context_save(NON_SECURE);
521 
522 		/*
523 		 * We are done stashing the non-secure context. Ask the
524 		 * secure payload to do the work now.
525 		 */
526 
527 		/* We just need to return to the preempted point in
528 		 * TSP and the execution will resume as normal.
529 		 */
530 		cm_el1_sysregs_context_restore(SECURE);
531 		cm_set_next_eret_context(SECURE);
532 		SMC_RET0(&tsp_ctx->cpu_ctx);
533 
534 		/*
535 		 * This is a request from the secure payload for more arguments
536 		 * for an ongoing arithmetic operation requested by the
537 		 * non-secure world. Simply return the arguments from the non-
538 		 * secure client in the original call.
539 		 */
540 	case TSP_GET_ARGS:
541 		if (ns)
542 			SMC_RET1(handle, SMC_UNK);
543 
544 		get_tsp_args(tsp_ctx, x1, x2);
545 		SMC_RET2(handle, x1, x2);
546 
547 	case TOS_CALL_COUNT:
548 		/*
549 		 * Return the number of service function IDs implemented to
550 		 * provide service to non-secure
551 		 */
552 		SMC_RET1(handle, TSP_NUM_FID);
553 
554 	case TOS_UID:
555 		/* Return TSP UID to the caller */
556 		SMC_UUID_RET(handle, tsp_uuid);
557 
558 	case TOS_CALL_VERSION:
559 		/* Return the version of current implementation */
560 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
561 
562 	default:
563 		break;
564 	}
565 
566 	SMC_RET1(handle, SMC_UNK);
567 }
568 
569 /* Define a SPD runtime service descriptor for fast SMC calls */
570 DECLARE_RT_SVC(
571 	tspd_fast,
572 
573 	OEN_TOS_START,
574 	OEN_TOS_END,
575 	SMC_TYPE_FAST,
576 	tspd_setup,
577 	tspd_smc_handler
578 );
579 
580 /* Define a SPD runtime service descriptor for standard SMC calls */
581 DECLARE_RT_SVC(
582 	tspd_std,
583 
584 	OEN_TOS_START,
585 	OEN_TOS_END,
586 	SMC_TYPE_STD,
587 	NULL,
588 	tspd_smc_handler
589 );
590