xref: /rk3399_ARM-atf/services/spd/tspd/tspd_main.c (revision 0a30cf54af7bb1f77b405062b1d5b44e809d0290)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <stdio.h>
42 #include <string.h>
43 #include <assert.h>
44 #include <arch_helpers.h>
45 #include <console.h>
46 #include <platform.h>
47 #include <context_mgmt.h>
48 #include <runtime_svc.h>
49 #include <bl31.h>
50 #include <tsp.h>
51 #include <psci.h>
52 #include <tspd_private.h>
53 #include <debug.h>
54 #include <uuid.h>
55 
56 /*******************************************************************************
57  * Single structure to hold information about the various entry points into the
58  * Secure Payload. It is initialised once on the primary core after a cold boot.
59  ******************************************************************************/
60 entry_info *tsp_entry_info;
61 
62 /*******************************************************************************
63  * Array to keep track of per-cpu Secure Payload state
64  ******************************************************************************/
65 tsp_context tspd_sp_context[TSPD_CORE_COUNT];
66 
67 
68 /* TSP UID */
69 DEFINE_SVC_UUID(tsp_uuid,
70 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
71 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
72 
73 int32_t tspd_init(meminfo *bl32_meminfo);
74 
75 
76 /*******************************************************************************
77  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
78  * (aarch32/aarch64) if not already known and initialises the context for entry
79  * into the SP for its initialisation.
80  ******************************************************************************/
81 int32_t tspd_setup(void)
82 {
83 	el_change_info *image_info;
84 	int32_t rc;
85 	uint64_t mpidr = read_mpidr();
86 	uint32_t linear_id;
87 
88 	linear_id = platform_get_core_pos(mpidr);
89 
90 	/*
91 	 * Get information about the Secure Payload (BL32) image. Its
92 	 * absence is a critical failure.  TODO: Add support to
93 	 * conditionally include the SPD service
94 	 */
95 	image_info = bl31_get_next_image_info(SECURE);
96 	assert(image_info);
97 
98 	/*
99 	 * If there's no valid entry point for SP, we return a non-zero value
100 	 * signalling failure initializing the service. We bail out without
101 	 * registering any handlers
102 	 */
103 	if (!image_info->entrypoint)
104 		return 1;
105 
106 	/*
107 	 * We could inspect the SP image and determine it's execution
108 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
109 	 * for the time being.
110 	 */
111 	rc = tspd_init_secure_context(image_info->entrypoint,
112 				     TSP_AARCH64,
113 				     mpidr,
114 				     &tspd_sp_context[linear_id]);
115 	assert(rc == 0);
116 
117 	/*
118 	 * All TSPD initialization done. Now register our init function with
119 	 * BL31 for deferred invocation
120 	 */
121 	bl31_register_bl32_init(&tspd_init);
122 
123 	return rc;
124 }
125 
126 /*******************************************************************************
127  * This function passes control to the Secure Payload image (BL32) for the first
128  * time on the primary cpu after a cold boot. It assumes that a valid secure
129  * context has already been created by tspd_setup() which can be directly used.
130  * It also assumes that a valid non-secure context has been initialised by PSCI
131  * so it does not need to save and restore any non-secure state. This function
132  * performs a synchronous entry into the Secure payload. The SP passes control
133  * back to this routine through a SMC. It also passes the extents of memory made
134  * available to BL32 by BL31.
135  ******************************************************************************/
136 int32_t tspd_init(meminfo *bl32_meminfo)
137 {
138 	uint64_t mpidr = read_mpidr();
139 	uint32_t linear_id = platform_get_core_pos(mpidr);
140 	uint64_t rc;
141 	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];
142 
143 	/*
144 	 * Arrange for passing a pointer to the meminfo structure
145 	 * describing the memory extents available to the secure
146 	 * payload.
147 	 * TODO: We are passing a pointer to BL31 internal memory
148 	 * whereas this structure should be copied to a communication
149 	 * buffer between the SP and SPD.
150 	 */
151 	write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
152 		      CTX_GPREG_X0,
153 		      (uint64_t) bl32_meminfo);
154 
155 	/*
156 	 * Arrange for an entry into the test secure payload. We expect an array
157 	 * of vectors in return
158 	 */
159 	rc = tspd_synchronous_sp_entry(tsp_ctx);
160 	assert(rc != 0);
161 	if (rc) {
162 		tsp_ctx->state = TSP_STATE_ON;
163 
164 		/*
165 		 * TSP has been successfully initialized. Register power
166 		 * managemnt hooks with PSCI
167 		 */
168 		psci_register_spd_pm_hook(&tspd_pm);
169 	}
170 
171 	return rc;
172 }
173 
174 
175 /*******************************************************************************
176  * This function is responsible for handling all SMCs in the Trusted OS/App
177  * range from the non-secure state as defined in the SMC Calling Convention
178  * Document. It is also responsible for communicating with the Secure payload
179  * to delegate work and return results back to the non-secure state. Lastly it
180  * will also return any information that the secure payload needs to do the
181  * work assigned to it.
182  ******************************************************************************/
183 uint64_t tspd_smc_handler(uint32_t smc_fid,
184 			 uint64_t x1,
185 			 uint64_t x2,
186 			 uint64_t x3,
187 			 uint64_t x4,
188 			 void *cookie,
189 			 void *handle,
190 			 uint64_t flags)
191 {
192 	cpu_context *ns_cpu_context;
193 	gp_regs *ns_gp_regs;
194 	unsigned long mpidr = read_mpidr();
195 	uint32_t linear_id = platform_get_core_pos(mpidr), ns;
196 	tsp_context *tsp_ctx = &tspd_sp_context[linear_id];
197 
198 	/* Determine which security state this SMC originated from */
199 	ns = is_caller_non_secure(flags);
200 
201 	switch (smc_fid) {
202 
203 	/*
204 	 * This function ID is used only by the SP to indicate it has
205 	 * finished initialising itself after a cold boot
206 	 */
207 	case TSP_ENTRY_DONE:
208 		if (ns)
209 			SMC_RET1(handle, SMC_UNK);
210 
211 		/*
212 		 * Stash the SP entry points information. This is done
213 		 * only once on the primary cpu
214 		 */
215 		assert(tsp_entry_info == NULL);
216 		tsp_entry_info = (entry_info *) x1;
217 
218 		/*
219 		 * SP reports completion. The SPD must have initiated
220 		 * the original request through a synchronous entry
221 		 * into the SP. Jump back to the original C runtime
222 		 * context.
223 		 */
224 		tspd_synchronous_sp_exit(tsp_ctx, x1);
225 
226 		/* Should never reach here */
227 		assert(0);
228 
229 	/*
230 	 * These function IDs is used only by the SP to indicate it has
231 	 * finished:
232 	 * 1. turning itself on in response to an earlier psci
233 	 *    cpu_on request
234 	 * 2. resuming itself after an earlier psci cpu_suspend
235 	 *    request.
236 	 */
237 	case TSP_ON_DONE:
238 	case TSP_RESUME_DONE:
239 
240 	/*
241 	 * These function IDs is used only by the SP to indicate it has
242 	 * finished:
243 	 * 1. suspending itself after an earlier psci cpu_suspend
244 	 *    request.
245 	 * 2. turning itself off in response to an earlier psci
246 	 *    cpu_off request.
247 	 */
248 	case TSP_OFF_DONE:
249 	case TSP_SUSPEND_DONE:
250 		if (ns)
251 			SMC_RET1(handle, SMC_UNK);
252 
253 		/*
254 		 * SP reports completion. The SPD must have initiated the
255 		 * original request through a synchronous entry into the SP.
256 		 * Jump back to the original C runtime context, and pass x1 as
257 		 * return value to the caller
258 		 */
259 		tspd_synchronous_sp_exit(tsp_ctx, x1);
260 
261 		/* Should never reach here */
262 		assert(0);
263 
264 		/*
265 		 * Request from non-secure client to perform an
266 		 * arithmetic operation or response from secure
267 		 * payload to an earlier request.
268 		 */
269 	case TSP_FID_ADD:
270 	case TSP_FID_SUB:
271 	case TSP_FID_MUL:
272 	case TSP_FID_DIV:
273 		if (ns) {
274 			/*
275 			 * This is a fresh request from the non-secure client.
276 			 * The parameters are in x1 and x2. Figure out which
277 			 * registers need to be preserved, save the non-secure
278 			 * state and send the request to the secure payload.
279 			 */
280 			assert(handle == cm_get_context(mpidr, NON_SECURE));
281 			cm_el1_sysregs_context_save(NON_SECURE);
282 
283 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
284 			SMC_SET_GP(handle, CTX_GPREG_X1, x1);
285 			SMC_SET_GP(handle, CTX_GPREG_X2, x2);
286 
287 			/*
288 			 * We are done stashing the non-secure context. Ask the
289 			 * secure payload to do the work now.
290 			 */
291 
292 			/*
293 			 * Verify if there is a valid context to use, copy the
294 			 * operation type and parameters to the secure context
295 			 * and jump to the fast smc entry point in the secure
296 			 * payload. Entry into S-EL1 will take place upon exit
297 			 * from this function.
298 			 */
299 			assert(&tsp_ctx->cpu_ctx == cm_get_context(mpidr, SECURE));
300 			set_aapcs_args7(&tsp_ctx->cpu_ctx, smc_fid, x1, x2, 0, 0,
301 					0, 0, 0);
302 			cm_set_el3_elr(SECURE, (uint64_t) tsp_entry_info->fast_smc_entry);
303 			cm_el1_sysregs_context_restore(SECURE);
304 			cm_set_next_eret_context(SECURE);
305 
306 			return smc_fid;
307 		} else {
308 			/*
309 			 * This is the result from the secure client of an
310 			 * earlier request. The results are in x1-x2. Copy it
311 			 * into the non-secure context, save the secure state
312 			 * and return to the non-secure state.
313 			 */
314 			assert(handle == cm_get_context(mpidr, SECURE));
315 			cm_el1_sysregs_context_save(SECURE);
316 
317 			/* Get a reference to the non-secure context */
318 			ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
319 			assert(ns_cpu_context);
320 			ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
321 
322 			/* Restore non-secure state */
323 			cm_el1_sysregs_context_restore(NON_SECURE);
324 			cm_set_next_eret_context(NON_SECURE);
325 
326 			SMC_RET2(ns_gp_regs, x1, x2);
327 		}
328 
329 		break;
330 
331 		/*
332 		 * This is a request from the secure payload for more arguments
333 		 * for an ongoing arithmetic operation requested by the
334 		 * non-secure world. Simply return the arguments from the non-
335 		 * secure client in the original call.
336 		 */
337 	case TSP_GET_ARGS:
338 		if (ns)
339 			SMC_RET1(handle, SMC_UNK);
340 
341 		/* Get a reference to the non-secure context */
342 		ns_cpu_context = cm_get_context(mpidr, NON_SECURE);
343 		assert(ns_cpu_context);
344 		ns_gp_regs = get_gpregs_ctx(ns_cpu_context);
345 
346 		SMC_RET2(handle, read_ctx_reg(ns_gp_regs, CTX_GPREG_X1),
347 				read_ctx_reg(ns_gp_regs, CTX_GPREG_X2));
348 
349 	case TOS_CALL_COUNT:
350 		/*
351 		 * Return the number of service function IDs implemented to
352 		 * provide service to non-secure
353 		 */
354 		SMC_RET1(handle, TSP_NUM_FID);
355 
356 	case TOS_UID:
357 		/* Return TSP UID to the caller */
358 		SMC_UUID_RET(handle, tsp_uuid);
359 
360 	case TOS_CALL_VERSION:
361 		/* Return the version of current implementation */
362 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
363 
364 	default:
365 		break;
366 	}
367 
368 	SMC_RET1(handle, SMC_UNK);
369 }
370 
371 /* Define a SPD runtime service descriptor */
372 DECLARE_RT_SVC(
373 	spd,
374 
375 	OEN_TOS_START,
376 	OEN_TOS_END,
377 	SMC_TYPE_FAST,
378 	tspd_setup,
379 	tspd_smc_handler
380 );
381