xref: /rk3399_ARM-atf/services/spd/opteed/opteed_main.c (revision 7bba6884a0112ec38ad5992b1eb3f0398abf5cf7)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <arch_helpers.h>
18 #include <assert.h>
19 #include <bl31.h>
20 #include <bl_common.h>
21 #include <context_mgmt.h>
22 #include <debug.h>
23 #include <errno.h>
24 #include <platform.h>
25 #include <runtime_svc.h>
26 #include <stddef.h>
27 #include <uuid.h>
28 #include "opteed_private.h"
29 #include "teesmc_opteed.h"
30 #include "teesmc_opteed_macros.h"
31 
32 
33 /*******************************************************************************
34  * Address of the entrypoint vector table in OPTEE. It is
35  * initialised once on the primary core after a cold boot.
36  ******************************************************************************/
37 optee_vectors_t *optee_vectors;
38 
39 /*******************************************************************************
40  * Array to keep track of per-cpu OPTEE state
41  ******************************************************************************/
42 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
43 uint32_t opteed_rw;
44 
45 
46 
47 static int32_t opteed_init(void);
48 
49 /*******************************************************************************
50  * This function is the handler registered for S-EL1 interrupts by the
51  * OPTEED. It validates the interrupt and upon success arranges entry into
52  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
53  ******************************************************************************/
54 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
55 					    uint32_t flags,
56 					    void *handle,
57 					    void *cookie)
58 {
59 	uint32_t linear_id;
60 	optee_context_t *optee_ctx;
61 
62 	/* Check the security state when the exception was generated */
63 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
64 
65 	/* Sanity check the pointer to this cpu's context */
66 	assert(handle == cm_get_context(NON_SECURE));
67 
68 	/* Save the non-secure context before entering the OPTEE */
69 	cm_el1_sysregs_context_save(NON_SECURE);
70 
71 	/* Get a reference to this cpu's OPTEE context */
72 	linear_id = plat_my_core_pos();
73 	optee_ctx = &opteed_sp_context[linear_id];
74 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
75 
76 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
77 	cm_el1_sysregs_context_restore(SECURE);
78 	cm_set_next_eret_context(SECURE);
79 
80 	/*
81 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
82 	 * Also the instruction in normal world where the interrupt was
83 	 * generated is passed for debugging purposes. It is safe to
84 	 * retrieve this address from ELR_EL3 as the secure context will
85 	 * not take effect until el3_exit().
86 	 */
87 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
88 }
89 
90 /*******************************************************************************
91  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
92  * (aarch32/aarch64) if not already known and initialises the context for entry
93  * into OPTEE for its initialization.
94  ******************************************************************************/
95 int32_t opteed_setup(void)
96 {
97 	entry_point_info_t *optee_ep_info;
98 	uint32_t linear_id;
99 
100 	linear_id = plat_my_core_pos();
101 
102 	/*
103 	 * Get information about the Secure Payload (BL32) image. Its
104 	 * absence is a critical failure.  TODO: Add support to
105 	 * conditionally include the SPD service
106 	 */
107 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
108 	if (!optee_ep_info) {
109 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
110 			" without OPTEE initialization. SMC`s destined for OPTEE"
111 			" will return SMC_UNK\n");
112 		return 1;
113 	}
114 
115 	/*
116 	 * If there's no valid entry point for SP, we return a non-zero value
117 	 * signalling failure initializing the service. We bail out without
118 	 * registering any handlers
119 	 */
120 	if (!optee_ep_info->pc)
121 		return 1;
122 
123 	/*
124 	 * We could inspect the SP image and determine it's execution
125 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch32
126 	 * for the time being.
127 	 */
128 	opteed_rw = OPTEE_AARCH64;
129 	opteed_init_optee_ep_state(optee_ep_info,
130 				opteed_rw,
131 				optee_ep_info->pc,
132 				&opteed_sp_context[linear_id]);
133 
134 	/*
135 	 * All OPTEED initialization done. Now register our init function with
136 	 * BL31 for deferred invocation
137 	 */
138 	bl31_register_bl32_init(&opteed_init);
139 
140 	return 0;
141 }
142 
143 /*******************************************************************************
144  * This function passes control to the OPTEE image (BL32) for the first time
145  * on the primary cpu after a cold boot. It assumes that a valid secure
146  * context has already been created by opteed_setup() which can be directly
147  * used.  It also assumes that a valid non-secure context has been
148  * initialised by PSCI so it does not need to save and restore any
149  * non-secure state. This function performs a synchronous entry into
150  * OPTEE. OPTEE passes control back to this routine through a SMC.
151  ******************************************************************************/
152 static int32_t opteed_init(void)
153 {
154 	uint32_t linear_id = plat_my_core_pos();
155 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
156 	entry_point_info_t *optee_entry_point;
157 	uint64_t rc;
158 
159 	/*
160 	 * Get information about the OPTEE (BL32) image. Its
161 	 * absence is a critical failure.
162 	 */
163 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
164 	assert(optee_entry_point);
165 
166 	cm_init_my_context(optee_entry_point);
167 
168 	/*
169 	 * Arrange for an entry into OPTEE. It will be returned via
170 	 * OPTEE_ENTRY_DONE case
171 	 */
172 	rc = opteed_synchronous_sp_entry(optee_ctx);
173 	assert(rc != 0);
174 
175 	return rc;
176 }
177 
178 
179 /*******************************************************************************
180  * This function is responsible for handling all SMCs in the Trusted OS/App
181  * range from the non-secure state as defined in the SMC Calling Convention
182  * Document. It is also responsible for communicating with the Secure
183  * payload to delegate work and return results back to the non-secure
184  * state. Lastly it will also return any information that OPTEE needs to do
185  * the work assigned to it.
186  ******************************************************************************/
187 uint64_t opteed_smc_handler(uint32_t smc_fid,
188 			 uint64_t x1,
189 			 uint64_t x2,
190 			 uint64_t x3,
191 			 uint64_t x4,
192 			 void *cookie,
193 			 void *handle,
194 			 uint64_t flags)
195 {
196 	cpu_context_t *ns_cpu_context;
197 	uint32_t linear_id = plat_my_core_pos();
198 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
199 	uint64_t rc;
200 
201 	/*
202 	 * Determine which security state this SMC originated from
203 	 */
204 
205 	if (is_caller_non_secure(flags)) {
206 		/*
207 		 * This is a fresh request from the non-secure client.
208 		 * The parameters are in x1 and x2. Figure out which
209 		 * registers need to be preserved, save the non-secure
210 		 * state and send the request to the secure payload.
211 		 */
212 		assert(handle == cm_get_context(NON_SECURE));
213 
214 		cm_el1_sysregs_context_save(NON_SECURE);
215 
216 		/*
217 		 * We are done stashing the non-secure context. Ask the
218 		 * OPTEE to do the work now.
219 		 */
220 
221 		/*
222 		 * Verify if there is a valid context to use, copy the
223 		 * operation type and parameters to the secure context
224 		 * and jump to the fast smc entry point in the secure
225 		 * payload. Entry into S-EL1 will take place upon exit
226 		 * from this function.
227 		 */
228 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
229 
230 		/* Set appropriate entry for SMC.
231 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
232 		 * flags as appropriate.
233 		 */
234 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
235 			cm_set_elr_el3(SECURE, (uint64_t)
236 					&optee_vectors->fast_smc_entry);
237 		} else {
238 			cm_set_elr_el3(SECURE, (uint64_t)
239 					&optee_vectors->yield_smc_entry);
240 		}
241 
242 		cm_el1_sysregs_context_restore(SECURE);
243 		cm_set_next_eret_context(SECURE);
244 
245 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
246 			      CTX_GPREG_X4,
247 			      read_ctx_reg(get_gpregs_ctx(handle),
248 					   CTX_GPREG_X4));
249 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
250 			      CTX_GPREG_X5,
251 			      read_ctx_reg(get_gpregs_ctx(handle),
252 					   CTX_GPREG_X5));
253 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
254 			      CTX_GPREG_X6,
255 			      read_ctx_reg(get_gpregs_ctx(handle),
256 					   CTX_GPREG_X6));
257 		/* Propagate hypervisor client ID */
258 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
259 			      CTX_GPREG_X7,
260 			      read_ctx_reg(get_gpregs_ctx(handle),
261 					   CTX_GPREG_X7));
262 
263 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
264 	}
265 
266 	/*
267 	 * Returning from OPTEE
268 	 */
269 
270 	switch (smc_fid) {
271 	/*
272 	 * OPTEE has finished initialising itself after a cold boot
273 	 */
274 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
275 		/*
276 		 * Stash the OPTEE entry points information. This is done
277 		 * only once on the primary cpu
278 		 */
279 		assert(optee_vectors == NULL);
280 		optee_vectors = (optee_vectors_t *) x1;
281 
282 		if (optee_vectors) {
283 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
284 
285 			/*
286 			 * OPTEE has been successfully initialized.
287 			 * Register power management hooks with PSCI
288 			 */
289 			psci_register_spd_pm_hook(&opteed_pm);
290 
291 			/*
292 			 * Register an interrupt handler for S-EL1 interrupts
293 			 * when generated during code executing in the
294 			 * non-secure state.
295 			 */
296 			flags = 0;
297 			set_interrupt_rm_flag(flags, NON_SECURE);
298 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
299 						opteed_sel1_interrupt_handler,
300 						flags);
301 			if (rc)
302 				panic();
303 		}
304 
305 		/*
306 		 * OPTEE reports completion. The OPTEED must have initiated
307 		 * the original request through a synchronous entry into
308 		 * OPTEE. Jump back to the original C runtime context.
309 		 */
310 		opteed_synchronous_sp_exit(optee_ctx, x1);
311 
312 
313 	/*
314 	 * These function IDs is used only by OP-TEE to indicate it has
315 	 * finished:
316 	 * 1. turning itself on in response to an earlier psci
317 	 *    cpu_on request
318 	 * 2. resuming itself after an earlier psci cpu_suspend
319 	 *    request.
320 	 */
321 	case TEESMC_OPTEED_RETURN_ON_DONE:
322 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
323 
324 
325 	/*
326 	 * These function IDs is used only by the SP to indicate it has
327 	 * finished:
328 	 * 1. suspending itself after an earlier psci cpu_suspend
329 	 *    request.
330 	 * 2. turning itself off in response to an earlier psci
331 	 *    cpu_off request.
332 	 */
333 	case TEESMC_OPTEED_RETURN_OFF_DONE:
334 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
335 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
336 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
337 
338 		/*
339 		 * OPTEE reports completion. The OPTEED must have initiated the
340 		 * original request through a synchronous entry into OPTEE.
341 		 * Jump back to the original C runtime context, and pass x1 as
342 		 * return value to the caller
343 		 */
344 		opteed_synchronous_sp_exit(optee_ctx, x1);
345 
346 	/*
347 	 * OPTEE is returning from a call or being preempted from a call, in
348 	 * either case execution should resume in the normal world.
349 	 */
350 	case TEESMC_OPTEED_RETURN_CALL_DONE:
351 		/*
352 		 * This is the result from the secure client of an
353 		 * earlier request. The results are in x0-x3. Copy it
354 		 * into the non-secure context, save the secure state
355 		 * and return to the non-secure state.
356 		 */
357 		assert(handle == cm_get_context(SECURE));
358 		cm_el1_sysregs_context_save(SECURE);
359 
360 		/* Get a reference to the non-secure context */
361 		ns_cpu_context = cm_get_context(NON_SECURE);
362 		assert(ns_cpu_context);
363 
364 		/* Restore non-secure state */
365 		cm_el1_sysregs_context_restore(NON_SECURE);
366 		cm_set_next_eret_context(NON_SECURE);
367 
368 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
369 
370 	/*
371 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
372 	 * should resume in the normal world.
373 	 */
374 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
375 		/* Get a reference to the non-secure context */
376 		ns_cpu_context = cm_get_context(NON_SECURE);
377 		assert(ns_cpu_context);
378 
379 		/*
380 		 * Restore non-secure state. There is no need to save the
381 		 * secure system register context since OPTEE was supposed
382 		 * to preserve it during S-EL1 interrupt handling.
383 		 */
384 		cm_el1_sysregs_context_restore(NON_SECURE);
385 		cm_set_next_eret_context(NON_SECURE);
386 
387 		SMC_RET0((uint64_t) ns_cpu_context);
388 
389 	default:
390 		panic();
391 	}
392 }
393 
394 /* Define an OPTEED runtime service descriptor for fast SMC calls */
395 DECLARE_RT_SVC(
396 	opteed_fast,
397 
398 	OEN_TOS_START,
399 	OEN_TOS_END,
400 	SMC_TYPE_FAST,
401 	opteed_setup,
402 	opteed_smc_handler
403 );
404 
405 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
406 DECLARE_RT_SVC(
407 	opteed_std,
408 
409 	OEN_TOS_START,
410 	OEN_TOS_END,
411 	SMC_TYPE_YIELD,
412 	NULL,
413 	opteed_smc_handler
414 );
415