1 /* 2 * Copyright (c) 2013-2023, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 8 /******************************************************************************* 9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a 10 * plug-in component to the Secure Monitor, registered as a runtime service. The 11 * SPD is expected to be a functional extension of the Secure Payload (SP) that 12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting 13 * the Trusted OS/Applications range to the dispatcher. The SPD will either 14 * handle the request locally or delegate it to the Secure Payload. It is also 15 * responsible for initialising and maintaining communication with the SP. 16 ******************************************************************************/ 17 #include <assert.h> 18 #include <errno.h> 19 #include <inttypes.h> 20 #include <stddef.h> 21 22 #include <arch_helpers.h> 23 #include <bl31/bl31.h> 24 #include <common/bl_common.h> 25 #include <common/debug.h> 26 #include <common/runtime_svc.h> 27 #include <lib/el3_runtime/context_mgmt.h> 28 #include <lib/optee_utils.h> 29 #include <lib/xlat_tables/xlat_tables_v2.h> 30 #include <plat/common/platform.h> 31 #include <tools_share/uuid.h> 32 33 #include "opteed_private.h" 34 #include "teesmc_opteed.h" 35 36 /******************************************************************************* 37 * Address of the entrypoint vector table in OPTEE. It is 38 * initialised once on the primary core after a cold boot. 39 ******************************************************************************/ 40 struct optee_vectors *optee_vector_table; 41 42 /******************************************************************************* 43 * Array to keep track of per-cpu OPTEE state 44 ******************************************************************************/ 45 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; 46 uint32_t opteed_rw; 47 48 #if OPTEE_ALLOW_SMC_LOAD 49 static bool opteed_allow_load; 50 #else 51 static int32_t opteed_init(void); 52 #endif 53 54 uint64_t dual32to64(uint32_t high, uint32_t low) 55 { 56 return ((uint64_t)high << 32) | low; 57 } 58 59 /******************************************************************************* 60 * This function is the handler registered for S-EL1 interrupts by the 61 * OPTEED. It validates the interrupt and upon success arranges entry into 62 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. 63 ******************************************************************************/ 64 static uint64_t opteed_sel1_interrupt_handler(uint32_t id, 65 uint32_t flags, 66 void *handle, 67 void *cookie) 68 { 69 uint32_t linear_id; 70 optee_context_t *optee_ctx; 71 72 /* Check the security state when the exception was generated */ 73 assert(get_interrupt_src_ss(flags) == NON_SECURE); 74 75 /* Sanity check the pointer to this cpu's context */ 76 assert(handle == cm_get_context(NON_SECURE)); 77 78 /* Save the non-secure context before entering the OPTEE */ 79 cm_el1_sysregs_context_save(NON_SECURE); 80 81 /* Get a reference to this cpu's OPTEE context */ 82 linear_id = plat_my_core_pos(); 83 optee_ctx = &opteed_sp_context[linear_id]; 84 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 85 86 cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry); 87 cm_el1_sysregs_context_restore(SECURE); 88 cm_set_next_eret_context(SECURE); 89 90 /* 91 * Tell the OPTEE that it has to handle an FIQ (synchronously). 92 * Also the instruction in normal world where the interrupt was 93 * generated is passed for debugging purposes. It is safe to 94 * retrieve this address from ELR_EL3 as the secure context will 95 * not take effect until el3_exit(). 96 */ 97 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); 98 } 99 100 /******************************************************************************* 101 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type 102 * (aarch32/aarch64) if not already known and initialises the context for entry 103 * into OPTEE for its initialization. 104 ******************************************************************************/ 105 static int32_t opteed_setup(void) 106 { 107 #if OPTEE_ALLOW_SMC_LOAD 108 opteed_allow_load = true; 109 INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n"); 110 return 0; 111 #else 112 entry_point_info_t *optee_ep_info; 113 uint32_t linear_id; 114 uint64_t opteed_pageable_part; 115 uint64_t opteed_mem_limit; 116 uint64_t dt_addr; 117 118 linear_id = plat_my_core_pos(); 119 120 /* 121 * Get information about the Secure Payload (BL32) image. Its 122 * absence is a critical failure. TODO: Add support to 123 * conditionally include the SPD service 124 */ 125 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 126 if (!optee_ep_info) { 127 WARN("No OPTEE provided by BL2 boot loader, Booting device" 128 " without OPTEE initialization. SMC`s destined for OPTEE" 129 " will return SMC_UNK\n"); 130 return 1; 131 } 132 133 /* 134 * If there's no valid entry point for SP, we return a non-zero value 135 * signalling failure initializing the service. We bail out without 136 * registering any handlers 137 */ 138 if (!optee_ep_info->pc) 139 return 1; 140 141 opteed_rw = optee_ep_info->args.arg0; 142 opteed_pageable_part = optee_ep_info->args.arg1; 143 opteed_mem_limit = optee_ep_info->args.arg2; 144 dt_addr = optee_ep_info->args.arg3; 145 146 opteed_init_optee_ep_state(optee_ep_info, 147 opteed_rw, 148 optee_ep_info->pc, 149 opteed_pageable_part, 150 opteed_mem_limit, 151 dt_addr, 152 &opteed_sp_context[linear_id]); 153 154 /* 155 * All OPTEED initialization done. Now register our init function with 156 * BL31 for deferred invocation 157 */ 158 bl31_register_bl32_init(&opteed_init); 159 160 return 0; 161 #endif /* OPTEE_ALLOW_SMC_LOAD */ 162 } 163 164 /******************************************************************************* 165 * This function passes control to the OPTEE image (BL32) for the first time 166 * on the primary cpu after a cold boot. It assumes that a valid secure 167 * context has already been created by opteed_setup() which can be directly 168 * used. It also assumes that a valid non-secure context has been 169 * initialised by PSCI so it does not need to save and restore any 170 * non-secure state. This function performs a synchronous entry into 171 * OPTEE. OPTEE passes control back to this routine through a SMC. This returns 172 * a non-zero value on success and zero on failure. 173 ******************************************************************************/ 174 static int32_t 175 opteed_init_with_entry_point(entry_point_info_t *optee_entry_point) 176 { 177 uint32_t linear_id = plat_my_core_pos(); 178 optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 179 uint64_t rc; 180 assert(optee_entry_point); 181 182 cm_init_my_context(optee_entry_point); 183 184 /* 185 * Arrange for an entry into OPTEE. It will be returned via 186 * OPTEE_ENTRY_DONE case 187 */ 188 rc = opteed_synchronous_sp_entry(optee_ctx); 189 assert(rc != 0); 190 191 return rc; 192 } 193 194 #if !OPTEE_ALLOW_SMC_LOAD 195 static int32_t opteed_init(void) 196 { 197 entry_point_info_t *optee_entry_point; 198 /* 199 * Get information about the OP-TEE (BL32) image. Its 200 * absence is a critical failure. 201 */ 202 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); 203 return opteed_init_with_entry_point(optee_entry_point); 204 } 205 #endif /* !OPTEE_ALLOW_SMC_LOAD */ 206 207 #if OPTEE_ALLOW_SMC_LOAD 208 /******************************************************************************* 209 * This function is responsible for handling the SMC that loads the OP-TEE 210 * binary image via a non-secure SMC call. It takes the size and physical 211 * address of the payload as parameters. 212 ******************************************************************************/ 213 static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa) 214 { 215 uintptr_t data_va = data_pa; 216 uint64_t mapped_data_pa; 217 uintptr_t mapped_data_va; 218 uint64_t data_map_size; 219 int32_t rc; 220 optee_header_t *image_header; 221 uint8_t *image_ptr; 222 uint64_t target_pa; 223 uint64_t target_end_pa; 224 uint64_t image_pa; 225 uintptr_t image_va; 226 optee_image_t *curr_image; 227 uintptr_t target_va; 228 uint64_t target_size; 229 entry_point_info_t optee_ep_info; 230 uint32_t linear_id = plat_my_core_pos(); 231 232 mapped_data_pa = page_align(data_pa, DOWN); 233 mapped_data_va = mapped_data_pa; 234 data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP); 235 236 /* 237 * We do not validate the passed in address because we are trusting the 238 * non-secure world at this point still. 239 */ 240 rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va, 241 data_map_size, MT_MEMORY | MT_RO | MT_NS); 242 if (rc != 0) { 243 return rc; 244 } 245 246 image_header = (optee_header_t *)data_va; 247 if (image_header->magic != TEE_MAGIC_NUM_OPTEE || 248 image_header->version != 2 || image_header->nb_images != 1) { 249 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 250 return -EINVAL; 251 } 252 253 image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) + 254 sizeof(optee_image_t); 255 if (image_header->arch == 1) { 256 opteed_rw = OPTEE_AARCH64; 257 } else { 258 opteed_rw = OPTEE_AARCH32; 259 } 260 261 curr_image = &image_header->optee_image_list[0]; 262 image_pa = dual32to64(curr_image->load_addr_hi, 263 curr_image->load_addr_lo); 264 image_va = image_pa; 265 target_end_pa = image_pa + curr_image->size; 266 267 /* Now also map the memory we want to copy it to. */ 268 target_pa = page_align(image_pa, DOWN); 269 target_va = target_pa; 270 target_size = page_align(target_end_pa, UP) - target_pa; 271 272 rc = mmap_add_dynamic_region(target_pa, target_va, target_size, 273 MT_MEMORY | MT_RW | MT_SECURE); 274 if (rc != 0) { 275 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 276 return rc; 277 } 278 279 INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n", 280 curr_image->size, image_va); 281 282 memcpy((void *)image_va, image_ptr, curr_image->size); 283 flush_dcache_range(target_pa, target_size); 284 285 mmap_remove_dynamic_region(mapped_data_va, data_map_size); 286 mmap_remove_dynamic_region(target_va, target_size); 287 288 /* Save the non-secure state */ 289 cm_el1_sysregs_context_save(NON_SECURE); 290 291 opteed_init_optee_ep_state(&optee_ep_info, 292 opteed_rw, 293 image_pa, 294 0, 295 0, 296 0, 297 &opteed_sp_context[linear_id]); 298 if (opteed_init_with_entry_point(&optee_ep_info) == 0) { 299 rc = -EFAULT; 300 } 301 302 /* Restore non-secure state */ 303 cm_el1_sysregs_context_restore(NON_SECURE); 304 cm_set_next_eret_context(NON_SECURE); 305 306 return rc; 307 } 308 #endif /* OPTEE_ALLOW_SMC_LOAD */ 309 310 /******************************************************************************* 311 * This function is responsible for handling all SMCs in the Trusted OS/App 312 * range from the non-secure state as defined in the SMC Calling Convention 313 * Document. It is also responsible for communicating with the Secure 314 * payload to delegate work and return results back to the non-secure 315 * state. Lastly it will also return any information that OPTEE needs to do 316 * the work assigned to it. 317 ******************************************************************************/ 318 static uintptr_t opteed_smc_handler(uint32_t smc_fid, 319 u_register_t x1, 320 u_register_t x2, 321 u_register_t x3, 322 u_register_t x4, 323 void *cookie, 324 void *handle, 325 u_register_t flags) 326 { 327 cpu_context_t *ns_cpu_context; 328 uint32_t linear_id = plat_my_core_pos(); 329 optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 330 uint64_t rc; 331 332 /* 333 * Determine which security state this SMC originated from 334 */ 335 336 if (is_caller_non_secure(flags)) { 337 #if OPTEE_ALLOW_SMC_LOAD 338 if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) { 339 /* 340 * TODO: Consider wiping the code for SMC loading from 341 * memory after it has been invoked similar to what is 342 * done under RECLAIM_INIT, but extended to happen 343 * later. 344 */ 345 if (!opteed_allow_load) { 346 SMC_RET1(handle, -EPERM); 347 } 348 349 opteed_allow_load = false; 350 uint64_t data_size = dual32to64(x1, x2); 351 uint64_t data_pa = dual32to64(x3, x4); 352 if (!data_size || !data_pa) { 353 /* 354 * This is invoked when the OP-TEE image didn't 355 * load correctly in the kernel but we want to 356 * block off loading of it later for security 357 * reasons. 358 */ 359 SMC_RET1(handle, -EINVAL); 360 } 361 SMC_RET1(handle, opteed_handle_smc_load( 362 data_size, data_pa)); 363 } 364 #endif /* OPTEE_ALLOW_SMC_LOAD */ 365 /* 366 * This is a fresh request from the non-secure client. 367 * The parameters are in x1 and x2. Figure out which 368 * registers need to be preserved, save the non-secure 369 * state and send the request to the secure payload. 370 */ 371 assert(handle == cm_get_context(NON_SECURE)); 372 373 cm_el1_sysregs_context_save(NON_SECURE); 374 375 /* 376 * We are done stashing the non-secure context. Ask the 377 * OP-TEE to do the work now. If we are loading vi an SMC, 378 * then we also need to init this CPU context if not done 379 * already. 380 */ 381 if (optee_vector_table == NULL) { 382 SMC_RET1(handle, -EINVAL); 383 } 384 385 if (get_optee_pstate(optee_ctx->state) == 386 OPTEE_PSTATE_UNKNOWN) { 387 opteed_cpu_on_finish_handler(0); 388 } 389 390 /* 391 * Verify if there is a valid context to use, copy the 392 * operation type and parameters to the secure context 393 * and jump to the fast smc entry point in the secure 394 * payload. Entry into S-EL1 will take place upon exit 395 * from this function. 396 */ 397 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 398 399 /* Set appropriate entry for SMC. 400 * We expect OPTEE to manage the PSTATE.I and PSTATE.F 401 * flags as appropriate. 402 */ 403 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { 404 cm_set_elr_el3(SECURE, (uint64_t) 405 &optee_vector_table->fast_smc_entry); 406 } else { 407 cm_set_elr_el3(SECURE, (uint64_t) 408 &optee_vector_table->yield_smc_entry); 409 } 410 411 cm_el1_sysregs_context_restore(SECURE); 412 cm_set_next_eret_context(SECURE); 413 414 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 415 CTX_GPREG_X4, 416 read_ctx_reg(get_gpregs_ctx(handle), 417 CTX_GPREG_X4)); 418 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 419 CTX_GPREG_X5, 420 read_ctx_reg(get_gpregs_ctx(handle), 421 CTX_GPREG_X5)); 422 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 423 CTX_GPREG_X6, 424 read_ctx_reg(get_gpregs_ctx(handle), 425 CTX_GPREG_X6)); 426 /* Propagate hypervisor client ID */ 427 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 428 CTX_GPREG_X7, 429 read_ctx_reg(get_gpregs_ctx(handle), 430 CTX_GPREG_X7)); 431 432 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); 433 } 434 435 /* 436 * Returning from OPTEE 437 */ 438 439 switch (smc_fid) { 440 /* 441 * OPTEE has finished initialising itself after a cold boot 442 */ 443 case TEESMC_OPTEED_RETURN_ENTRY_DONE: 444 /* 445 * Stash the OPTEE entry points information. This is done 446 * only once on the primary cpu 447 */ 448 assert(optee_vector_table == NULL); 449 optee_vector_table = (optee_vectors_t *) x1; 450 451 if (optee_vector_table) { 452 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); 453 454 /* 455 * OPTEE has been successfully initialized. 456 * Register power management hooks with PSCI 457 */ 458 psci_register_spd_pm_hook(&opteed_pm); 459 460 /* 461 * Register an interrupt handler for S-EL1 interrupts 462 * when generated during code executing in the 463 * non-secure state. 464 */ 465 flags = 0; 466 set_interrupt_rm_flag(flags, NON_SECURE); 467 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, 468 opteed_sel1_interrupt_handler, 469 flags); 470 if (rc) 471 panic(); 472 } 473 474 /* 475 * OPTEE reports completion. The OPTEED must have initiated 476 * the original request through a synchronous entry into 477 * OPTEE. Jump back to the original C runtime context. 478 */ 479 opteed_synchronous_sp_exit(optee_ctx, x1); 480 break; 481 482 483 /* 484 * These function IDs is used only by OP-TEE to indicate it has 485 * finished: 486 * 1. turning itself on in response to an earlier psci 487 * cpu_on request 488 * 2. resuming itself after an earlier psci cpu_suspend 489 * request. 490 */ 491 case TEESMC_OPTEED_RETURN_ON_DONE: 492 case TEESMC_OPTEED_RETURN_RESUME_DONE: 493 494 495 /* 496 * These function IDs is used only by the SP to indicate it has 497 * finished: 498 * 1. suspending itself after an earlier psci cpu_suspend 499 * request. 500 * 2. turning itself off in response to an earlier psci 501 * cpu_off request. 502 */ 503 case TEESMC_OPTEED_RETURN_OFF_DONE: 504 case TEESMC_OPTEED_RETURN_SUSPEND_DONE: 505 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: 506 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: 507 508 /* 509 * OPTEE reports completion. The OPTEED must have initiated the 510 * original request through a synchronous entry into OPTEE. 511 * Jump back to the original C runtime context, and pass x1 as 512 * return value to the caller 513 */ 514 opteed_synchronous_sp_exit(optee_ctx, x1); 515 break; 516 517 /* 518 * OPTEE is returning from a call or being preempted from a call, in 519 * either case execution should resume in the normal world. 520 */ 521 case TEESMC_OPTEED_RETURN_CALL_DONE: 522 /* 523 * This is the result from the secure client of an 524 * earlier request. The results are in x0-x3. Copy it 525 * into the non-secure context, save the secure state 526 * and return to the non-secure state. 527 */ 528 assert(handle == cm_get_context(SECURE)); 529 cm_el1_sysregs_context_save(SECURE); 530 531 /* Get a reference to the non-secure context */ 532 ns_cpu_context = cm_get_context(NON_SECURE); 533 assert(ns_cpu_context); 534 535 /* Restore non-secure state */ 536 cm_el1_sysregs_context_restore(NON_SECURE); 537 cm_set_next_eret_context(NON_SECURE); 538 539 SMC_RET4(ns_cpu_context, x1, x2, x3, x4); 540 541 /* 542 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution 543 * should resume in the normal world. 544 */ 545 case TEESMC_OPTEED_RETURN_FIQ_DONE: 546 /* Get a reference to the non-secure context */ 547 ns_cpu_context = cm_get_context(NON_SECURE); 548 assert(ns_cpu_context); 549 550 /* 551 * Restore non-secure state. There is no need to save the 552 * secure system register context since OPTEE was supposed 553 * to preserve it during S-EL1 interrupt handling. 554 */ 555 cm_el1_sysregs_context_restore(NON_SECURE); 556 cm_set_next_eret_context(NON_SECURE); 557 558 SMC_RET0((uint64_t) ns_cpu_context); 559 560 default: 561 panic(); 562 } 563 } 564 565 /* Define an OPTEED runtime service descriptor for fast SMC calls */ 566 DECLARE_RT_SVC( 567 opteed_fast, 568 569 OEN_TOS_START, 570 OEN_TOS_END, 571 SMC_TYPE_FAST, 572 opteed_setup, 573 opteed_smc_handler 574 ); 575 576 /* Define an OPTEED runtime service descriptor for yielding SMC calls */ 577 DECLARE_RT_SVC( 578 opteed_std, 579 580 OEN_TOS_START, 581 OEN_TOS_END, 582 SMC_TYPE_YIELD, 583 NULL, 584 opteed_smc_handler 585 ); 586