1 /* 2 * Copyright (c) 2013-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 8 /******************************************************************************* 9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a 10 * plug-in component to the Secure Monitor, registered as a runtime service. The 11 * SPD is expected to be a functional extension of the Secure Payload (SP) that 12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting 13 * the Trusted OS/Applications range to the dispatcher. The SPD will either 14 * handle the request locally or delegate it to the Secure Payload. It is also 15 * responsible for initialising and maintaining communication with the SP. 16 ******************************************************************************/ 17 #include <assert.h> 18 #include <errno.h> 19 #include <inttypes.h> 20 #include <stddef.h> 21 22 #include <arch_helpers.h> 23 #include <bl31/bl31.h> 24 #include <common/bl_common.h> 25 #include <common/debug.h> 26 #include <common/runtime_svc.h> 27 #include <lib/el3_runtime/context_mgmt.h> 28 #include <lib/optee_utils.h> 29 #include <lib/xlat_tables/xlat_tables_v2.h> 30 #include <plat/common/platform.h> 31 #include <tools_share/uuid.h> 32 33 #include "opteed_private.h" 34 #include "teesmc_opteed.h" 35 36 /******************************************************************************* 37 * Address of the entrypoint vector table in OPTEE. It is 38 * initialised once on the primary core after a cold boot. 39 ******************************************************************************/ 40 struct optee_vectors *optee_vector_table; 41 42 /******************************************************************************* 43 * Array to keep track of per-cpu OPTEE state 44 ******************************************************************************/ 45 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; 46 uint32_t opteed_rw; 47 48 #if OPTEE_ALLOW_SMC_LOAD 49 static bool opteed_allow_load; 50 #else 51 static int32_t opteed_init(void); 52 #endif 53 54 uint64_t dual32to64(uint32_t high, uint32_t low) 55 { 56 return ((uint64_t)high << 32) | low; 57 } 58 59 /******************************************************************************* 60 * This function is the handler registered for S-EL1 interrupts by the 61 * OPTEED. It validates the interrupt and upon success arranges entry into 62 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. 63 ******************************************************************************/ 64 static uint64_t opteed_sel1_interrupt_handler(uint32_t id, 65 uint32_t flags, 66 void *handle, 67 void *cookie) 68 { 69 uint32_t linear_id; 70 optee_context_t *optee_ctx; 71 72 /* Check the security state when the exception was generated */ 73 assert(get_interrupt_src_ss(flags) == NON_SECURE); 74 75 /* Sanity check the pointer to this cpu's context */ 76 assert(handle == cm_get_context(NON_SECURE)); 77 78 /* Save the non-secure context before entering the OPTEE */ 79 cm_el1_sysregs_context_save(NON_SECURE); 80 81 /* Get a reference to this cpu's OPTEE context */ 82 linear_id = plat_my_core_pos(); 83 optee_ctx = &opteed_sp_context[linear_id]; 84 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 85 86 cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry); 87 cm_el1_sysregs_context_restore(SECURE); 88 cm_set_next_eret_context(SECURE); 89 90 /* 91 * Tell the OPTEE that it has to handle an FIQ (synchronously). 92 * Also the instruction in normal world where the interrupt was 93 * generated is passed for debugging purposes. It is safe to 94 * retrieve this address from ELR_EL3 as the secure context will 95 * not take effect until el3_exit(). 96 */ 97 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); 98 } 99 100 /******************************************************************************* 101 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type 102 * (aarch32/aarch64) if not already known and initialises the context for entry 103 * into OPTEE for its initialization. 104 ******************************************************************************/ 105 static int32_t opteed_setup(void) 106 { 107 #if OPTEE_ALLOW_SMC_LOAD 108 opteed_allow_load = true; 109 INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n"); 110 return 0; 111 #else 112 entry_point_info_t *optee_ep_info; 113 uint32_t linear_id; 114 uint64_t opteed_pageable_part; 115 uint64_t opteed_mem_limit; 116 uint64_t dt_addr; 117 118 linear_id = plat_my_core_pos(); 119 120 /* 121 * Get information about the Secure Payload (BL32) image. Its 122 * absence is a critical failure. TODO: Add support to 123 * conditionally include the SPD service 124 */ 125 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 126 if (!optee_ep_info) { 127 WARN("No OPTEE provided by BL2 boot loader, Booting device" 128 " without OPTEE initialization. SMC`s destined for OPTEE" 129 " will return SMC_UNK\n"); 130 return 1; 131 } 132 133 /* 134 * If there's no valid entry point for SP, we return a non-zero value 135 * signalling failure initializing the service. We bail out without 136 * registering any handlers 137 */ 138 if (!optee_ep_info->pc) 139 return 1; 140 141 opteed_rw = optee_ep_info->args.arg0; 142 opteed_pageable_part = optee_ep_info->args.arg1; 143 opteed_mem_limit = optee_ep_info->args.arg2; 144 dt_addr = optee_ep_info->args.arg3; 145 146 opteed_init_optee_ep_state(optee_ep_info, 147 opteed_rw, 148 optee_ep_info->pc, 149 opteed_pageable_part, 150 opteed_mem_limit, 151 dt_addr, 152 &opteed_sp_context[linear_id]); 153 154 /* 155 * All OPTEED initialization done. Now register our init function with 156 * BL31 for deferred invocation 157 */ 158 bl31_register_bl32_init(&opteed_init); 159 160 return 0; 161 #endif /* OPTEE_ALLOW_SMC_LOAD */ 162 } 163 164 /******************************************************************************* 165 * This function passes control to the OPTEE image (BL32) for the first time 166 * on the primary cpu after a cold boot. It assumes that a valid secure 167 * context has already been created by opteed_setup() which can be directly 168 * used. It also assumes that a valid non-secure context has been 169 * initialised by PSCI so it does not need to save and restore any 170 * non-secure state. This function performs a synchronous entry into 171 * OPTEE. OPTEE passes control back to this routine through a SMC. 172 ******************************************************************************/ 173 static int32_t 174 opteed_init_with_entry_point(entry_point_info_t *optee_entry_point) 175 { 176 uint32_t linear_id = plat_my_core_pos(); 177 optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 178 uint64_t rc; 179 assert(optee_entry_point); 180 181 cm_init_my_context(optee_entry_point); 182 183 /* 184 * Arrange for an entry into OPTEE. It will be returned via 185 * OPTEE_ENTRY_DONE case 186 */ 187 rc = opteed_synchronous_sp_entry(optee_ctx); 188 assert(rc != 0); 189 190 return rc; 191 } 192 193 #if !OPTEE_ALLOW_SMC_LOAD 194 static int32_t opteed_init(void) 195 { 196 entry_point_info_t *optee_entry_point; 197 /* 198 * Get information about the OP-TEE (BL32) image. Its 199 * absence is a critical failure. 200 */ 201 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); 202 return opteed_init_with_entry_point(optee_entry_point); 203 } 204 #endif /* !OPTEE_ALLOW_SMC_LOAD */ 205 206 #if OPTEE_ALLOW_SMC_LOAD 207 /******************************************************************************* 208 * This function is responsible for handling the SMC that loads the OP-TEE 209 * binary image via a non-secure SMC call. It takes the size and physical 210 * address of the payload as parameters. 211 ******************************************************************************/ 212 static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa) 213 { 214 uintptr_t data_va = data_pa; 215 uint64_t mapped_data_pa; 216 uintptr_t mapped_data_va; 217 uint64_t data_map_size; 218 int32_t rc; 219 optee_header_t *image_header; 220 uint8_t *image_ptr; 221 uint64_t target_pa; 222 uint64_t target_end_pa; 223 uint64_t image_pa; 224 uintptr_t image_va; 225 optee_image_t *curr_image; 226 uintptr_t target_va; 227 uint64_t target_size; 228 entry_point_info_t optee_ep_info; 229 uint32_t linear_id = plat_my_core_pos(); 230 231 mapped_data_pa = page_align(data_pa, DOWN); 232 mapped_data_va = mapped_data_pa; 233 data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP); 234 235 rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va, 236 data_map_size, MT_MEMORY | MT_RO | MT_NS); 237 if (rc != 0) { 238 return rc; 239 } 240 241 image_header = (optee_header_t *)data_va; 242 if (image_header->magic != TEE_MAGIC_NUM_OPTEE || 243 image_header->version != 2 || image_header->nb_images != 1) { 244 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 245 return -EINVAL; 246 } 247 248 image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) + 249 sizeof(optee_image_t); 250 if (image_header->arch == 1) { 251 opteed_rw = OPTEE_AARCH64; 252 } else { 253 opteed_rw = OPTEE_AARCH32; 254 } 255 256 curr_image = &image_header->optee_image_list[0]; 257 image_pa = dual32to64(curr_image->load_addr_hi, 258 curr_image->load_addr_lo); 259 image_va = image_pa; 260 target_end_pa = image_pa + curr_image->size; 261 262 /* Now also map the memory we want to copy it to. */ 263 target_pa = page_align(image_pa, DOWN); 264 target_va = target_pa; 265 target_size = page_align(target_end_pa, UP) - target_pa; 266 267 rc = mmap_add_dynamic_region(target_pa, target_va, target_size, 268 MT_MEMORY | MT_RW | MT_SECURE); 269 if (rc != 0) { 270 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 271 return rc; 272 } 273 274 INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n", 275 curr_image->size, image_va); 276 277 memcpy((void *)image_va, image_ptr, curr_image->size); 278 flush_dcache_range(target_pa, target_size); 279 280 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 281 mmap_remove_dynamic_region(target_va, target_size); 282 283 /* Save the non-secure state */ 284 cm_el1_sysregs_context_save(NON_SECURE); 285 286 opteed_init_optee_ep_state(&optee_ep_info, 287 opteed_rw, 288 image_pa, 289 0, 290 0, 291 0, 292 &opteed_sp_context[linear_id]); 293 rc = opteed_init_with_entry_point(&optee_ep_info); 294 295 /* Restore non-secure state */ 296 cm_el1_sysregs_context_restore(NON_SECURE); 297 cm_set_next_eret_context(NON_SECURE); 298 299 return rc; 300 } 301 #endif /* OPTEE_ALLOW_SMC_LOAD */ 302 303 /******************************************************************************* 304 * This function is responsible for handling all SMCs in the Trusted OS/App 305 * range from the non-secure state as defined in the SMC Calling Convention 306 * Document. It is also responsible for communicating with the Secure 307 * payload to delegate work and return results back to the non-secure 308 * state. Lastly it will also return any information that OPTEE needs to do 309 * the work assigned to it. 310 ******************************************************************************/ 311 static uintptr_t opteed_smc_handler(uint32_t smc_fid, 312 u_register_t x1, 313 u_register_t x2, 314 u_register_t x3, 315 u_register_t x4, 316 void *cookie, 317 void *handle, 318 u_register_t flags) 319 { 320 cpu_context_t *ns_cpu_context; 321 uint32_t linear_id = plat_my_core_pos(); 322 optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 323 uint64_t rc; 324 325 /* 326 * Determine which security state this SMC originated from 327 */ 328 329 if (is_caller_non_secure(flags)) { 330 #if OPTEE_ALLOW_SMC_LOAD 331 if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) { 332 /* 333 * TODO: Consider wiping the code for SMC loading from 334 * memory after it has been invoked similar to what is 335 * done under RECLAIM_INIT, but extended to happen 336 * later. 337 */ 338 if (!opteed_allow_load) { 339 SMC_RET1(handle, -EPERM); 340 } 341 342 opteed_allow_load = false; 343 uint64_t data_size = dual32to64(x1, x2); 344 uint64_t data_pa = dual32to64(x3, x4); 345 if (!data_size || !data_pa) { 346 /* 347 * This is invoked when the OP-TEE image didn't 348 * load correctly in the kernel but we want to 349 * block off loading of it later for security 350 * reasons. 351 */ 352 SMC_RET1(handle, -EINVAL); 353 } 354 SMC_RET1(handle, opteed_handle_smc_load( 355 data_size, data_pa)); 356 } 357 #endif /* OPTEE_ALLOW_SMC_LOAD */ 358 /* 359 * This is a fresh request from the non-secure client. 360 * The parameters are in x1 and x2. Figure out which 361 * registers need to be preserved, save the non-secure 362 * state and send the request to the secure payload. 363 */ 364 assert(handle == cm_get_context(NON_SECURE)); 365 366 cm_el1_sysregs_context_save(NON_SECURE); 367 368 /* 369 * We are done stashing the non-secure context. Ask the 370 * OP-TEE to do the work now. If we are loading vi an SMC, 371 * then we also need to init this CPU context if not done 372 * already. 373 */ 374 if (optee_vector_table == NULL) { 375 SMC_RET1(handle, -EINVAL); 376 } 377 378 if (get_optee_pstate(optee_ctx->state) == 379 OPTEE_PSTATE_UNKNOWN) { 380 opteed_cpu_on_finish_handler(0); 381 } 382 383 /* 384 * Verify if there is a valid context to use, copy the 385 * operation type and parameters to the secure context 386 * and jump to the fast smc entry point in the secure 387 * payload. Entry into S-EL1 will take place upon exit 388 * from this function. 389 */ 390 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 391 392 /* Set appropriate entry for SMC. 393 * We expect OPTEE to manage the PSTATE.I and PSTATE.F 394 * flags as appropriate. 395 */ 396 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { 397 cm_set_elr_el3(SECURE, (uint64_t) 398 &optee_vector_table->fast_smc_entry); 399 } else { 400 cm_set_elr_el3(SECURE, (uint64_t) 401 &optee_vector_table->yield_smc_entry); 402 } 403 404 cm_el1_sysregs_context_restore(SECURE); 405 cm_set_next_eret_context(SECURE); 406 407 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 408 CTX_GPREG_X4, 409 read_ctx_reg(get_gpregs_ctx(handle), 410 CTX_GPREG_X4)); 411 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 412 CTX_GPREG_X5, 413 read_ctx_reg(get_gpregs_ctx(handle), 414 CTX_GPREG_X5)); 415 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 416 CTX_GPREG_X6, 417 read_ctx_reg(get_gpregs_ctx(handle), 418 CTX_GPREG_X6)); 419 /* Propagate hypervisor client ID */ 420 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 421 CTX_GPREG_X7, 422 read_ctx_reg(get_gpregs_ctx(handle), 423 CTX_GPREG_X7)); 424 425 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); 426 } 427 428 /* 429 * Returning from OPTEE 430 */ 431 432 switch (smc_fid) { 433 /* 434 * OPTEE has finished initialising itself after a cold boot 435 */ 436 case TEESMC_OPTEED_RETURN_ENTRY_DONE: 437 /* 438 * Stash the OPTEE entry points information. This is done 439 * only once on the primary cpu 440 */ 441 assert(optee_vector_table == NULL); 442 optee_vector_table = (optee_vectors_t *) x1; 443 444 if (optee_vector_table) { 445 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); 446 447 /* 448 * OPTEE has been successfully initialized. 449 * Register power management hooks with PSCI 450 */ 451 psci_register_spd_pm_hook(&opteed_pm); 452 453 /* 454 * Register an interrupt handler for S-EL1 interrupts 455 * when generated during code executing in the 456 * non-secure state. 457 */ 458 flags = 0; 459 set_interrupt_rm_flag(flags, NON_SECURE); 460 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, 461 opteed_sel1_interrupt_handler, 462 flags); 463 if (rc) 464 panic(); 465 } 466 467 /* 468 * OPTEE reports completion. The OPTEED must have initiated 469 * the original request through a synchronous entry into 470 * OPTEE. Jump back to the original C runtime context. 471 */ 472 opteed_synchronous_sp_exit(optee_ctx, x1); 473 break; 474 475 476 /* 477 * These function IDs is used only by OP-TEE to indicate it has 478 * finished: 479 * 1. turning itself on in response to an earlier psci 480 * cpu_on request 481 * 2. resuming itself after an earlier psci cpu_suspend 482 * request. 483 */ 484 case TEESMC_OPTEED_RETURN_ON_DONE: 485 case TEESMC_OPTEED_RETURN_RESUME_DONE: 486 487 488 /* 489 * These function IDs is used only by the SP to indicate it has 490 * finished: 491 * 1. suspending itself after an earlier psci cpu_suspend 492 * request. 493 * 2. turning itself off in response to an earlier psci 494 * cpu_off request. 495 */ 496 case TEESMC_OPTEED_RETURN_OFF_DONE: 497 case TEESMC_OPTEED_RETURN_SUSPEND_DONE: 498 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: 499 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: 500 501 /* 502 * OPTEE reports completion. The OPTEED must have initiated the 503 * original request through a synchronous entry into OPTEE. 504 * Jump back to the original C runtime context, and pass x1 as 505 * return value to the caller 506 */ 507 opteed_synchronous_sp_exit(optee_ctx, x1); 508 break; 509 510 /* 511 * OPTEE is returning from a call or being preempted from a call, in 512 * either case execution should resume in the normal world. 513 */ 514 case TEESMC_OPTEED_RETURN_CALL_DONE: 515 /* 516 * This is the result from the secure client of an 517 * earlier request. The results are in x0-x3. Copy it 518 * into the non-secure context, save the secure state 519 * and return to the non-secure state. 520 */ 521 assert(handle == cm_get_context(SECURE)); 522 cm_el1_sysregs_context_save(SECURE); 523 524 /* Get a reference to the non-secure context */ 525 ns_cpu_context = cm_get_context(NON_SECURE); 526 assert(ns_cpu_context); 527 528 /* Restore non-secure state */ 529 cm_el1_sysregs_context_restore(NON_SECURE); 530 cm_set_next_eret_context(NON_SECURE); 531 532 SMC_RET4(ns_cpu_context, x1, x2, x3, x4); 533 534 /* 535 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution 536 * should resume in the normal world. 537 */ 538 case TEESMC_OPTEED_RETURN_FIQ_DONE: 539 /* Get a reference to the non-secure context */ 540 ns_cpu_context = cm_get_context(NON_SECURE); 541 assert(ns_cpu_context); 542 543 /* 544 * Restore non-secure state. There is no need to save the 545 * secure system register context since OPTEE was supposed 546 * to preserve it during S-EL1 interrupt handling. 547 */ 548 cm_el1_sysregs_context_restore(NON_SECURE); 549 cm_set_next_eret_context(NON_SECURE); 550 551 SMC_RET0((uint64_t) ns_cpu_context); 552 553 default: 554 panic(); 555 } 556 } 557 558 /* Define an OPTEED runtime service descriptor for fast SMC calls */ 559 DECLARE_RT_SVC( 560 opteed_fast, 561 562 OEN_TOS_START, 563 OEN_TOS_END, 564 SMC_TYPE_FAST, 565 opteed_setup, 566 opteed_smc_handler 567 ); 568 569 /* Define an OPTEED runtime service descriptor for yielding SMC calls */ 570 DECLARE_RT_SVC( 571 opteed_std, 572 573 OEN_TOS_START, 574 OEN_TOS_END, 575 SMC_TYPE_YIELD, 576 NULL, 577 opteed_smc_handler 578 ); 579