1aa5da461SJens Wiklander /* 2bbbbcdaeSDavid Cunado * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3aa5da461SJens Wiklander * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5aa5da461SJens Wiklander */ 6aa5da461SJens Wiklander 7aa5da461SJens Wiklander 8aa5da461SJens Wiklander /******************************************************************************* 9aa5da461SJens Wiklander * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a 10aa5da461SJens Wiklander * plug-in component to the Secure Monitor, registered as a runtime service. The 11aa5da461SJens Wiklander * SPD is expected to be a functional extension of the Secure Payload (SP) that 12aa5da461SJens Wiklander * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting 13aa5da461SJens Wiklander * the Trusted OS/Applications range to the dispatcher. The SPD will either 14aa5da461SJens Wiklander * handle the request locally or delegate it to the Secure Payload. It is also 15aa5da461SJens Wiklander * responsible for initialising and maintaining communication with the SP. 16aa5da461SJens Wiklander ******************************************************************************/ 17aa5da461SJens Wiklander #include <arch_helpers.h> 18aa5da461SJens Wiklander #include <assert.h> 19aa5da461SJens Wiklander #include <bl31.h> 202a4b4b71SIsla Mitchell #include <bl_common.h> 21aa5da461SJens Wiklander #include <context_mgmt.h> 22aa5da461SJens Wiklander #include <debug.h> 23aa5da461SJens Wiklander #include <errno.h> 24aa5da461SJens Wiklander #include <platform.h> 25aa5da461SJens Wiklander #include <runtime_svc.h> 26aa5da461SJens Wiklander #include <stddef.h> 27aa5da461SJens Wiklander #include <uuid.h> 28aa5da461SJens Wiklander #include "opteed_private.h" 29aa5da461SJens Wiklander #include "teesmc_opteed.h" 302a4b4b71SIsla Mitchell #include "teesmc_opteed_macros.h" 312a4b4b71SIsla Mitchell 32aa5da461SJens Wiklander 33aa5da461SJens Wiklander /******************************************************************************* 34aa5da461SJens Wiklander * Address of the entrypoint vector table in OPTEE. It is 35aa5da461SJens Wiklander * initialised once on the primary core after a cold boot. 36aa5da461SJens Wiklander ******************************************************************************/ 37aa5da461SJens Wiklander optee_vectors_t *optee_vectors; 38aa5da461SJens Wiklander 39aa5da461SJens Wiklander /******************************************************************************* 40aa5da461SJens Wiklander * Array to keep track of per-cpu OPTEE state 41aa5da461SJens Wiklander ******************************************************************************/ 42aa5da461SJens Wiklander optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; 43aa5da461SJens Wiklander uint32_t opteed_rw; 44aa5da461SJens Wiklander 45aa5da461SJens Wiklander static int32_t opteed_init(void); 46aa5da461SJens Wiklander 47aa5da461SJens Wiklander /******************************************************************************* 48aa5da461SJens Wiklander * This function is the handler registered for S-EL1 interrupts by the 49aa5da461SJens Wiklander * OPTEED. It validates the interrupt and upon success arranges entry into 50aa5da461SJens Wiklander * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. 51aa5da461SJens Wiklander ******************************************************************************/ 52aa5da461SJens Wiklander static uint64_t opteed_sel1_interrupt_handler(uint32_t id, 53aa5da461SJens Wiklander uint32_t flags, 54aa5da461SJens Wiklander void *handle, 55aa5da461SJens Wiklander void *cookie) 56aa5da461SJens Wiklander { 57aa5da461SJens Wiklander uint32_t linear_id; 58aa5da461SJens Wiklander optee_context_t *optee_ctx; 59aa5da461SJens Wiklander 60aa5da461SJens Wiklander /* Check the security state when the exception was generated */ 61aa5da461SJens Wiklander assert(get_interrupt_src_ss(flags) == NON_SECURE); 62aa5da461SJens Wiklander 63aa5da461SJens Wiklander /* Sanity check the pointer to this cpu's context */ 64aa5da461SJens Wiklander assert(handle == cm_get_context(NON_SECURE)); 65aa5da461SJens Wiklander 66aa5da461SJens Wiklander /* Save the non-secure context before entering the OPTEE */ 67aa5da461SJens Wiklander cm_el1_sysregs_context_save(NON_SECURE); 68aa5da461SJens Wiklander 69aa5da461SJens Wiklander /* Get a reference to this cpu's OPTEE context */ 70fd650ff6SSoby Mathew linear_id = plat_my_core_pos(); 71aa5da461SJens Wiklander optee_ctx = &opteed_sp_context[linear_id]; 72aa5da461SJens Wiklander assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 73aa5da461SJens Wiklander 74aa5da461SJens Wiklander cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry); 75aa5da461SJens Wiklander cm_el1_sysregs_context_restore(SECURE); 76aa5da461SJens Wiklander cm_set_next_eret_context(SECURE); 77aa5da461SJens Wiklander 78aa5da461SJens Wiklander /* 79aa5da461SJens Wiklander * Tell the OPTEE that it has to handle an FIQ (synchronously). 80aa5da461SJens Wiklander * Also the instruction in normal world where the interrupt was 81aa5da461SJens Wiklander * generated is passed for debugging purposes. It is safe to 82aa5da461SJens Wiklander * retrieve this address from ELR_EL3 as the secure context will 83aa5da461SJens Wiklander * not take effect until el3_exit(). 84aa5da461SJens Wiklander */ 85aa5da461SJens Wiklander SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); 86aa5da461SJens Wiklander } 87aa5da461SJens Wiklander 88aa5da461SJens Wiklander /******************************************************************************* 89aa5da461SJens Wiklander * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type 90aa5da461SJens Wiklander * (aarch32/aarch64) if not already known and initialises the context for entry 91aa5da461SJens Wiklander * into OPTEE for its initialization. 92aa5da461SJens Wiklander ******************************************************************************/ 93aa5da461SJens Wiklander int32_t opteed_setup(void) 94aa5da461SJens Wiklander { 95aa5da461SJens Wiklander entry_point_info_t *optee_ep_info; 96aa5da461SJens Wiklander uint32_t linear_id; 97*d59a6accSEdison Ai uint64_t opteed_pageable_part; 98*d59a6accSEdison Ai uint64_t opteed_mem_limit; 99aa5da461SJens Wiklander 100fd650ff6SSoby Mathew linear_id = plat_my_core_pos(); 101aa5da461SJens Wiklander 102aa5da461SJens Wiklander /* 103aa5da461SJens Wiklander * Get information about the Secure Payload (BL32) image. Its 104aa5da461SJens Wiklander * absence is a critical failure. TODO: Add support to 105aa5da461SJens Wiklander * conditionally include the SPD service 106aa5da461SJens Wiklander */ 107aa5da461SJens Wiklander optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 108aa5da461SJens Wiklander if (!optee_ep_info) { 109aa5da461SJens Wiklander WARN("No OPTEE provided by BL2 boot loader, Booting device" 110aa5da461SJens Wiklander " without OPTEE initialization. SMC`s destined for OPTEE" 111aa5da461SJens Wiklander " will return SMC_UNK\n"); 112aa5da461SJens Wiklander return 1; 113aa5da461SJens Wiklander } 114aa5da461SJens Wiklander 115aa5da461SJens Wiklander /* 116aa5da461SJens Wiklander * If there's no valid entry point for SP, we return a non-zero value 117aa5da461SJens Wiklander * signalling failure initializing the service. We bail out without 118aa5da461SJens Wiklander * registering any handlers 119aa5da461SJens Wiklander */ 120aa5da461SJens Wiklander if (!optee_ep_info->pc) 121aa5da461SJens Wiklander return 1; 122aa5da461SJens Wiklander 123aa5da461SJens Wiklander /* 124aa5da461SJens Wiklander * We could inspect the SP image and determine it's execution 125*d59a6accSEdison Ai * state i.e whether AArch32 or AArch64. 126aa5da461SJens Wiklander */ 127*d59a6accSEdison Ai opteed_rw = optee_ep_info->args.arg0; 128*d59a6accSEdison Ai opteed_pageable_part = optee_ep_info->args.arg1; 129*d59a6accSEdison Ai opteed_mem_limit = optee_ep_info->args.arg2; 130*d59a6accSEdison Ai 131aa5da461SJens Wiklander opteed_init_optee_ep_state(optee_ep_info, 132aa5da461SJens Wiklander opteed_rw, 133aa5da461SJens Wiklander optee_ep_info->pc, 134*d59a6accSEdison Ai opteed_pageable_part, 135*d59a6accSEdison Ai opteed_mem_limit, 136aa5da461SJens Wiklander &opteed_sp_context[linear_id]); 137aa5da461SJens Wiklander 138aa5da461SJens Wiklander /* 139aa5da461SJens Wiklander * All OPTEED initialization done. Now register our init function with 140aa5da461SJens Wiklander * BL31 for deferred invocation 141aa5da461SJens Wiklander */ 142aa5da461SJens Wiklander bl31_register_bl32_init(&opteed_init); 143aa5da461SJens Wiklander 144aa5da461SJens Wiklander return 0; 145aa5da461SJens Wiklander } 146aa5da461SJens Wiklander 147aa5da461SJens Wiklander /******************************************************************************* 148aa5da461SJens Wiklander * This function passes control to the OPTEE image (BL32) for the first time 149aa5da461SJens Wiklander * on the primary cpu after a cold boot. It assumes that a valid secure 150aa5da461SJens Wiklander * context has already been created by opteed_setup() which can be directly 151aa5da461SJens Wiklander * used. It also assumes that a valid non-secure context has been 152aa5da461SJens Wiklander * initialised by PSCI so it does not need to save and restore any 153aa5da461SJens Wiklander * non-secure state. This function performs a synchronous entry into 154aa5da461SJens Wiklander * OPTEE. OPTEE passes control back to this routine through a SMC. 155aa5da461SJens Wiklander ******************************************************************************/ 156aa5da461SJens Wiklander static int32_t opteed_init(void) 157aa5da461SJens Wiklander { 158fd650ff6SSoby Mathew uint32_t linear_id = plat_my_core_pos(); 159aa5da461SJens Wiklander optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 160aa5da461SJens Wiklander entry_point_info_t *optee_entry_point; 161aa5da461SJens Wiklander uint64_t rc; 162aa5da461SJens Wiklander 163aa5da461SJens Wiklander /* 164aa5da461SJens Wiklander * Get information about the OPTEE (BL32) image. Its 165aa5da461SJens Wiklander * absence is a critical failure. 166aa5da461SJens Wiklander */ 167aa5da461SJens Wiklander optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); 168aa5da461SJens Wiklander assert(optee_entry_point); 169aa5da461SJens Wiklander 170fd650ff6SSoby Mathew cm_init_my_context(optee_entry_point); 171aa5da461SJens Wiklander 172aa5da461SJens Wiklander /* 173aa5da461SJens Wiklander * Arrange for an entry into OPTEE. It will be returned via 174aa5da461SJens Wiklander * OPTEE_ENTRY_DONE case 175aa5da461SJens Wiklander */ 176aa5da461SJens Wiklander rc = opteed_synchronous_sp_entry(optee_ctx); 177aa5da461SJens Wiklander assert(rc != 0); 178aa5da461SJens Wiklander 179aa5da461SJens Wiklander return rc; 180aa5da461SJens Wiklander } 181aa5da461SJens Wiklander 182aa5da461SJens Wiklander 183aa5da461SJens Wiklander /******************************************************************************* 184aa5da461SJens Wiklander * This function is responsible for handling all SMCs in the Trusted OS/App 185aa5da461SJens Wiklander * range from the non-secure state as defined in the SMC Calling Convention 186aa5da461SJens Wiklander * Document. It is also responsible for communicating with the Secure 187aa5da461SJens Wiklander * payload to delegate work and return results back to the non-secure 188aa5da461SJens Wiklander * state. Lastly it will also return any information that OPTEE needs to do 189aa5da461SJens Wiklander * the work assigned to it. 190aa5da461SJens Wiklander ******************************************************************************/ 191aa5da461SJens Wiklander uint64_t opteed_smc_handler(uint32_t smc_fid, 192aa5da461SJens Wiklander uint64_t x1, 193aa5da461SJens Wiklander uint64_t x2, 194aa5da461SJens Wiklander uint64_t x3, 195aa5da461SJens Wiklander uint64_t x4, 196aa5da461SJens Wiklander void *cookie, 197aa5da461SJens Wiklander void *handle, 198aa5da461SJens Wiklander uint64_t flags) 199aa5da461SJens Wiklander { 200aa5da461SJens Wiklander cpu_context_t *ns_cpu_context; 201fd650ff6SSoby Mathew uint32_t linear_id = plat_my_core_pos(); 202aa5da461SJens Wiklander optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; 203aa5da461SJens Wiklander uint64_t rc; 204aa5da461SJens Wiklander 205aa5da461SJens Wiklander /* 206aa5da461SJens Wiklander * Determine which security state this SMC originated from 207aa5da461SJens Wiklander */ 208aa5da461SJens Wiklander 209aa5da461SJens Wiklander if (is_caller_non_secure(flags)) { 210aa5da461SJens Wiklander /* 211aa5da461SJens Wiklander * This is a fresh request from the non-secure client. 212aa5da461SJens Wiklander * The parameters are in x1 and x2. Figure out which 213aa5da461SJens Wiklander * registers need to be preserved, save the non-secure 214aa5da461SJens Wiklander * state and send the request to the secure payload. 215aa5da461SJens Wiklander */ 216aa5da461SJens Wiklander assert(handle == cm_get_context(NON_SECURE)); 217aa5da461SJens Wiklander 218aa5da461SJens Wiklander cm_el1_sysregs_context_save(NON_SECURE); 219aa5da461SJens Wiklander 220aa5da461SJens Wiklander /* 221aa5da461SJens Wiklander * We are done stashing the non-secure context. Ask the 222aa5da461SJens Wiklander * OPTEE to do the work now. 223aa5da461SJens Wiklander */ 224aa5da461SJens Wiklander 225aa5da461SJens Wiklander /* 226aa5da461SJens Wiklander * Verify if there is a valid context to use, copy the 227aa5da461SJens Wiklander * operation type and parameters to the secure context 228aa5da461SJens Wiklander * and jump to the fast smc entry point in the secure 229aa5da461SJens Wiklander * payload. Entry into S-EL1 will take place upon exit 230aa5da461SJens Wiklander * from this function. 231aa5da461SJens Wiklander */ 232aa5da461SJens Wiklander assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); 233aa5da461SJens Wiklander 234aa5da461SJens Wiklander /* Set appropriate entry for SMC. 235aa5da461SJens Wiklander * We expect OPTEE to manage the PSTATE.I and PSTATE.F 236aa5da461SJens Wiklander * flags as appropriate. 237aa5da461SJens Wiklander */ 238aa5da461SJens Wiklander if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { 239aa5da461SJens Wiklander cm_set_elr_el3(SECURE, (uint64_t) 240aa5da461SJens Wiklander &optee_vectors->fast_smc_entry); 241aa5da461SJens Wiklander } else { 242aa5da461SJens Wiklander cm_set_elr_el3(SECURE, (uint64_t) 243bbbbcdaeSDavid Cunado &optee_vectors->yield_smc_entry); 244aa5da461SJens Wiklander } 245aa5da461SJens Wiklander 246aa5da461SJens Wiklander cm_el1_sysregs_context_restore(SECURE); 247aa5da461SJens Wiklander cm_set_next_eret_context(SECURE); 248aa5da461SJens Wiklander 24956a6412dSAshutosh Singh write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 25056a6412dSAshutosh Singh CTX_GPREG_X4, 25156a6412dSAshutosh Singh read_ctx_reg(get_gpregs_ctx(handle), 25256a6412dSAshutosh Singh CTX_GPREG_X4)); 25356a6412dSAshutosh Singh write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 25456a6412dSAshutosh Singh CTX_GPREG_X5, 25556a6412dSAshutosh Singh read_ctx_reg(get_gpregs_ctx(handle), 25656a6412dSAshutosh Singh CTX_GPREG_X5)); 25756a6412dSAshutosh Singh write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 25856a6412dSAshutosh Singh CTX_GPREG_X6, 25956a6412dSAshutosh Singh read_ctx_reg(get_gpregs_ctx(handle), 26056a6412dSAshutosh Singh CTX_GPREG_X6)); 261aa5da461SJens Wiklander /* Propagate hypervisor client ID */ 262aa5da461SJens Wiklander write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), 263aa5da461SJens Wiklander CTX_GPREG_X7, 264aa5da461SJens Wiklander read_ctx_reg(get_gpregs_ctx(handle), 265aa5da461SJens Wiklander CTX_GPREG_X7)); 266aa5da461SJens Wiklander 267aa5da461SJens Wiklander SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); 268aa5da461SJens Wiklander } 269aa5da461SJens Wiklander 270aa5da461SJens Wiklander /* 271aa5da461SJens Wiklander * Returning from OPTEE 272aa5da461SJens Wiklander */ 273aa5da461SJens Wiklander 274aa5da461SJens Wiklander switch (smc_fid) { 275aa5da461SJens Wiklander /* 276aa5da461SJens Wiklander * OPTEE has finished initialising itself after a cold boot 277aa5da461SJens Wiklander */ 278aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_ENTRY_DONE: 279aa5da461SJens Wiklander /* 280aa5da461SJens Wiklander * Stash the OPTEE entry points information. This is done 281aa5da461SJens Wiklander * only once on the primary cpu 282aa5da461SJens Wiklander */ 283aa5da461SJens Wiklander assert(optee_vectors == NULL); 284aa5da461SJens Wiklander optee_vectors = (optee_vectors_t *) x1; 285aa5da461SJens Wiklander 286aa5da461SJens Wiklander if (optee_vectors) { 287aa5da461SJens Wiklander set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); 288aa5da461SJens Wiklander 289aa5da461SJens Wiklander /* 290aa5da461SJens Wiklander * OPTEE has been successfully initialized. 291aa5da461SJens Wiklander * Register power management hooks with PSCI 292aa5da461SJens Wiklander */ 293aa5da461SJens Wiklander psci_register_spd_pm_hook(&opteed_pm); 294aa5da461SJens Wiklander 295aa5da461SJens Wiklander /* 296aa5da461SJens Wiklander * Register an interrupt handler for S-EL1 interrupts 297aa5da461SJens Wiklander * when generated during code executing in the 298aa5da461SJens Wiklander * non-secure state. 299aa5da461SJens Wiklander */ 300aa5da461SJens Wiklander flags = 0; 301aa5da461SJens Wiklander set_interrupt_rm_flag(flags, NON_SECURE); 302aa5da461SJens Wiklander rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, 303aa5da461SJens Wiklander opteed_sel1_interrupt_handler, 304aa5da461SJens Wiklander flags); 305aa5da461SJens Wiklander if (rc) 306aa5da461SJens Wiklander panic(); 307aa5da461SJens Wiklander } 308aa5da461SJens Wiklander 309aa5da461SJens Wiklander /* 310aa5da461SJens Wiklander * OPTEE reports completion. The OPTEED must have initiated 311aa5da461SJens Wiklander * the original request through a synchronous entry into 312aa5da461SJens Wiklander * OPTEE. Jump back to the original C runtime context. 313aa5da461SJens Wiklander */ 314aa5da461SJens Wiklander opteed_synchronous_sp_exit(optee_ctx, x1); 315aa5da461SJens Wiklander 316aa5da461SJens Wiklander 317aa5da461SJens Wiklander /* 318aa5da461SJens Wiklander * These function IDs is used only by OP-TEE to indicate it has 319aa5da461SJens Wiklander * finished: 320aa5da461SJens Wiklander * 1. turning itself on in response to an earlier psci 321aa5da461SJens Wiklander * cpu_on request 322aa5da461SJens Wiklander * 2. resuming itself after an earlier psci cpu_suspend 323aa5da461SJens Wiklander * request. 324aa5da461SJens Wiklander */ 325aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_ON_DONE: 326aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_RESUME_DONE: 327aa5da461SJens Wiklander 328aa5da461SJens Wiklander 329aa5da461SJens Wiklander /* 330aa5da461SJens Wiklander * These function IDs is used only by the SP to indicate it has 331aa5da461SJens Wiklander * finished: 332aa5da461SJens Wiklander * 1. suspending itself after an earlier psci cpu_suspend 333aa5da461SJens Wiklander * request. 334aa5da461SJens Wiklander * 2. turning itself off in response to an earlier psci 335aa5da461SJens Wiklander * cpu_off request. 336aa5da461SJens Wiklander */ 337aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_OFF_DONE: 338aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_SUSPEND_DONE: 339aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: 340aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: 341aa5da461SJens Wiklander 342aa5da461SJens Wiklander /* 343aa5da461SJens Wiklander * OPTEE reports completion. The OPTEED must have initiated the 344aa5da461SJens Wiklander * original request through a synchronous entry into OPTEE. 345aa5da461SJens Wiklander * Jump back to the original C runtime context, and pass x1 as 346aa5da461SJens Wiklander * return value to the caller 347aa5da461SJens Wiklander */ 348aa5da461SJens Wiklander opteed_synchronous_sp_exit(optee_ctx, x1); 349aa5da461SJens Wiklander 350aa5da461SJens Wiklander /* 351aa5da461SJens Wiklander * OPTEE is returning from a call or being preempted from a call, in 352aa5da461SJens Wiklander * either case execution should resume in the normal world. 353aa5da461SJens Wiklander */ 354aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_CALL_DONE: 355aa5da461SJens Wiklander /* 356aa5da461SJens Wiklander * This is the result from the secure client of an 357aa5da461SJens Wiklander * earlier request. The results are in x0-x3. Copy it 358aa5da461SJens Wiklander * into the non-secure context, save the secure state 359aa5da461SJens Wiklander * and return to the non-secure state. 360aa5da461SJens Wiklander */ 361aa5da461SJens Wiklander assert(handle == cm_get_context(SECURE)); 362aa5da461SJens Wiklander cm_el1_sysregs_context_save(SECURE); 363aa5da461SJens Wiklander 364aa5da461SJens Wiklander /* Get a reference to the non-secure context */ 365aa5da461SJens Wiklander ns_cpu_context = cm_get_context(NON_SECURE); 366aa5da461SJens Wiklander assert(ns_cpu_context); 367aa5da461SJens Wiklander 368aa5da461SJens Wiklander /* Restore non-secure state */ 369aa5da461SJens Wiklander cm_el1_sysregs_context_restore(NON_SECURE); 370aa5da461SJens Wiklander cm_set_next_eret_context(NON_SECURE); 371aa5da461SJens Wiklander 372aa5da461SJens Wiklander SMC_RET4(ns_cpu_context, x1, x2, x3, x4); 373aa5da461SJens Wiklander 374aa5da461SJens Wiklander /* 375aa5da461SJens Wiklander * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution 376aa5da461SJens Wiklander * should resume in the normal world. 377aa5da461SJens Wiklander */ 378aa5da461SJens Wiklander case TEESMC_OPTEED_RETURN_FIQ_DONE: 379aa5da461SJens Wiklander /* Get a reference to the non-secure context */ 380aa5da461SJens Wiklander ns_cpu_context = cm_get_context(NON_SECURE); 381aa5da461SJens Wiklander assert(ns_cpu_context); 382aa5da461SJens Wiklander 383aa5da461SJens Wiklander /* 384aa5da461SJens Wiklander * Restore non-secure state. There is no need to save the 385aa5da461SJens Wiklander * secure system register context since OPTEE was supposed 386aa5da461SJens Wiklander * to preserve it during S-EL1 interrupt handling. 387aa5da461SJens Wiklander */ 388aa5da461SJens Wiklander cm_el1_sysregs_context_restore(NON_SECURE); 389aa5da461SJens Wiklander cm_set_next_eret_context(NON_SECURE); 390aa5da461SJens Wiklander 391aa5da461SJens Wiklander SMC_RET0((uint64_t) ns_cpu_context); 392aa5da461SJens Wiklander 393aa5da461SJens Wiklander default: 394aa5da461SJens Wiklander panic(); 395aa5da461SJens Wiklander } 396aa5da461SJens Wiklander } 397aa5da461SJens Wiklander 398aa5da461SJens Wiklander /* Define an OPTEED runtime service descriptor for fast SMC calls */ 399aa5da461SJens Wiklander DECLARE_RT_SVC( 400aa5da461SJens Wiklander opteed_fast, 401aa5da461SJens Wiklander 402aa5da461SJens Wiklander OEN_TOS_START, 403aa5da461SJens Wiklander OEN_TOS_END, 404aa5da461SJens Wiklander SMC_TYPE_FAST, 405aa5da461SJens Wiklander opteed_setup, 406aa5da461SJens Wiklander opteed_smc_handler 407aa5da461SJens Wiklander ); 408aa5da461SJens Wiklander 409bbbbcdaeSDavid Cunado /* Define an OPTEED runtime service descriptor for yielding SMC calls */ 410aa5da461SJens Wiklander DECLARE_RT_SVC( 411aa5da461SJens Wiklander opteed_std, 412aa5da461SJens Wiklander 413aa5da461SJens Wiklander OEN_TOS_START, 414aa5da461SJens Wiklander OEN_TOS_END, 415bbbbcdaeSDavid Cunado SMC_TYPE_YIELD, 416aa5da461SJens Wiklander NULL, 417aa5da461SJens Wiklander opteed_smc_handler 418aa5da461SJens Wiklander ); 419