xref: /rk3399_ARM-atf/services/spd/opteed/opteed_main.c (revision 93d1f4bc749e157cdfbe060b7e10351f460dedef)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <inttypes.h>
20 #include <stddef.h>
21 
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <common/bl_common.h>
25 #include <common/debug.h>
26 #include <common/runtime_svc.h>
27 #include <lib/coreboot.h>
28 #include <lib/el3_runtime/context_mgmt.h>
29 #include <lib/optee_utils.h>
30 #include <lib/transfer_list.h>
31 #include <lib/xlat_tables/xlat_tables_v2.h>
32 #if OPTEE_ALLOW_SMC_LOAD
33 #include <libfdt.h>
34 #endif  /* OPTEE_ALLOW_SMC_LOAD */
35 #include <plat/common/platform.h>
36 #include <tools_share/uuid.h>
37 
38 #include "opteed_private.h"
39 #include "teesmc_opteed.h"
40 
41 #if OPTEE_ALLOW_SMC_LOAD
42 static struct transfer_list_header *bl31_tl;
43 #endif
44 
45 /*******************************************************************************
46  * Address of the entrypoint vector table in OPTEE. It is
47  * initialised once on the primary core after a cold boot.
48  ******************************************************************************/
49 struct optee_vectors *optee_vector_table;
50 
51 /*******************************************************************************
52  * Array to keep track of per-cpu OPTEE state
53  ******************************************************************************/
54 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
55 uint32_t opteed_rw;
56 
57 #if OPTEE_ALLOW_SMC_LOAD
58 static bool opteed_allow_load;
59 /* OP-TEE image loading service UUID */
60 DEFINE_SVC_UUID2(optee_image_load_uuid,
61 	0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06,
62 	0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0);
63 
64 #define OPTEED_FDT_SIZE 256
65 static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE);
66 
67 #else
68 static int32_t opteed_init(void);
69 #endif
70 
71 uint64_t dual32to64(uint32_t high, uint32_t low)
72 {
73 	return ((uint64_t)high << 32) | low;
74 }
75 
76 /*******************************************************************************
77  * This function is the handler registered for S-EL1 interrupts by the
78  * OPTEED. It validates the interrupt and upon success arranges entry into
79  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
80  ******************************************************************************/
81 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
82 					    uint32_t flags,
83 					    void *handle,
84 					    void *cookie)
85 {
86 	uint32_t linear_id;
87 	optee_context_t *optee_ctx;
88 
89 	/* Check the security state when the exception was generated */
90 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
91 
92 	/* Sanity check the pointer to this cpu's context */
93 	assert(handle == cm_get_context(NON_SECURE));
94 
95 	/* Save the non-secure context before entering the OPTEE */
96 	cm_el1_sysregs_context_save(NON_SECURE);
97 
98 	/* Get a reference to this cpu's OPTEE context */
99 	linear_id = plat_my_core_pos();
100 	optee_ctx = &opteed_sp_context[linear_id];
101 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
102 
103 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry);
104 	cm_el1_sysregs_context_restore(SECURE);
105 	cm_set_next_eret_context(SECURE);
106 
107 	/*
108 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
109 	 * Also the instruction in normal world where the interrupt was
110 	 * generated is passed for debugging purposes. It is safe to
111 	 * retrieve this address from ELR_EL3 as the secure context will
112 	 * not take effect until el3_exit().
113 	 */
114 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
115 }
116 
117 /*******************************************************************************
118  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
119  * (aarch32/aarch64) if not already known and initialises the context for entry
120  * into OPTEE for its initialization.
121  ******************************************************************************/
122 static int32_t opteed_setup(void)
123 {
124 #if OPTEE_ALLOW_SMC_LOAD
125 	opteed_allow_load = true;
126 	INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n");
127 	return 0;
128 #else
129 	entry_point_info_t *optee_ep_info;
130 	uint32_t linear_id;
131 	uint64_t arg0;
132 	uint64_t arg1;
133 	uint64_t arg2;
134 	uint64_t arg3;
135 	struct transfer_list_header *tl = NULL;
136 	struct transfer_list_entry *te = NULL;
137 	void *dt = NULL;
138 
139 	linear_id = plat_my_core_pos();
140 
141 	/*
142 	 * Get information about the Secure Payload (BL32) image. Its
143 	 * absence is a critical failure.  TODO: Add support to
144 	 * conditionally include the SPD service
145 	 */
146 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
147 	if (!optee_ep_info) {
148 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
149 			" without OPTEE initialization. SMC`s destined for OPTEE"
150 			" will return SMC_UNK\n");
151 		return 1;
152 	}
153 
154 	/*
155 	 * If there's no valid entry point for SP, we return a non-zero value
156 	 * signalling failure initializing the service. We bail out without
157 	 * registering any handlers
158 	 */
159 	if (!optee_ep_info->pc)
160 		return 1;
161 
162 	if (TRANSFER_LIST &&
163 		optee_ep_info->args.arg1 == (TRANSFER_LIST_SIGNATURE |
164 					REGISTER_CONVENTION_VERSION_MASK)) {
165 		tl = (void *)optee_ep_info->args.arg3;
166 		if (transfer_list_check_header(tl) == TL_OPS_NON) {
167 			return 1;
168 		}
169 
170 		opteed_rw = GET_RW(optee_ep_info->spsr);
171 		te = transfer_list_find(tl, TL_TAG_FDT);
172 		dt = transfer_list_entry_data(te);
173 
174 		if (opteed_rw == OPTEE_AARCH64) {
175 			arg0 = (uint64_t)dt;
176 			arg2 = 0;
177 		} else {
178 			arg2 = (uint64_t)dt;
179 			arg0 = 0;
180 		}
181 
182 		arg1 = optee_ep_info->args.arg1;
183 		arg3 = optee_ep_info->args.arg3;
184 	} else {
185 		/* Default handoff arguments */
186 		opteed_rw = optee_ep_info->args.arg0;
187 		arg0 = optee_ep_info->args.arg1; /* opteed_pageable_part */
188 		arg1 = optee_ep_info->args.arg2; /* opteed_mem_limit */
189 		arg2 = optee_ep_info->args.arg3; /* dt_addr */
190 		arg3 = 0;
191 	}
192 
193 	opteed_init_optee_ep_state(optee_ep_info, opteed_rw, optee_ep_info->pc,
194 				arg0, arg1, arg2, arg3,
195 				&opteed_sp_context[linear_id]);
196 
197 	/*
198 	 * All OPTEED initialization done. Now register our init function with
199 	 * BL31 for deferred invocation
200 	 */
201 	bl31_register_bl32_init(&opteed_init);
202 
203 	return 0;
204 #endif  /* OPTEE_ALLOW_SMC_LOAD */
205 }
206 
207 /*******************************************************************************
208  * This function passes control to the OPTEE image (BL32) for the first time
209  * on the primary cpu after a cold boot. It assumes that a valid secure
210  * context has already been created by opteed_setup() which can be directly
211  * used.  It also assumes that a valid non-secure context has been
212  * initialised by PSCI so it does not need to save and restore any
213  * non-secure state. This function performs a synchronous entry into
214  * OPTEE. OPTEE passes control back to this routine through a SMC. This returns
215  * a non-zero value on success and zero on failure.
216  ******************************************************************************/
217 static int32_t
218 opteed_init_with_entry_point(entry_point_info_t *optee_entry_point)
219 {
220 	uint32_t linear_id = plat_my_core_pos();
221 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
222 	uint64_t rc;
223 	assert(optee_entry_point);
224 
225 	cm_init_my_context(optee_entry_point);
226 
227 	/*
228 	 * Arrange for an entry into OPTEE. It will be returned via
229 	 * OPTEE_ENTRY_DONE case
230 	 */
231 	rc = opteed_synchronous_sp_entry(optee_ctx);
232 	assert(rc != 0);
233 
234 	return rc;
235 }
236 
237 #if !OPTEE_ALLOW_SMC_LOAD
238 static int32_t opteed_init(void)
239 {
240 	entry_point_info_t *optee_entry_point;
241 	/*
242 	 * Get information about the OP-TEE (BL32) image. Its
243 	 * absence is a critical failure.
244 	 */
245 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
246 	return opteed_init_with_entry_point(optee_entry_point);
247 }
248 #endif  /* !OPTEE_ALLOW_SMC_LOAD */
249 
250 #if OPTEE_ALLOW_SMC_LOAD
251 #if COREBOOT
252 /*
253  * Adds a firmware/coreboot node with the coreboot table information to a device
254  * tree. Returns zero on success or if there is no coreboot table information;
255  * failure code otherwise.
256  */
257 static int add_coreboot_node(void *fdt)
258 {
259 	int ret;
260 	uint64_t coreboot_table_addr;
261 	uint32_t coreboot_table_size;
262 	struct {
263 		uint64_t addr;
264 		uint32_t size;
265 	} reg_node;
266 	coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size);
267 	if (!coreboot_table_addr || !coreboot_table_size) {
268 		WARN("Unable to get coreboot table location for device tree");
269 		return 0;
270 	}
271 	ret = fdt_begin_node(fdt, "firmware");
272 	if (ret)
273 		return ret;
274 
275 	ret = fdt_property(fdt, "ranges", NULL, 0);
276 	if (ret)
277 		return ret;
278 
279 	ret = fdt_begin_node(fdt, "coreboot");
280 	if (ret)
281 		return ret;
282 
283 	ret = fdt_property_string(fdt, "compatible", "coreboot");
284 	if (ret)
285 		return ret;
286 
287 	reg_node.addr = cpu_to_fdt64(coreboot_table_addr);
288 	reg_node.size = cpu_to_fdt32(coreboot_table_size);
289 	ret = fdt_property(fdt, "reg", &reg_node,
290 				sizeof(uint64_t) + sizeof(uint32_t));
291 	if (ret)
292 		return ret;
293 
294 	ret = fdt_end_node(fdt);
295 	if (ret)
296 		return ret;
297 
298 	return fdt_end_node(fdt);
299 }
300 #endif /* COREBOOT */
301 
302 /*
303  * Creates a device tree for passing into OP-TEE. Currently is populated with
304  * the coreboot table address.
305  * Returns 0 on success, error code otherwise.
306  */
307 static int create_opteed_dt(void)
308 {
309 	int ret;
310 
311 	ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE);
312 	if (ret)
313 		return ret;
314 
315 	ret = fdt_finish_reservemap(fdt_buf);
316 	if (ret)
317 		return ret;
318 
319 	ret = fdt_begin_node(fdt_buf, "");
320 	if (ret)
321 		return ret;
322 
323 #if COREBOOT
324 	ret = add_coreboot_node(fdt_buf);
325 	if (ret)
326 		return ret;
327 #endif /* COREBOOT */
328 
329 	ret = fdt_end_node(fdt_buf);
330 	if (ret)
331 		return ret;
332 
333 	return fdt_finish(fdt_buf);
334 }
335 
336 static int32_t create_smc_tl(const void *fdt, uint32_t fdt_sz)
337 {
338 #if TRANSFER_LIST
339 	bl31_tl = transfer_list_init((void *)(uintptr_t)FW_HANDOFF_BASE,
340 				FW_HANDOFF_SIZE);
341 	if (!bl31_tl) {
342 		ERROR("Failed to initialize Transfer List at 0x%lx\n",
343 		(unsigned long)FW_HANDOFF_BASE);
344 		return -1;
345 	}
346 
347 	if (!transfer_list_add(bl31_tl, TL_TAG_FDT, fdt_sz, fdt)) {
348 		return -1;
349 	}
350 	return 0;
351 #else
352 	return -1;
353 #endif
354 }
355 
356 /*******************************************************************************
357  * This function is responsible for handling the SMC that loads the OP-TEE
358  * binary image via a non-secure SMC call. It takes the size and physical
359  * address of the payload as parameters.
360  ******************************************************************************/
361 static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa)
362 {
363 	uintptr_t data_va = data_pa;
364 	uint64_t mapped_data_pa;
365 	uintptr_t mapped_data_va;
366 	uint64_t data_map_size;
367 	int32_t rc;
368 	optee_header_t *image_header;
369 	uint8_t *image_ptr;
370 	uint64_t target_pa;
371 	uint64_t target_end_pa;
372 	uint64_t image_pa;
373 	uintptr_t image_va;
374 	optee_image_t *curr_image;
375 	uintptr_t target_va;
376 	uint64_t target_size;
377 	entry_point_info_t optee_ep_info;
378 	uint32_t linear_id = plat_my_core_pos();
379 	uint64_t dt_addr = 0;
380 	uint64_t arg0 = 0;
381 	uint64_t arg1 = 0;
382 	uint64_t arg2 = 0;
383 	uint64_t arg3 = 0;
384 
385 	mapped_data_pa = page_align(data_pa, DOWN);
386 	mapped_data_va = mapped_data_pa;
387 	data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP);
388 
389 	/*
390 	 * We do not validate the passed in address because we are trusting the
391 	 * non-secure world at this point still.
392 	 */
393 	rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va,
394 				     data_map_size, MT_MEMORY | MT_RO | MT_NS);
395 	if (rc != 0) {
396 		return rc;
397 	}
398 
399 	image_header = (optee_header_t *)data_va;
400 	if (image_header->magic != TEE_MAGIC_NUM_OPTEE ||
401 	    image_header->version != 2 || image_header->nb_images != 1) {
402 		mmap_remove_dynamic_region(mapped_data_va, data_map_size);
403 		return -EINVAL;
404 	}
405 
406 	image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) +
407 			sizeof(optee_image_t);
408 	if (image_header->arch == 1) {
409 		opteed_rw = OPTEE_AARCH64;
410 	} else {
411 		opteed_rw = OPTEE_AARCH32;
412 	}
413 
414 	curr_image = &image_header->optee_image_list[0];
415 	image_pa = dual32to64(curr_image->load_addr_hi,
416 			      curr_image->load_addr_lo);
417 	image_va = image_pa;
418 	target_end_pa = image_pa + curr_image->size;
419 
420 	/* Now also map the memory we want to copy it to. */
421 	target_pa = page_align(image_pa, DOWN);
422 	target_va = target_pa;
423 	target_size = page_align(target_end_pa, UP) - target_pa;
424 
425 	rc = mmap_add_dynamic_region(target_pa, target_va, target_size,
426 				     MT_MEMORY | MT_RW | MT_SECURE);
427 	if (rc != 0) {
428 		mmap_remove_dynamic_region(mapped_data_va, data_map_size);
429 		return rc;
430 	}
431 
432 	INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n",
433 	     curr_image->size, image_va);
434 
435 	memcpy((void *)image_va, image_ptr, curr_image->size);
436 	flush_dcache_range(target_pa, target_size);
437 
438 	mmap_remove_dynamic_region(mapped_data_va, data_map_size);
439 	mmap_remove_dynamic_region(target_va, target_size);
440 
441 	/* Save the non-secure state */
442 	cm_el1_sysregs_context_save(NON_SECURE);
443 
444 	rc = create_opteed_dt();
445 	if (rc) {
446 		ERROR("Failed device tree creation %d\n", rc);
447 		return rc;
448 	}
449 	dt_addr = (uint64_t)fdt_buf;
450 	flush_dcache_range(dt_addr, OPTEED_FDT_SIZE);
451 
452 	if (TRANSFER_LIST &&
453 	    !create_smc_tl((void *)dt_addr, OPTEED_FDT_SIZE)) {
454 		struct transfer_list_entry *te = NULL;
455 		void *dt = NULL;
456 
457 		te = transfer_list_find(bl31_tl, TL_TAG_FDT);
458 		dt = transfer_list_entry_data(te);
459 
460 		if (opteed_rw == OPTEE_AARCH64) {
461 			arg0 = (uint64_t)dt;
462 			arg2 = 0;
463 		} else {
464 			arg2 = (uint64_t)dt;
465 			arg0 = 0;
466 		}
467 		arg1 = TRANSFER_LIST_SIGNATURE |
468 			REGISTER_CONVENTION_VERSION_MASK;
469 		arg3 = (uint64_t)bl31_tl;
470 	} else {
471 		/* Default handoff arguments */
472 		arg2 = dt_addr;
473 	}
474 
475 	opteed_init_optee_ep_state(&optee_ep_info,
476 				   opteed_rw,
477 				   image_pa,
478 				   arg0,
479 				   arg1,
480 				   arg2,
481 				   arg3,
482 				   &opteed_sp_context[linear_id]);
483 	if (opteed_init_with_entry_point(&optee_ep_info) == 0) {
484 		rc = -EFAULT;
485 	}
486 
487 	/* Restore non-secure state */
488 	cm_el1_sysregs_context_restore(NON_SECURE);
489 	cm_set_next_eret_context(NON_SECURE);
490 
491 	return rc;
492 }
493 #endif  /* OPTEE_ALLOW_SMC_LOAD */
494 
495 /*******************************************************************************
496  * This function is responsible for handling all SMCs in the Trusted OS/App
497  * range from the non-secure state as defined in the SMC Calling Convention
498  * Document. It is also responsible for communicating with the Secure
499  * payload to delegate work and return results back to the non-secure
500  * state. Lastly it will also return any information that OPTEE needs to do
501  * the work assigned to it.
502  ******************************************************************************/
503 static uintptr_t opteed_smc_handler(uint32_t smc_fid,
504 			 u_register_t x1,
505 			 u_register_t x2,
506 			 u_register_t x3,
507 			 u_register_t x4,
508 			 void *cookie,
509 			 void *handle,
510 			 u_register_t flags)
511 {
512 	cpu_context_t *ns_cpu_context;
513 	uint32_t linear_id = plat_my_core_pos();
514 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
515 	uint64_t rc;
516 
517 	/*
518 	 * Determine which security state this SMC originated from
519 	 */
520 
521 	if (is_caller_non_secure(flags)) {
522 #if OPTEE_ALLOW_SMC_LOAD
523 		if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) {
524 			/* Provide the UUID of the image loading service. */
525 			SMC_UUID_RET(handle, optee_image_load_uuid);
526 		}
527 		if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) {
528 			/*
529 			 * TODO: Consider wiping the code for SMC loading from
530 			 * memory after it has been invoked similar to what is
531 			 * done under RECLAIM_INIT, but extended to happen
532 			 * later.
533 			 */
534 			if (!opteed_allow_load) {
535 				SMC_RET1(handle, -EPERM);
536 			}
537 
538 			opteed_allow_load = false;
539 			uint64_t data_size = dual32to64(x1, x2);
540 			uint64_t data_pa = dual32to64(x3, x4);
541 			if (!data_size || !data_pa) {
542 				/*
543 				 * This is invoked when the OP-TEE image didn't
544 				 * load correctly in the kernel but we want to
545 				 * block off loading of it later for security
546 				 * reasons.
547 				 */
548 				SMC_RET1(handle, -EINVAL);
549 			}
550 			SMC_RET1(handle, opteed_handle_smc_load(
551 					data_size, data_pa));
552 		}
553 #endif  /* OPTEE_ALLOW_SMC_LOAD */
554 		/*
555 		 * This is a fresh request from the non-secure client.
556 		 * The parameters are in x1 and x2. Figure out which
557 		 * registers need to be preserved, save the non-secure
558 		 * state and send the request to the secure payload.
559 		 */
560 		assert(handle == cm_get_context(NON_SECURE));
561 
562 		cm_el1_sysregs_context_save(NON_SECURE);
563 
564 		/*
565 		 * We are done stashing the non-secure context. Ask the
566 		 * OP-TEE to do the work now. If we are loading vi an SMC,
567 		 * then we also need to init this CPU context if not done
568 		 * already.
569 		 */
570 		if (optee_vector_table == NULL) {
571 			SMC_RET1(handle, -EINVAL);
572 		}
573 
574 		if (get_optee_pstate(optee_ctx->state) ==
575 		    OPTEE_PSTATE_UNKNOWN) {
576 			opteed_cpu_on_finish_handler(0);
577 		}
578 
579 		/*
580 		 * Verify if there is a valid context to use, copy the
581 		 * operation type and parameters to the secure context
582 		 * and jump to the fast smc entry point in the secure
583 		 * payload. Entry into S-EL1 will take place upon exit
584 		 * from this function.
585 		 */
586 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
587 
588 		/* Set appropriate entry for SMC.
589 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
590 		 * flags as appropriate.
591 		 */
592 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
593 			cm_set_elr_el3(SECURE, (uint64_t)
594 					&optee_vector_table->fast_smc_entry);
595 		} else {
596 			cm_set_elr_el3(SECURE, (uint64_t)
597 					&optee_vector_table->yield_smc_entry);
598 		}
599 
600 		cm_el1_sysregs_context_restore(SECURE);
601 		cm_set_next_eret_context(SECURE);
602 
603 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
604 			      CTX_GPREG_X4,
605 			      read_ctx_reg(get_gpregs_ctx(handle),
606 					   CTX_GPREG_X4));
607 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
608 			      CTX_GPREG_X5,
609 			      read_ctx_reg(get_gpregs_ctx(handle),
610 					   CTX_GPREG_X5));
611 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
612 			      CTX_GPREG_X6,
613 			      read_ctx_reg(get_gpregs_ctx(handle),
614 					   CTX_GPREG_X6));
615 		/* Propagate hypervisor client ID */
616 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
617 			      CTX_GPREG_X7,
618 			      read_ctx_reg(get_gpregs_ctx(handle),
619 					   CTX_GPREG_X7));
620 
621 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
622 	}
623 
624 	/*
625 	 * Returning from OPTEE
626 	 */
627 
628 	switch (smc_fid) {
629 	/*
630 	 * OPTEE has finished initialising itself after a cold boot
631 	 */
632 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
633 		/*
634 		 * Stash the OPTEE entry points information. This is done
635 		 * only once on the primary cpu
636 		 */
637 		assert(optee_vector_table == NULL);
638 		optee_vector_table = (optee_vectors_t *) x1;
639 
640 		if (optee_vector_table) {
641 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
642 
643 			/*
644 			 * OPTEE has been successfully initialized.
645 			 * Register power management hooks with PSCI
646 			 */
647 			psci_register_spd_pm_hook(&opteed_pm);
648 
649 			/*
650 			 * Register an interrupt handler for S-EL1 interrupts
651 			 * when generated during code executing in the
652 			 * non-secure state.
653 			 */
654 			flags = 0;
655 			set_interrupt_rm_flag(flags, NON_SECURE);
656 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
657 						opteed_sel1_interrupt_handler,
658 						flags);
659 			if (rc)
660 				panic();
661 		}
662 
663 		/*
664 		 * OPTEE reports completion. The OPTEED must have initiated
665 		 * the original request through a synchronous entry into
666 		 * OPTEE. Jump back to the original C runtime context.
667 		 */
668 		opteed_synchronous_sp_exit(optee_ctx, x1);
669 		break;
670 
671 
672 	/*
673 	 * These function IDs is used only by OP-TEE to indicate it has
674 	 * finished:
675 	 * 1. turning itself on in response to an earlier psci
676 	 *    cpu_on request
677 	 * 2. resuming itself after an earlier psci cpu_suspend
678 	 *    request.
679 	 */
680 	case TEESMC_OPTEED_RETURN_ON_DONE:
681 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
682 
683 
684 	/*
685 	 * These function IDs is used only by the SP to indicate it has
686 	 * finished:
687 	 * 1. suspending itself after an earlier psci cpu_suspend
688 	 *    request.
689 	 * 2. turning itself off in response to an earlier psci
690 	 *    cpu_off request.
691 	 */
692 	case TEESMC_OPTEED_RETURN_OFF_DONE:
693 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
694 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
695 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
696 
697 		/*
698 		 * OPTEE reports completion. The OPTEED must have initiated the
699 		 * original request through a synchronous entry into OPTEE.
700 		 * Jump back to the original C runtime context, and pass x1 as
701 		 * return value to the caller
702 		 */
703 		opteed_synchronous_sp_exit(optee_ctx, x1);
704 		break;
705 
706 	/*
707 	 * OPTEE is returning from a call or being preempted from a call, in
708 	 * either case execution should resume in the normal world.
709 	 */
710 	case TEESMC_OPTEED_RETURN_CALL_DONE:
711 		/*
712 		 * This is the result from the secure client of an
713 		 * earlier request. The results are in x0-x3. Copy it
714 		 * into the non-secure context, save the secure state
715 		 * and return to the non-secure state.
716 		 */
717 		assert(handle == cm_get_context(SECURE));
718 		cm_el1_sysregs_context_save(SECURE);
719 
720 		/* Get a reference to the non-secure context */
721 		ns_cpu_context = cm_get_context(NON_SECURE);
722 		assert(ns_cpu_context);
723 
724 		/* Restore non-secure state */
725 		cm_el1_sysregs_context_restore(NON_SECURE);
726 		cm_set_next_eret_context(NON_SECURE);
727 
728 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
729 
730 	/*
731 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
732 	 * should resume in the normal world.
733 	 */
734 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
735 		/* Get a reference to the non-secure context */
736 		ns_cpu_context = cm_get_context(NON_SECURE);
737 		assert(ns_cpu_context);
738 
739 		/*
740 		 * Restore non-secure state. There is no need to save the
741 		 * secure system register context since OPTEE was supposed
742 		 * to preserve it during S-EL1 interrupt handling.
743 		 */
744 		cm_el1_sysregs_context_restore(NON_SECURE);
745 		cm_set_next_eret_context(NON_SECURE);
746 
747 		SMC_RET0((uint64_t) ns_cpu_context);
748 
749 	default:
750 		panic();
751 	}
752 }
753 
754 /* Define an OPTEED runtime service descriptor for fast SMC calls */
755 DECLARE_RT_SVC(
756 	opteed_fast,
757 
758 	OEN_TOS_START,
759 	OEN_TOS_END,
760 	SMC_TYPE_FAST,
761 	opteed_setup,
762 	opteed_smc_handler
763 );
764 
765 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
766 DECLARE_RT_SVC(
767 	opteed_std,
768 
769 	OEN_TOS_START,
770 	OEN_TOS_END,
771 	SMC_TYPE_YIELD,
772 	NULL,
773 	opteed_smc_handler
774 );
775