xref: /rk3399_ARM-atf/services/spd/opteed/opteed_main.c (revision d158d425370eb3bc1f730a412a319fdc7176d92a)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <inttypes.h>
20 #include <stddef.h>
21 
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <common/bl_common.h>
25 #include <common/debug.h>
26 #include <common/runtime_svc.h>
27 #include <lib/coreboot.h>
28 #include <lib/el3_runtime/context_mgmt.h>
29 #include <lib/optee_utils.h>
30 #if TRANSFER_LIST
31 #include <transfer_list.h>
32 #endif
33 #include <lib/xlat_tables/xlat_tables_v2.h>
34 #if OPTEE_ALLOW_SMC_LOAD
35 #include <libfdt.h>
36 #endif  /* OPTEE_ALLOW_SMC_LOAD */
37 #include <plat/common/platform.h>
38 #include <services/oem/chromeos/widevine_smc_handlers.h>
39 #include <tools_share/uuid.h>
40 
41 #include "opteed_private.h"
42 #include "teesmc_opteed.h"
43 
44 #if OPTEE_ALLOW_SMC_LOAD
45 static struct transfer_list_header __maybe_unused *bl31_tl;
46 #endif
47 
48 /*******************************************************************************
49  * Address of the entrypoint vector table in OPTEE. It is
50  * initialised once on the primary core after a cold boot.
51  ******************************************************************************/
52 struct optee_vectors *optee_vector_table;
53 
54 /*******************************************************************************
55  * Array to keep track of per-cpu OPTEE state
56  ******************************************************************************/
57 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
58 uint32_t opteed_rw;
59 
60 #if OPTEE_ALLOW_SMC_LOAD
61 static bool opteed_allow_load;
62 /* OP-TEE image loading service UUID */
63 DEFINE_SVC_UUID2(optee_image_load_uuid,
64 	0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06,
65 	0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0);
66 
67 #define OPTEED_FDT_SIZE 1024
68 static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE);
69 
70 #else
71 static int32_t opteed_init(void);
72 #endif
73 
74 uint64_t dual32to64(uint32_t high, uint32_t low)
75 {
76 	return ((uint64_t)high << 32) | low;
77 }
78 
79 /*******************************************************************************
80  * This function is the handler registered for S-EL1 interrupts by the
81  * OPTEED. It validates the interrupt and upon success arranges entry into
82  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
83  ******************************************************************************/
84 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
85 					    uint32_t flags,
86 					    void *handle,
87 					    void *cookie)
88 {
89 	uint32_t linear_id;
90 	optee_context_t *optee_ctx;
91 
92 #if OPTEE_ALLOW_SMC_LOAD
93 	if (optee_vector_table == NULL) {
94 		/* OPTEE is not loaded yet, ignore this interrupt */
95 		SMC_RET0(handle);
96 	}
97 #endif
98 
99 	/* Check the security state when the exception was generated */
100 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
101 
102 	/* Sanity check the pointer to this cpu's context */
103 	assert(handle == cm_get_context(NON_SECURE));
104 
105 	/* Save the non-secure context before entering the OPTEE */
106 	cm_el1_sysregs_context_save(NON_SECURE);
107 
108 	/* Get a reference to this cpu's OPTEE context */
109 	linear_id = plat_my_core_pos();
110 	optee_ctx = &opteed_sp_context[linear_id];
111 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
112 
113 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry);
114 	cm_el1_sysregs_context_restore(SECURE);
115 	cm_set_next_eret_context(SECURE);
116 
117 	/*
118 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
119 	 * Also the instruction in normal world where the interrupt was
120 	 * generated is passed for debugging purposes. It is safe to
121 	 * retrieve this address from ELR_EL3 as the secure context will
122 	 * not take effect until el3_exit().
123 	 */
124 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
125 }
126 
127 /*
128  * Registers an interrupt handler for S-EL1 interrupts when generated during
129  * code executing in the non-secure state. Panics if it fails to do so.
130  */
131 static void register_opteed_interrupt_handler(void)
132 {
133 	u_register_t flags;
134 	uint64_t rc;
135 
136 	flags = 0;
137 	set_interrupt_rm_flag(flags, NON_SECURE);
138 	rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
139 			opteed_sel1_interrupt_handler,
140 			flags);
141 	if (rc)
142 		panic();
143 }
144 
145 /*******************************************************************************
146  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
147  * (aarch32/aarch64) if not already known and initialises the context for entry
148  * into OPTEE for its initialization.
149  ******************************************************************************/
150 static int32_t opteed_setup(void)
151 {
152 #if OPTEE_ALLOW_SMC_LOAD
153 	opteed_allow_load = true;
154 	INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n");
155 	/*
156 	 * We must register the interrupt handler now so that the interrupt
157 	 * priorities are not changed after starting the linux kernel.
158 	 */
159 	register_opteed_interrupt_handler();
160 	return 0;
161 #else
162 	entry_point_info_t *optee_ep_info;
163 	uint32_t linear_id;
164 	uint64_t arg0;
165 	uint64_t arg1;
166 	uint64_t arg2;
167 	uint64_t arg3;
168 	struct transfer_list_header __maybe_unused *tl = NULL;
169 	struct transfer_list_entry __maybe_unused *te = NULL;
170 	void __maybe_unused *dt = NULL;
171 
172 	linear_id = plat_my_core_pos();
173 
174 	/*
175 	 * Get information about the Secure Payload (BL32) image. Its
176 	 * absence is a critical failure.  TODO: Add support to
177 	 * conditionally include the SPD service
178 	 */
179 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
180 	if (!optee_ep_info) {
181 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
182 			" without OPTEE initialization. SMC`s destined for OPTEE"
183 			" will return SMC_UNK\n");
184 		return 1;
185 	}
186 
187 	/*
188 	 * If there's no valid entry point for SP, we return a non-zero value
189 	 * signalling failure initializing the service. We bail out without
190 	 * registering any handlers
191 	 */
192 	if (!optee_ep_info->pc)
193 		return 1;
194 
195 #if TRANSFER_LIST
196 	tl = (void *)optee_ep_info->args.arg3;
197 
198 	if (transfer_list_check_header(tl)) {
199 		te = transfer_list_find(tl, TL_TAG_FDT);
200 		dt = transfer_list_entry_data(te);
201 
202 		opteed_rw = GET_RW(optee_ep_info->spsr);
203 		if (opteed_rw == OPTEE_AARCH64) {
204 			if (optee_ep_info->args.arg1 !=
205 			    TRANSFER_LIST_HANDOFF_X1_VALUE(
206 				    REGISTER_CONVENTION_VERSION))
207 				return 1;
208 
209 			arg0 = (uint64_t)dt;
210 			arg2 = 0;
211 		} else {
212 			if (optee_ep_info->args.arg1 !=
213 			    TRANSFER_LIST_HANDOFF_R1_VALUE(
214 				    REGISTER_CONVENTION_VERSION))
215 				return 1;
216 
217 			arg0 = 0;
218 			arg2 = (uint64_t)dt;
219 		}
220 
221 		arg1 = optee_ep_info->args.arg1;
222 		arg3 = optee_ep_info->args.arg3;
223 
224 	} else
225 #endif /* TRANSFER_LIST */
226 	{
227 		/* Default handoff arguments */
228 		opteed_rw = optee_ep_info->args.arg0;
229 		arg0 = optee_ep_info->args.arg1; /* opteed_pageable_part */
230 		arg1 = optee_ep_info->args.arg2; /* opteed_mem_limit */
231 		arg2 = optee_ep_info->args.arg3; /* dt_addr */
232 		arg3 = 0;
233 	}
234 
235 	opteed_init_optee_ep_state(optee_ep_info, opteed_rw,
236 				   optee_ep_info->pc, arg0, arg1, arg2,
237 				   arg3, &opteed_sp_context[linear_id]);
238 
239 	/*
240 	 * All OPTEED initialization done. Now register our init function with
241 	 * BL31 for deferred invocation
242 	 */
243 	bl31_register_bl32_init(&opteed_init);
244 
245 	return 0;
246 #endif  /* OPTEE_ALLOW_SMC_LOAD */
247 }
248 
249 /*******************************************************************************
250  * This function passes control to the OPTEE image (BL32) for the first time
251  * on the primary cpu after a cold boot. It assumes that a valid secure
252  * context has already been created by opteed_setup() which can be directly
253  * used.  It also assumes that a valid non-secure context has been
254  * initialised by PSCI so it does not need to save and restore any
255  * non-secure state. This function performs a synchronous entry into
256  * OPTEE. OPTEE passes control back to this routine through a SMC. This returns
257  * a non-zero value on success and zero on failure.
258  ******************************************************************************/
259 static int32_t
260 opteed_init_with_entry_point(entry_point_info_t *optee_entry_point)
261 {
262 	uint32_t linear_id = plat_my_core_pos();
263 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
264 	uint64_t rc;
265 	assert(optee_entry_point);
266 
267 	cm_init_my_context(optee_entry_point);
268 
269 	/*
270 	 * Arrange for an entry into OPTEE. It will be returned via
271 	 * OPTEE_ENTRY_DONE case
272 	 */
273 	rc = opteed_synchronous_sp_entry(optee_ctx);
274 	assert(rc != 0);
275 
276 	return rc;
277 }
278 
279 #if !OPTEE_ALLOW_SMC_LOAD
280 static int32_t opteed_init(void)
281 {
282 	entry_point_info_t *optee_entry_point;
283 	/*
284 	 * Get information about the OP-TEE (BL32) image. Its
285 	 * absence is a critical failure.
286 	 */
287 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
288 	return opteed_init_with_entry_point(optee_entry_point);
289 }
290 #endif  /* !OPTEE_ALLOW_SMC_LOAD */
291 
292 #if OPTEE_ALLOW_SMC_LOAD
293 #if COREBOOT
294 /*
295  * Adds a firmware/coreboot node with the coreboot table information to a device
296  * tree. Returns zero on success or if there is no coreboot table information;
297  * failure code otherwise.
298  */
299 static int add_coreboot_node(void *fdt)
300 {
301 	int ret;
302 	uint64_t coreboot_table_addr;
303 	uint32_t coreboot_table_size;
304 	struct {
305 		uint64_t addr;
306 		uint32_t size;
307 	} reg_node;
308 	coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size);
309 	if (!coreboot_table_addr || !coreboot_table_size) {
310 		WARN("Unable to get coreboot table location for device tree");
311 		return 0;
312 	}
313 	ret = fdt_begin_node(fdt, "firmware");
314 	if (ret)
315 		return ret;
316 
317 	ret = fdt_property(fdt, "ranges", NULL, 0);
318 	if (ret)
319 		return ret;
320 
321 	ret = fdt_begin_node(fdt, "coreboot");
322 	if (ret)
323 		return ret;
324 
325 	ret = fdt_property_string(fdt, "compatible", "coreboot");
326 	if (ret)
327 		return ret;
328 
329 	reg_node.addr = cpu_to_fdt64(coreboot_table_addr);
330 	reg_node.size = cpu_to_fdt32(coreboot_table_size);
331 	ret = fdt_property(fdt, "reg", &reg_node,
332 				sizeof(uint64_t) + sizeof(uint32_t));
333 	if (ret)
334 		return ret;
335 
336 	ret = fdt_end_node(fdt);
337 	if (ret)
338 		return ret;
339 
340 	return fdt_end_node(fdt);
341 }
342 #endif /* COREBOOT */
343 
344 #if CROS_WIDEVINE_SMC
345 /*
346  * Adds a options/widevine node with the widevine table information to a device
347  * tree. Returns zero on success or if there is no widevine table information;
348  * failure code otherwise.
349  */
350 static int add_options_widevine_node(void *fdt)
351 {
352 	int ret;
353 
354 	ret = fdt_begin_node(fdt, "options");
355 	if (ret)
356 		return ret;
357 
358 	ret = fdt_begin_node(fdt, "op-tee");
359 	if (ret)
360 		return ret;
361 
362 	ret = fdt_begin_node(fdt, "widevine");
363 	if (ret)
364 		return ret;
365 
366 	if (cros_oem_tpm_auth_pk.length) {
367 		ret = fdt_property(fdt, "tcg,tpm-auth-public-key",
368 				   cros_oem_tpm_auth_pk.buffer,
369 				   cros_oem_tpm_auth_pk.length);
370 		if (ret)
371 			return ret;
372 	}
373 
374 	if (cros_oem_huk.length) {
375 		ret = fdt_property(fdt, "op-tee,hardware-unique-key",
376 				   cros_oem_huk.buffer, cros_oem_huk.length);
377 		if (ret)
378 			return ret;
379 	}
380 
381 	if (cros_oem_rot.length) {
382 		ret = fdt_property(fdt, "google,widevine-root-of-trust-ecc-p256",
383 				   cros_oem_rot.buffer, cros_oem_rot.length);
384 		if (ret)
385 			return ret;
386 	}
387 
388 	ret = fdt_end_node(fdt);
389 	if (ret)
390 		return ret;
391 
392 	ret = fdt_end_node(fdt);
393 	if (ret)
394 		return ret;
395 
396 	return fdt_end_node(fdt);
397 }
398 #endif /* CROS_WIDEVINE_SMC */
399 
400 /*
401  * Creates a device tree for passing into OP-TEE. Currently is populated with
402  * the coreboot table address.
403  * Returns 0 on success, error code otherwise.
404  */
405 static int create_opteed_dt(void)
406 {
407 	int ret;
408 
409 	ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE);
410 	if (ret)
411 		return ret;
412 
413 	ret = fdt_finish_reservemap(fdt_buf);
414 	if (ret)
415 		return ret;
416 
417 	ret = fdt_begin_node(fdt_buf, "");
418 	if (ret)
419 		return ret;
420 
421 #if COREBOOT
422 	ret = add_coreboot_node(fdt_buf);
423 	if (ret)
424 		return ret;
425 #endif /* COREBOOT */
426 
427 #if CROS_WIDEVINE_SMC
428 	ret = add_options_widevine_node(fdt_buf);
429 	if (ret)
430 		return ret;
431 #endif /* CROS_WIDEVINE_SMC */
432 
433 	ret = fdt_end_node(fdt_buf);
434 	if (ret)
435 		return ret;
436 
437 	return fdt_finish(fdt_buf);
438 }
439 
440 #if TRANSFER_LIST
441 static int32_t create_smc_tl(const void *fdt, uint32_t fdt_sz)
442 {
443 	bl31_tl = transfer_list_init((void *)(uintptr_t)FW_HANDOFF_BASE,
444 				FW_HANDOFF_SIZE);
445 	if (!bl31_tl) {
446 		ERROR("Failed to initialize Transfer List at 0x%lx\n",
447 		(unsigned long)FW_HANDOFF_BASE);
448 		return -1;
449 	}
450 
451 	if (!transfer_list_add(bl31_tl, TL_TAG_FDT, fdt_sz, fdt)) {
452 		return -1;
453 	}
454 	return 0;
455 }
456 #endif
457 
458 /*******************************************************************************
459  * This function is responsible for handling the SMC that loads the OP-TEE
460  * binary image via a non-secure SMC call. It takes the size and physical
461  * address of the payload as parameters.
462  ******************************************************************************/
463 static int32_t opteed_handle_smc_load(uint64_t data_size, uint64_t data_pa)
464 {
465 	uintptr_t data_va = data_pa;
466 	uint64_t mapped_data_pa;
467 	uintptr_t mapped_data_va;
468 	uint64_t data_map_size;
469 	int32_t rc;
470 	optee_header_t *image_header;
471 	uint8_t *image_ptr;
472 	uint64_t target_pa;
473 	uint64_t target_end_pa;
474 	uint64_t image_pa;
475 	uintptr_t image_va;
476 	optee_image_t *curr_image;
477 	uintptr_t target_va;
478 	uint64_t target_size;
479 	entry_point_info_t optee_ep_info;
480 	uint32_t linear_id = plat_my_core_pos();
481 	uint64_t dt_addr = 0;
482 	uint64_t arg0 = 0;
483 	uint64_t arg1 = 0;
484 	uint64_t arg2 = 0;
485 	uint64_t arg3 = 0;
486 
487 	mapped_data_pa = page_align(data_pa, DOWN);
488 	mapped_data_va = mapped_data_pa;
489 	data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP);
490 
491 	/*
492 	 * We do not validate the passed in address because we are trusting the
493 	 * non-secure world at this point still.
494 	 */
495 	rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va,
496 				     data_map_size, MT_MEMORY | MT_RO | MT_NS);
497 	if (rc != 0) {
498 		return rc;
499 	}
500 
501 	image_header = (optee_header_t *)data_va;
502 	if (image_header->magic != TEE_MAGIC_NUM_OPTEE ||
503 	    image_header->version != 2 || image_header->nb_images != 1) {
504 		mmap_remove_dynamic_region(mapped_data_va, data_map_size);
505 		return -EINVAL;
506 	}
507 
508 	image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) +
509 			sizeof(optee_image_t);
510 	if (image_header->arch == 1) {
511 		opteed_rw = OPTEE_AARCH64;
512 	} else {
513 		opteed_rw = OPTEE_AARCH32;
514 	}
515 
516 	curr_image = &image_header->optee_image_list[0];
517 	image_pa = dual32to64(curr_image->load_addr_hi,
518 			      curr_image->load_addr_lo);
519 	image_va = image_pa;
520 	target_end_pa = image_pa + curr_image->size;
521 
522 	/* Now also map the memory we want to copy it to. */
523 	target_pa = page_align(image_pa, DOWN);
524 	target_va = target_pa;
525 	target_size = page_align(target_end_pa, UP) - target_pa;
526 
527 	rc = mmap_add_dynamic_region(target_pa, target_va, target_size,
528 				     MT_MEMORY | MT_RW | MT_SECURE);
529 	if (rc != 0) {
530 		mmap_remove_dynamic_region(mapped_data_va, data_map_size);
531 		return rc;
532 	}
533 
534 	INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n",
535 	     curr_image->size, image_va);
536 
537 	memcpy((void *)image_va, image_ptr, curr_image->size);
538 	flush_dcache_range(target_pa, target_size);
539 
540 	mmap_remove_dynamic_region(mapped_data_va, data_map_size);
541 	mmap_remove_dynamic_region(target_va, target_size);
542 
543 	/* Save the non-secure state */
544 	cm_el1_sysregs_context_save(NON_SECURE);
545 
546 	rc = create_opteed_dt();
547 	if (rc) {
548 		ERROR("Failed device tree creation %d\n", rc);
549 		return rc;
550 	}
551 	dt_addr = (uint64_t)fdt_buf;
552 	flush_dcache_range(dt_addr, OPTEED_FDT_SIZE);
553 
554 #if TRANSFER_LIST
555 	if (!create_smc_tl((void *)dt_addr, OPTEED_FDT_SIZE)) {
556 		struct transfer_list_entry *te = NULL;
557 		void *dt = NULL;
558 
559 		te = transfer_list_find(bl31_tl, TL_TAG_FDT);
560 		dt = transfer_list_entry_data(te);
561 
562 		if (opteed_rw == OPTEE_AARCH64) {
563 			arg0 = (uint64_t)dt;
564 			arg1 = TRANSFER_LIST_HANDOFF_X1_VALUE(REGISTER_CONVENTION_VERSION);
565 			arg2 = 0;
566 		} else {
567 			arg0 = 0;
568 			arg1 = TRANSFER_LIST_HANDOFF_R1_VALUE(REGISTER_CONVENTION_VERSION);
569 			arg2 = (uint64_t)dt;
570 		}
571 
572 		arg3 = (uint64_t)bl31_tl;
573 	} else
574 #endif /* TRANSFER_LIST */
575 	{
576 		/* Default handoff arguments */
577 		arg2 = dt_addr;
578 	}
579 
580 	opteed_init_optee_ep_state(&optee_ep_info,
581 				   opteed_rw,
582 				   image_pa,
583 				   arg0,
584 				   arg1,
585 				   arg2,
586 				   arg3,
587 				   &opteed_sp_context[linear_id]);
588 	if (opteed_init_with_entry_point(&optee_ep_info) == 0) {
589 		rc = -EFAULT;
590 	}
591 
592 	/* Restore non-secure state */
593 	cm_el1_sysregs_context_restore(NON_SECURE);
594 	cm_set_next_eret_context(NON_SECURE);
595 
596 	return rc;
597 }
598 #endif  /* OPTEE_ALLOW_SMC_LOAD */
599 
600 /*******************************************************************************
601  * This function is responsible for handling all SMCs in the Trusted OS/App
602  * range from the non-secure state as defined in the SMC Calling Convention
603  * Document. It is also responsible for communicating with the Secure
604  * payload to delegate work and return results back to the non-secure
605  * state. Lastly it will also return any information that OPTEE needs to do
606  * the work assigned to it.
607  ******************************************************************************/
608 static uintptr_t opteed_smc_handler(uint32_t smc_fid,
609 			 u_register_t x1,
610 			 u_register_t x2,
611 			 u_register_t x3,
612 			 u_register_t x4,
613 			 void *cookie,
614 			 void *handle,
615 			 u_register_t flags)
616 {
617 	cpu_context_t *ns_cpu_context;
618 	uint32_t linear_id = plat_my_core_pos();
619 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
620 
621 	/*
622 	 * Determine which security state this SMC originated from
623 	 */
624 
625 	if (is_caller_non_secure(flags)) {
626 #if OPTEE_ALLOW_SMC_LOAD
627 		if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) {
628 			/* Provide the UUID of the image loading service. */
629 			SMC_UUID_RET(handle, optee_image_load_uuid);
630 		}
631 		if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) {
632 			/*
633 			 * TODO: Consider wiping the code for SMC loading from
634 			 * memory after it has been invoked similar to what is
635 			 * done under RECLAIM_INIT, but extended to happen
636 			 * later.
637 			 */
638 			if (!opteed_allow_load) {
639 				SMC_RET1(handle, -EPERM);
640 			}
641 
642 			opteed_allow_load = false;
643 			uint64_t data_size = dual32to64(x1, x2);
644 			uint64_t data_pa = dual32to64(x3, x4);
645 			if (!data_size || !data_pa) {
646 				/*
647 				 * This is invoked when the OP-TEE image didn't
648 				 * load correctly in the kernel but we want to
649 				 * block off loading of it later for security
650 				 * reasons.
651 				 */
652 				SMC_RET1(handle, -EINVAL);
653 			}
654 			SMC_RET1(handle, opteed_handle_smc_load(
655 					data_size, data_pa));
656 		}
657 #endif  /* OPTEE_ALLOW_SMC_LOAD */
658 		/*
659 		 * This is a fresh request from the non-secure client.
660 		 * The parameters are in x1 and x2. Figure out which
661 		 * registers need to be preserved, save the non-secure
662 		 * state and send the request to the secure payload.
663 		 */
664 		assert(handle == cm_get_context(NON_SECURE));
665 
666 		cm_el1_sysregs_context_save(NON_SECURE);
667 
668 		/*
669 		 * We are done stashing the non-secure context. Ask the
670 		 * OP-TEE to do the work now. If we are loading vi an SMC,
671 		 * then we also need to init this CPU context if not done
672 		 * already.
673 		 */
674 		if (optee_vector_table == NULL) {
675 			SMC_RET1(handle, -EINVAL);
676 		}
677 
678 		if (get_optee_pstate(optee_ctx->state) ==
679 		    OPTEE_PSTATE_UNKNOWN) {
680 			opteed_cpu_on_finish_handler(0);
681 		}
682 
683 		/*
684 		 * Verify if there is a valid context to use, copy the
685 		 * operation type and parameters to the secure context
686 		 * and jump to the fast smc entry point in the secure
687 		 * payload. Entry into S-EL1 will take place upon exit
688 		 * from this function.
689 		 */
690 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
691 
692 		/* Set appropriate entry for SMC.
693 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
694 		 * flags as appropriate.
695 		 */
696 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
697 			cm_set_elr_el3(SECURE, (uint64_t)
698 					&optee_vector_table->fast_smc_entry);
699 		} else {
700 			cm_set_elr_el3(SECURE, (uint64_t)
701 					&optee_vector_table->yield_smc_entry);
702 		}
703 
704 		cm_el1_sysregs_context_restore(SECURE);
705 		cm_set_next_eret_context(SECURE);
706 
707 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
708 			      CTX_GPREG_X4,
709 			      read_ctx_reg(get_gpregs_ctx(handle),
710 					   CTX_GPREG_X4));
711 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
712 			      CTX_GPREG_X5,
713 			      read_ctx_reg(get_gpregs_ctx(handle),
714 					   CTX_GPREG_X5));
715 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
716 			      CTX_GPREG_X6,
717 			      read_ctx_reg(get_gpregs_ctx(handle),
718 					   CTX_GPREG_X6));
719 		/* Propagate hypervisor client ID */
720 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
721 			      CTX_GPREG_X7,
722 			      read_ctx_reg(get_gpregs_ctx(handle),
723 					   CTX_GPREG_X7));
724 
725 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
726 	}
727 
728 	/*
729 	 * Returning from OPTEE
730 	 */
731 
732 	switch (smc_fid) {
733 	/*
734 	 * OPTEE has finished initialising itself after a cold boot
735 	 */
736 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
737 		/*
738 		 * Stash the OPTEE entry points information. This is done
739 		 * only once on the primary cpu
740 		 */
741 		assert(optee_vector_table == NULL);
742 		optee_vector_table = (optee_vectors_t *) x1;
743 
744 		if (optee_vector_table) {
745 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
746 
747 			/*
748 			 * OPTEE has been successfully initialized.
749 			 * Register power management hooks with PSCI
750 			 */
751 			psci_register_spd_pm_hook(&opteed_pm);
752 
753 #if !OPTEE_ALLOW_SMC_LOAD
754 			register_opteed_interrupt_handler();
755 #endif
756 		}
757 
758 		/*
759 		 * OPTEE reports completion. The OPTEED must have initiated
760 		 * the original request through a synchronous entry into
761 		 * OPTEE. Jump back to the original C runtime context.
762 		 */
763 		opteed_synchronous_sp_exit(optee_ctx, x1);
764 		break;
765 
766 
767 	/*
768 	 * These function IDs is used only by OP-TEE to indicate it has
769 	 * finished:
770 	 * 1. turning itself on in response to an earlier psci
771 	 *    cpu_on request
772 	 * 2. resuming itself after an earlier psci cpu_suspend
773 	 *    request.
774 	 */
775 	case TEESMC_OPTEED_RETURN_ON_DONE:
776 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
777 
778 
779 	/*
780 	 * These function IDs is used only by the SP to indicate it has
781 	 * finished:
782 	 * 1. suspending itself after an earlier psci cpu_suspend
783 	 *    request.
784 	 * 2. turning itself off in response to an earlier psci
785 	 *    cpu_off request.
786 	 */
787 	case TEESMC_OPTEED_RETURN_OFF_DONE:
788 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
789 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
790 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
791 
792 		/*
793 		 * OPTEE reports completion. The OPTEED must have initiated the
794 		 * original request through a synchronous entry into OPTEE.
795 		 * Jump back to the original C runtime context, and pass x1 as
796 		 * return value to the caller
797 		 */
798 		opteed_synchronous_sp_exit(optee_ctx, x1);
799 		break;
800 
801 	/*
802 	 * OPTEE is returning from a call or being preempted from a call, in
803 	 * either case execution should resume in the normal world.
804 	 */
805 	case TEESMC_OPTEED_RETURN_CALL_DONE:
806 		/*
807 		 * This is the result from the secure client of an
808 		 * earlier request. The results are in x0-x3. Copy it
809 		 * into the non-secure context, save the secure state
810 		 * and return to the non-secure state.
811 		 */
812 		assert(handle == cm_get_context(SECURE));
813 		cm_el1_sysregs_context_save(SECURE);
814 
815 		/* Get a reference to the non-secure context */
816 		ns_cpu_context = cm_get_context(NON_SECURE);
817 		assert(ns_cpu_context);
818 
819 		/* Restore non-secure state */
820 		cm_el1_sysregs_context_restore(NON_SECURE);
821 		cm_set_next_eret_context(NON_SECURE);
822 
823 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
824 
825 	/*
826 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
827 	 * should resume in the normal world.
828 	 */
829 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
830 		/* Get a reference to the non-secure context */
831 		ns_cpu_context = cm_get_context(NON_SECURE);
832 		assert(ns_cpu_context);
833 
834 		/*
835 		 * Restore non-secure state. There is no need to save the
836 		 * secure system register context since OPTEE was supposed
837 		 * to preserve it during S-EL1 interrupt handling.
838 		 */
839 		cm_el1_sysregs_context_restore(NON_SECURE);
840 		cm_set_next_eret_context(NON_SECURE);
841 
842 		SMC_RET0((uint64_t) ns_cpu_context);
843 
844 	default:
845 		panic();
846 	}
847 }
848 
849 /* Define an OPTEED runtime service descriptor for fast SMC calls */
850 DECLARE_RT_SVC(
851 	opteed_fast,
852 
853 	OEN_TOS_START,
854 	OEN_TOS_END,
855 	SMC_TYPE_FAST,
856 	opteed_setup,
857 	opteed_smc_handler
858 );
859 
860 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
861 DECLARE_RT_SVC(
862 	opteed_std,
863 
864 	OEN_TOS_START,
865 	OEN_TOS_END,
866 	SMC_TYPE_YIELD,
867 	NULL,
868 	opteed_smc_handler
869 );
870