xref: /rk3399_ARM-atf/services/spd/opteed/opteed_main.c (revision fd6007de64fd7e16f6d96972643434c04a77f1c6)
1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 
32 /*******************************************************************************
33  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34  * plug-in component to the Secure Monitor, registered as a runtime service. The
35  * SPD is expected to be a functional extension of the Secure Payload (SP) that
36  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37  * the Trusted OS/Applications range to the dispatcher. The SPD will either
38  * handle the request locally or delegate it to the Secure Payload. It is also
39  * responsible for initialising and maintaining communication with the SP.
40  ******************************************************************************/
41 #include <arch_helpers.h>
42 #include <assert.h>
43 #include <bl_common.h>
44 #include <bl31.h>
45 #include <context_mgmt.h>
46 #include <debug.h>
47 #include <errno.h>
48 #include <platform.h>
49 #include <runtime_svc.h>
50 #include <stddef.h>
51 #include <uuid.h>
52 #include "opteed_private.h"
53 #include "teesmc_opteed_macros.h"
54 #include "teesmc_opteed.h"
55 
56 /*******************************************************************************
57  * Address of the entrypoint vector table in OPTEE. It is
58  * initialised once on the primary core after a cold boot.
59  ******************************************************************************/
60 optee_vectors_t *optee_vectors;
61 
62 /*******************************************************************************
63  * Array to keep track of per-cpu OPTEE state
64  ******************************************************************************/
65 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
66 uint32_t opteed_rw;
67 
68 
69 
70 static int32_t opteed_init(void);
71 
72 /*******************************************************************************
73  * This function is the handler registered for S-EL1 interrupts by the
74  * OPTEED. It validates the interrupt and upon success arranges entry into
75  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
76  ******************************************************************************/
77 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
78 					    uint32_t flags,
79 					    void *handle,
80 					    void *cookie)
81 {
82 	uint32_t linear_id;
83 	optee_context_t *optee_ctx;
84 
85 	/* Check the security state when the exception was generated */
86 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
87 
88 #if IMF_READ_INTERRUPT_ID
89 	/* Check the security status of the interrupt */
90 	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
91 #endif
92 
93 	/* Sanity check the pointer to this cpu's context */
94 	assert(handle == cm_get_context(NON_SECURE));
95 
96 	/* Save the non-secure context before entering the OPTEE */
97 	cm_el1_sysregs_context_save(NON_SECURE);
98 
99 	/* Get a reference to this cpu's OPTEE context */
100 	linear_id = plat_my_core_pos();
101 	optee_ctx = &opteed_sp_context[linear_id];
102 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
103 
104 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
105 	cm_el1_sysregs_context_restore(SECURE);
106 	cm_set_next_eret_context(SECURE);
107 
108 	/*
109 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
110 	 * Also the instruction in normal world where the interrupt was
111 	 * generated is passed for debugging purposes. It is safe to
112 	 * retrieve this address from ELR_EL3 as the secure context will
113 	 * not take effect until el3_exit().
114 	 */
115 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
116 }
117 
118 /*******************************************************************************
119  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
120  * (aarch32/aarch64) if not already known and initialises the context for entry
121  * into OPTEE for its initialization.
122  ******************************************************************************/
123 int32_t opteed_setup(void)
124 {
125 	entry_point_info_t *optee_ep_info;
126 	uint32_t linear_id;
127 
128 	linear_id = plat_my_core_pos();
129 
130 	/*
131 	 * Get information about the Secure Payload (BL32) image. Its
132 	 * absence is a critical failure.  TODO: Add support to
133 	 * conditionally include the SPD service
134 	 */
135 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
136 	if (!optee_ep_info) {
137 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
138 			" without OPTEE initialization. SMC`s destined for OPTEE"
139 			" will return SMC_UNK\n");
140 		return 1;
141 	}
142 
143 	/*
144 	 * If there's no valid entry point for SP, we return a non-zero value
145 	 * signalling failure initializing the service. We bail out without
146 	 * registering any handlers
147 	 */
148 	if (!optee_ep_info->pc)
149 		return 1;
150 
151 	/*
152 	 * We could inspect the SP image and determine it's execution
153 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch32
154 	 * for the time being.
155 	 */
156 	opteed_rw = OPTEE_AARCH32;
157 	opteed_init_optee_ep_state(optee_ep_info,
158 				opteed_rw,
159 				optee_ep_info->pc,
160 				&opteed_sp_context[linear_id]);
161 
162 	/*
163 	 * All OPTEED initialization done. Now register our init function with
164 	 * BL31 for deferred invocation
165 	 */
166 	bl31_register_bl32_init(&opteed_init);
167 
168 	return 0;
169 }
170 
171 /*******************************************************************************
172  * This function passes control to the OPTEE image (BL32) for the first time
173  * on the primary cpu after a cold boot. It assumes that a valid secure
174  * context has already been created by opteed_setup() which can be directly
175  * used.  It also assumes that a valid non-secure context has been
176  * initialised by PSCI so it does not need to save and restore any
177  * non-secure state. This function performs a synchronous entry into
178  * OPTEE. OPTEE passes control back to this routine through a SMC.
179  ******************************************************************************/
180 static int32_t opteed_init(void)
181 {
182 	uint32_t linear_id = plat_my_core_pos();
183 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
184 	entry_point_info_t *optee_entry_point;
185 	uint64_t rc;
186 
187 	/*
188 	 * Get information about the OPTEE (BL32) image. Its
189 	 * absence is a critical failure.
190 	 */
191 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
192 	assert(optee_entry_point);
193 
194 	cm_init_my_context(optee_entry_point);
195 
196 	/*
197 	 * Arrange for an entry into OPTEE. It will be returned via
198 	 * OPTEE_ENTRY_DONE case
199 	 */
200 	rc = opteed_synchronous_sp_entry(optee_ctx);
201 	assert(rc != 0);
202 
203 	return rc;
204 }
205 
206 
207 /*******************************************************************************
208  * This function is responsible for handling all SMCs in the Trusted OS/App
209  * range from the non-secure state as defined in the SMC Calling Convention
210  * Document. It is also responsible for communicating with the Secure
211  * payload to delegate work and return results back to the non-secure
212  * state. Lastly it will also return any information that OPTEE needs to do
213  * the work assigned to it.
214  ******************************************************************************/
215 uint64_t opteed_smc_handler(uint32_t smc_fid,
216 			 uint64_t x1,
217 			 uint64_t x2,
218 			 uint64_t x3,
219 			 uint64_t x4,
220 			 void *cookie,
221 			 void *handle,
222 			 uint64_t flags)
223 {
224 	cpu_context_t *ns_cpu_context;
225 	uint32_t linear_id = plat_my_core_pos();
226 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
227 	uint64_t rc;
228 
229 	/*
230 	 * Determine which security state this SMC originated from
231 	 */
232 
233 	if (is_caller_non_secure(flags)) {
234 		/*
235 		 * This is a fresh request from the non-secure client.
236 		 * The parameters are in x1 and x2. Figure out which
237 		 * registers need to be preserved, save the non-secure
238 		 * state and send the request to the secure payload.
239 		 */
240 		assert(handle == cm_get_context(NON_SECURE));
241 
242 		cm_el1_sysregs_context_save(NON_SECURE);
243 
244 		/*
245 		 * We are done stashing the non-secure context. Ask the
246 		 * OPTEE to do the work now.
247 		 */
248 
249 		/*
250 		 * Verify if there is a valid context to use, copy the
251 		 * operation type and parameters to the secure context
252 		 * and jump to the fast smc entry point in the secure
253 		 * payload. Entry into S-EL1 will take place upon exit
254 		 * from this function.
255 		 */
256 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
257 
258 		/* Set appropriate entry for SMC.
259 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
260 		 * flags as appropriate.
261 		 */
262 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
263 			cm_set_elr_el3(SECURE, (uint64_t)
264 					&optee_vectors->fast_smc_entry);
265 		} else {
266 			cm_set_elr_el3(SECURE, (uint64_t)
267 					&optee_vectors->std_smc_entry);
268 		}
269 
270 		cm_el1_sysregs_context_restore(SECURE);
271 		cm_set_next_eret_context(SECURE);
272 
273 		/* Propagate hypervisor client ID */
274 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
275 			      CTX_GPREG_X7,
276 			      read_ctx_reg(get_gpregs_ctx(handle),
277 					   CTX_GPREG_X7));
278 
279 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
280 	}
281 
282 	/*
283 	 * Returning from OPTEE
284 	 */
285 
286 	switch (smc_fid) {
287 	/*
288 	 * OPTEE has finished initialising itself after a cold boot
289 	 */
290 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
291 		/*
292 		 * Stash the OPTEE entry points information. This is done
293 		 * only once on the primary cpu
294 		 */
295 		assert(optee_vectors == NULL);
296 		optee_vectors = (optee_vectors_t *) x1;
297 
298 		if (optee_vectors) {
299 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
300 
301 			/*
302 			 * OPTEE has been successfully initialized.
303 			 * Register power management hooks with PSCI
304 			 */
305 			psci_register_spd_pm_hook(&opteed_pm);
306 
307 			/*
308 			 * Register an interrupt handler for S-EL1 interrupts
309 			 * when generated during code executing in the
310 			 * non-secure state.
311 			 */
312 			flags = 0;
313 			set_interrupt_rm_flag(flags, NON_SECURE);
314 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
315 						opteed_sel1_interrupt_handler,
316 						flags);
317 			if (rc)
318 				panic();
319 		}
320 
321 		/*
322 		 * OPTEE reports completion. The OPTEED must have initiated
323 		 * the original request through a synchronous entry into
324 		 * OPTEE. Jump back to the original C runtime context.
325 		 */
326 		opteed_synchronous_sp_exit(optee_ctx, x1);
327 
328 
329 	/*
330 	 * These function IDs is used only by OP-TEE to indicate it has
331 	 * finished:
332 	 * 1. turning itself on in response to an earlier psci
333 	 *    cpu_on request
334 	 * 2. resuming itself after an earlier psci cpu_suspend
335 	 *    request.
336 	 */
337 	case TEESMC_OPTEED_RETURN_ON_DONE:
338 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
339 
340 
341 	/*
342 	 * These function IDs is used only by the SP to indicate it has
343 	 * finished:
344 	 * 1. suspending itself after an earlier psci cpu_suspend
345 	 *    request.
346 	 * 2. turning itself off in response to an earlier psci
347 	 *    cpu_off request.
348 	 */
349 	case TEESMC_OPTEED_RETURN_OFF_DONE:
350 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
351 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
352 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
353 
354 		/*
355 		 * OPTEE reports completion. The OPTEED must have initiated the
356 		 * original request through a synchronous entry into OPTEE.
357 		 * Jump back to the original C runtime context, and pass x1 as
358 		 * return value to the caller
359 		 */
360 		opteed_synchronous_sp_exit(optee_ctx, x1);
361 
362 	/*
363 	 * OPTEE is returning from a call or being preempted from a call, in
364 	 * either case execution should resume in the normal world.
365 	 */
366 	case TEESMC_OPTEED_RETURN_CALL_DONE:
367 		/*
368 		 * This is the result from the secure client of an
369 		 * earlier request. The results are in x0-x3. Copy it
370 		 * into the non-secure context, save the secure state
371 		 * and return to the non-secure state.
372 		 */
373 		assert(handle == cm_get_context(SECURE));
374 		cm_el1_sysregs_context_save(SECURE);
375 
376 		/* Get a reference to the non-secure context */
377 		ns_cpu_context = cm_get_context(NON_SECURE);
378 		assert(ns_cpu_context);
379 
380 		/* Restore non-secure state */
381 		cm_el1_sysregs_context_restore(NON_SECURE);
382 		cm_set_next_eret_context(NON_SECURE);
383 
384 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
385 
386 	/*
387 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
388 	 * should resume in the normal world.
389 	 */
390 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
391 		/* Get a reference to the non-secure context */
392 		ns_cpu_context = cm_get_context(NON_SECURE);
393 		assert(ns_cpu_context);
394 
395 		/*
396 		 * Restore non-secure state. There is no need to save the
397 		 * secure system register context since OPTEE was supposed
398 		 * to preserve it during S-EL1 interrupt handling.
399 		 */
400 		cm_el1_sysregs_context_restore(NON_SECURE);
401 		cm_set_next_eret_context(NON_SECURE);
402 
403 		SMC_RET0((uint64_t) ns_cpu_context);
404 
405 	default:
406 		panic();
407 	}
408 }
409 
410 /* Define an OPTEED runtime service descriptor for fast SMC calls */
411 DECLARE_RT_SVC(
412 	opteed_fast,
413 
414 	OEN_TOS_START,
415 	OEN_TOS_END,
416 	SMC_TYPE_FAST,
417 	opteed_setup,
418 	opteed_smc_handler
419 );
420 
421 /* Define an OPTEED runtime service descriptor for standard SMC calls */
422 DECLARE_RT_SVC(
423 	opteed_std,
424 
425 	OEN_TOS_START,
426 	OEN_TOS_END,
427 	SMC_TYPE_STD,
428 	NULL,
429 	opteed_smc_handler
430 );
431