xref: /rk3399_ARM-atf/services/spd/opteed/opteed_main.c (revision 5722b78cdb4a69d08c3c585aae2fb8dd9cbb9bfc)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <arch_helpers.h>
18 #include <assert.h>
19 #include <bl31.h>
20 #include <bl_common.h>
21 #include <context_mgmt.h>
22 #include <debug.h>
23 #include <errno.h>
24 #include <platform.h>
25 #include <runtime_svc.h>
26 #include <stddef.h>
27 #include <uuid.h>
28 #include "opteed_private.h"
29 #include "teesmc_opteed.h"
30 #include "teesmc_opteed_macros.h"
31 
32 
33 /*******************************************************************************
34  * Address of the entrypoint vector table in OPTEE. It is
35  * initialised once on the primary core after a cold boot.
36  ******************************************************************************/
37 optee_vectors_t *optee_vectors;
38 
39 /*******************************************************************************
40  * Array to keep track of per-cpu OPTEE state
41  ******************************************************************************/
42 optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
43 uint32_t opteed_rw;
44 
45 static int32_t opteed_init(void);
46 
47 /*******************************************************************************
48  * This function is the handler registered for S-EL1 interrupts by the
49  * OPTEED. It validates the interrupt and upon success arranges entry into
50  * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
51  ******************************************************************************/
52 static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
53 					    uint32_t flags,
54 					    void *handle,
55 					    void *cookie)
56 {
57 	uint32_t linear_id;
58 	optee_context_t *optee_ctx;
59 
60 	/* Check the security state when the exception was generated */
61 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
62 
63 	/* Sanity check the pointer to this cpu's context */
64 	assert(handle == cm_get_context(NON_SECURE));
65 
66 	/* Save the non-secure context before entering the OPTEE */
67 	cm_el1_sysregs_context_save(NON_SECURE);
68 
69 	/* Get a reference to this cpu's OPTEE context */
70 	linear_id = plat_my_core_pos();
71 	optee_ctx = &opteed_sp_context[linear_id];
72 	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
73 
74 	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
75 	cm_el1_sysregs_context_restore(SECURE);
76 	cm_set_next_eret_context(SECURE);
77 
78 	/*
79 	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
80 	 * Also the instruction in normal world where the interrupt was
81 	 * generated is passed for debugging purposes. It is safe to
82 	 * retrieve this address from ELR_EL3 as the secure context will
83 	 * not take effect until el3_exit().
84 	 */
85 	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
86 }
87 
88 /*******************************************************************************
89  * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
90  * (aarch32/aarch64) if not already known and initialises the context for entry
91  * into OPTEE for its initialization.
92  ******************************************************************************/
93 int32_t opteed_setup(void)
94 {
95 	entry_point_info_t *optee_ep_info;
96 	uint32_t linear_id;
97 	uint64_t opteed_pageable_part;
98 	uint64_t opteed_mem_limit;
99 
100 	linear_id = plat_my_core_pos();
101 
102 	/*
103 	 * Get information about the Secure Payload (BL32) image. Its
104 	 * absence is a critical failure.  TODO: Add support to
105 	 * conditionally include the SPD service
106 	 */
107 	optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
108 	if (!optee_ep_info) {
109 		WARN("No OPTEE provided by BL2 boot loader, Booting device"
110 			" without OPTEE initialization. SMC`s destined for OPTEE"
111 			" will return SMC_UNK\n");
112 		return 1;
113 	}
114 
115 	/*
116 	 * If there's no valid entry point for SP, we return a non-zero value
117 	 * signalling failure initializing the service. We bail out without
118 	 * registering any handlers
119 	 */
120 	if (!optee_ep_info->pc)
121 		return 1;
122 
123 	/*
124 	 * We could inspect the SP image and determine it's execution
125 	 * state i.e whether AArch32 or AArch64.
126 	 */
127 	opteed_rw = optee_ep_info->args.arg0;
128 	opteed_pageable_part = optee_ep_info->args.arg1;
129 	opteed_mem_limit = optee_ep_info->args.arg2;
130 
131 	opteed_init_optee_ep_state(optee_ep_info,
132 				opteed_rw,
133 				optee_ep_info->pc,
134 				opteed_pageable_part,
135 				opteed_mem_limit,
136 				&opteed_sp_context[linear_id]);
137 
138 	/*
139 	 * All OPTEED initialization done. Now register our init function with
140 	 * BL31 for deferred invocation
141 	 */
142 	bl31_register_bl32_init(&opteed_init);
143 
144 	return 0;
145 }
146 
147 /*******************************************************************************
148  * This function passes control to the OPTEE image (BL32) for the first time
149  * on the primary cpu after a cold boot. It assumes that a valid secure
150  * context has already been created by opteed_setup() which can be directly
151  * used.  It also assumes that a valid non-secure context has been
152  * initialised by PSCI so it does not need to save and restore any
153  * non-secure state. This function performs a synchronous entry into
154  * OPTEE. OPTEE passes control back to this routine through a SMC.
155  ******************************************************************************/
156 static int32_t opteed_init(void)
157 {
158 	uint32_t linear_id = plat_my_core_pos();
159 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
160 	entry_point_info_t *optee_entry_point;
161 	uint64_t rc;
162 
163 	/*
164 	 * Get information about the OPTEE (BL32) image. Its
165 	 * absence is a critical failure.
166 	 */
167 	optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
168 	assert(optee_entry_point);
169 
170 	cm_init_my_context(optee_entry_point);
171 
172 	/*
173 	 * Arrange for an entry into OPTEE. It will be returned via
174 	 * OPTEE_ENTRY_DONE case
175 	 */
176 	rc = opteed_synchronous_sp_entry(optee_ctx);
177 	assert(rc != 0);
178 
179 	return rc;
180 }
181 
182 
183 /*******************************************************************************
184  * This function is responsible for handling all SMCs in the Trusted OS/App
185  * range from the non-secure state as defined in the SMC Calling Convention
186  * Document. It is also responsible for communicating with the Secure
187  * payload to delegate work and return results back to the non-secure
188  * state. Lastly it will also return any information that OPTEE needs to do
189  * the work assigned to it.
190  ******************************************************************************/
191 uint64_t opteed_smc_handler(uint32_t smc_fid,
192 			 uint64_t x1,
193 			 uint64_t x2,
194 			 uint64_t x3,
195 			 uint64_t x4,
196 			 void *cookie,
197 			 void *handle,
198 			 uint64_t flags)
199 {
200 	cpu_context_t *ns_cpu_context;
201 	uint32_t linear_id = plat_my_core_pos();
202 	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
203 	uint64_t rc;
204 
205 	/*
206 	 * Determine which security state this SMC originated from
207 	 */
208 
209 	if (is_caller_non_secure(flags)) {
210 		/*
211 		 * This is a fresh request from the non-secure client.
212 		 * The parameters are in x1 and x2. Figure out which
213 		 * registers need to be preserved, save the non-secure
214 		 * state and send the request to the secure payload.
215 		 */
216 		assert(handle == cm_get_context(NON_SECURE));
217 
218 		cm_el1_sysregs_context_save(NON_SECURE);
219 
220 		/*
221 		 * We are done stashing the non-secure context. Ask the
222 		 * OPTEE to do the work now.
223 		 */
224 
225 		/*
226 		 * Verify if there is a valid context to use, copy the
227 		 * operation type and parameters to the secure context
228 		 * and jump to the fast smc entry point in the secure
229 		 * payload. Entry into S-EL1 will take place upon exit
230 		 * from this function.
231 		 */
232 		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
233 
234 		/* Set appropriate entry for SMC.
235 		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
236 		 * flags as appropriate.
237 		 */
238 		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
239 			cm_set_elr_el3(SECURE, (uint64_t)
240 					&optee_vectors->fast_smc_entry);
241 		} else {
242 			cm_set_elr_el3(SECURE, (uint64_t)
243 					&optee_vectors->yield_smc_entry);
244 		}
245 
246 		cm_el1_sysregs_context_restore(SECURE);
247 		cm_set_next_eret_context(SECURE);
248 
249 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
250 			      CTX_GPREG_X4,
251 			      read_ctx_reg(get_gpregs_ctx(handle),
252 					   CTX_GPREG_X4));
253 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
254 			      CTX_GPREG_X5,
255 			      read_ctx_reg(get_gpregs_ctx(handle),
256 					   CTX_GPREG_X5));
257 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
258 			      CTX_GPREG_X6,
259 			      read_ctx_reg(get_gpregs_ctx(handle),
260 					   CTX_GPREG_X6));
261 		/* Propagate hypervisor client ID */
262 		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
263 			      CTX_GPREG_X7,
264 			      read_ctx_reg(get_gpregs_ctx(handle),
265 					   CTX_GPREG_X7));
266 
267 		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
268 	}
269 
270 	/*
271 	 * Returning from OPTEE
272 	 */
273 
274 	switch (smc_fid) {
275 	/*
276 	 * OPTEE has finished initialising itself after a cold boot
277 	 */
278 	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
279 		/*
280 		 * Stash the OPTEE entry points information. This is done
281 		 * only once on the primary cpu
282 		 */
283 		assert(optee_vectors == NULL);
284 		optee_vectors = (optee_vectors_t *) x1;
285 
286 		if (optee_vectors) {
287 			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
288 
289 			/*
290 			 * OPTEE has been successfully initialized.
291 			 * Register power management hooks with PSCI
292 			 */
293 			psci_register_spd_pm_hook(&opteed_pm);
294 
295 			/*
296 			 * Register an interrupt handler for S-EL1 interrupts
297 			 * when generated during code executing in the
298 			 * non-secure state.
299 			 */
300 			flags = 0;
301 			set_interrupt_rm_flag(flags, NON_SECURE);
302 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
303 						opteed_sel1_interrupt_handler,
304 						flags);
305 			if (rc)
306 				panic();
307 		}
308 
309 		/*
310 		 * OPTEE reports completion. The OPTEED must have initiated
311 		 * the original request through a synchronous entry into
312 		 * OPTEE. Jump back to the original C runtime context.
313 		 */
314 		opteed_synchronous_sp_exit(optee_ctx, x1);
315 
316 
317 	/*
318 	 * These function IDs is used only by OP-TEE to indicate it has
319 	 * finished:
320 	 * 1. turning itself on in response to an earlier psci
321 	 *    cpu_on request
322 	 * 2. resuming itself after an earlier psci cpu_suspend
323 	 *    request.
324 	 */
325 	case TEESMC_OPTEED_RETURN_ON_DONE:
326 	case TEESMC_OPTEED_RETURN_RESUME_DONE:
327 
328 
329 	/*
330 	 * These function IDs is used only by the SP to indicate it has
331 	 * finished:
332 	 * 1. suspending itself after an earlier psci cpu_suspend
333 	 *    request.
334 	 * 2. turning itself off in response to an earlier psci
335 	 *    cpu_off request.
336 	 */
337 	case TEESMC_OPTEED_RETURN_OFF_DONE:
338 	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
339 	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
340 	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
341 
342 		/*
343 		 * OPTEE reports completion. The OPTEED must have initiated the
344 		 * original request through a synchronous entry into OPTEE.
345 		 * Jump back to the original C runtime context, and pass x1 as
346 		 * return value to the caller
347 		 */
348 		opteed_synchronous_sp_exit(optee_ctx, x1);
349 
350 	/*
351 	 * OPTEE is returning from a call or being preempted from a call, in
352 	 * either case execution should resume in the normal world.
353 	 */
354 	case TEESMC_OPTEED_RETURN_CALL_DONE:
355 		/*
356 		 * This is the result from the secure client of an
357 		 * earlier request. The results are in x0-x3. Copy it
358 		 * into the non-secure context, save the secure state
359 		 * and return to the non-secure state.
360 		 */
361 		assert(handle == cm_get_context(SECURE));
362 		cm_el1_sysregs_context_save(SECURE);
363 
364 		/* Get a reference to the non-secure context */
365 		ns_cpu_context = cm_get_context(NON_SECURE);
366 		assert(ns_cpu_context);
367 
368 		/* Restore non-secure state */
369 		cm_el1_sysregs_context_restore(NON_SECURE);
370 		cm_set_next_eret_context(NON_SECURE);
371 
372 		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
373 
374 	/*
375 	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
376 	 * should resume in the normal world.
377 	 */
378 	case TEESMC_OPTEED_RETURN_FIQ_DONE:
379 		/* Get a reference to the non-secure context */
380 		ns_cpu_context = cm_get_context(NON_SECURE);
381 		assert(ns_cpu_context);
382 
383 		/*
384 		 * Restore non-secure state. There is no need to save the
385 		 * secure system register context since OPTEE was supposed
386 		 * to preserve it during S-EL1 interrupt handling.
387 		 */
388 		cm_el1_sysregs_context_restore(NON_SECURE);
389 		cm_set_next_eret_context(NON_SECURE);
390 
391 		SMC_RET0((uint64_t) ns_cpu_context);
392 
393 	default:
394 		panic();
395 	}
396 }
397 
398 /* Define an OPTEED runtime service descriptor for fast SMC calls */
399 DECLARE_RT_SVC(
400 	opteed_fast,
401 
402 	OEN_TOS_START,
403 	OEN_TOS_END,
404 	SMC_TYPE_FAST,
405 	opteed_setup,
406 	opteed_smc_handler
407 );
408 
409 /* Define an OPTEED runtime service descriptor for yielding SMC calls */
410 DECLARE_RT_SVC(
411 	opteed_std,
412 
413 	OEN_TOS_START,
414 	OEN_TOS_END,
415 	SMC_TYPE_YIELD,
416 	NULL,
417 	opteed_smc_handler
418 );
419