xref: /rk3399_ARM-atf/plat/xilinx/zynqmp/pm_service/zynqmp_pm_svc_main.c (revision 9a905a7d86867bab8a5d9befd40a67a6ab9aaea2)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, Advanced Micro Devices Inc. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 /*
9  * Top-level SMC handler for ZynqMP power management calls and
10  * IPI setup functions for communication with PMU.
11  */
12 
13 #include <errno.h>
14 
15 #include <common/runtime_svc.h>
16 #if ZYNQMP_WDT_RESTART
17 #include <arch_helpers.h>
18 #include <drivers/arm/gicv2.h>
19 #include <lib/mmio.h>
20 #include <lib/spinlock.h>
21 #include <plat/common/platform.h>
22 #endif
23 
24 #include <plat_private.h>
25 #include "pm_client.h"
26 #include "pm_ipi.h"
27 #include "zynqmp_pm_api_sys.h"
28 #include "zynqmp_pm_defs.h"
29 
30 /* pm_up = !0 - UP, pm_up = 0 - DOWN */
31 static int32_t pm_up, ipi_irq_flag;
32 
33 #if ZYNQMP_WDT_RESTART
34 static spinlock_t inc_lock;
35 static int active_cores = 0;
36 #endif
37 
38 /**
39  * pm_context - Structure which contains data for power management
40  * @api_version		version of PM API, must match with one on PMU side
41  * @payload		payload array used to store received
42  *			data from ipi buffer registers
43  */
44 static struct {
45 	uint32_t api_version;
46 	uint32_t payload[PAYLOAD_ARG_CNT];
47 } pm_ctx;
48 
49 #if ZYNQMP_WDT_RESTART
50 /**
51  * trigger_wdt_restart() - Trigger warm restart event to APU cores
52  *
53  * This function triggers SGI for all active APU CPUs. SGI handler then
54  * power down CPU and call system reset.
55  */
56 static void trigger_wdt_restart(void)
57 {
58 	uint32_t core_count = 0;
59 	uint32_t core_status[3];
60 	uint32_t target_cpu_list = 0;
61 	int i;
62 
63 	for (i = 0; i < 4; i++) {
64 		pm_get_node_status(NODE_APU_0 + i, core_status);
65 		if (core_status[0] == 1) {
66 			core_count++;
67 			target_cpu_list |= (1 << i);
68 		}
69 	}
70 
71 	spin_lock(&inc_lock);
72 	active_cores = core_count;
73 	spin_unlock(&inc_lock);
74 
75 	INFO("Active Cores: %d\n", active_cores);
76 
77 	for (i = PLATFORM_CORE_COUNT - 1; i >= 0; i--) {
78 		if (target_cpu_list & (1 << i)) {
79 			/* trigger SGI to active cores */
80 			plat_ic_raise_el3_sgi(ARM_IRQ_SEC_SGI_7, i);
81 		}
82 	}
83 }
84 
85 /**
86  * ttc_fiq_handler() - TTC Handler for timer event
87  * @id         number of the highest priority pending interrupt of the type
88  *             that this handler was registered for
89  * @flags      security state, bit[0]
90  * @handler    pointer to 'cpu_context' structure of the current CPU for the
91  *             security state specified in the 'flags' parameter
92  * @cookie     unused
93  *
94  * Function registered as INTR_TYPE_EL3 interrupt handler
95  *
96  * When WDT event is received in PMU, PMU needs to notify master to do cleanup
97  * if required. PMU sets up timer and starts timer to overflow in zero time upon
98  * WDT event. ATF handles this timer event and takes necessary action required
99  * for warm restart.
100  *
101  * In presence of non-secure software layers (EL1/2) sets the interrupt
102  * at registered entrance in GIC and informs that PMU responsed or demands
103  * action.
104  */
105 static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
106 				void *cookie)
107 {
108 	INFO("BL31: Got TTC FIQ\n");
109 
110 	plat_ic_end_of_interrupt(id);
111 
112 	/* Clear TTC interrupt by reading interrupt register */
113 	mmio_read_32(TTC3_INTR_REGISTER_1);
114 
115 	/* Disable the timer interrupts */
116 	mmio_write_32(TTC3_INTR_ENABLE_1, 0);
117 
118 	trigger_wdt_restart();
119 
120 	return 0;
121 }
122 
123 /**
124  * zynqmp_sgi7_irq() - Handler for SGI7 IRQ
125  * @id         number of the highest priority pending interrupt of the type
126  *             that this handler was registered for
127  * @flags      security state, bit[0]
128  * @handler    pointer to 'cpu_context' structure of the current CPU for the
129  *             security state specified in the 'flags' parameter
130  * @cookie     unused
131  *
132  * Function registered as INTR_TYPE_EL3 interrupt handler
133  *
134  * On receiving WDT event from PMU, ATF generates SGI7 to all running CPUs.
135  * In response to SGI7 interrupt, each CPUs do clean up if required and last
136  * running CPU calls system restart.
137  */
138 static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
139 						 void *handle, void *cookie)
140 {
141 	int i;
142 	uint32_t value;
143 
144 	/* enter wfi and stay there */
145 	INFO("Entering wfi\n");
146 
147 	spin_lock(&inc_lock);
148 	active_cores--;
149 
150 	for (i = 0; i < 4; i++) {
151 		mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
152 				0xffffffff);
153 	}
154 
155 	dsb();
156 
157 	spin_unlock(&inc_lock);
158 
159 	if (active_cores == 0) {
160 		pm_mmio_read(PMU_GLOBAL_GEN_STORAGE4, &value);
161 		value = (value & RESTART_SCOPE_MASK) >> RESTART_SCOPE_SHIFT;
162 		pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET, value);
163 	}
164 
165 	/* enter wfi and stay there */
166 	while (1)
167 		wfi();
168 }
169 
170 /**
171  * pm_wdt_restart_setup() - Setup warm restart interrupts
172  *
173  * This function sets up handler for SGI7 and TTC interrupts
174  * used for warm restart.
175  */
176 static int pm_wdt_restart_setup(void)
177 {
178 	int ret;
179 
180 	/* register IRQ handler for SGI7 */
181 	ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
182 	if (ret) {
183 		WARN("BL31: registering SGI7 interrupt failed\n");
184 		goto err;
185 	}
186 
187 	ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
188 	if (ret)
189 		WARN("BL31: registering TTC3 interrupt failed\n");
190 
191 err:
192 	return ret;
193 }
194 #endif
195 
196 /**
197  * pm_setup() - PM service setup
198  *
199  * @return	On success, the initialization function must return 0.
200  *		Any other return value will cause the framework to ignore
201  *		the service
202  *
203  * Initialization functions for ZynqMP power management for
204  * communicaton with PMU.
205  *
206  * Called from sip_svc_setup initialization function with the
207  * rt_svc_init signature.
208  */
209 int32_t pm_setup(void)
210 {
211 	enum pm_ret_status err;
212 
213 	pm_ipi_init(primary_proc);
214 
215 	err = pm_get_api_version(&pm_ctx.api_version);
216 	if (err != PM_RET_SUCCESS) {
217 		ERROR("BL31: Failed to read Platform Management API version. "
218 		      "Return: %d\n", err);
219 		return -EINVAL;
220 	}
221 	if (pm_ctx.api_version < PM_VERSION) {
222 		ERROR("BL31: Platform Management API version error. Expected: "
223 		      "v%d.%d - Found: v%d.%d\n", PM_VERSION_MAJOR,
224 		      PM_VERSION_MINOR, pm_ctx.api_version >> 16,
225 		      pm_ctx.api_version & 0xFFFFU);
226 		return -EINVAL;
227 	}
228 
229 	int32_t status = 0, ret = 0;
230 #if ZYNQMP_WDT_RESTART
231 	status = pm_wdt_restart_setup();
232 	if (status)
233 		WARN("BL31: warm-restart setup failed\n");
234 #endif
235 
236 	if (status >= 0) {
237 		INFO("BL31: PM Service Init Complete: API v%d.%d\n",
238 		     PM_VERSION_MAJOR, PM_VERSION_MINOR);
239 		ret = 0;
240 	} else {
241 		INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
242 		ret = status;
243 	}
244 
245 	pm_up = !status;
246 
247 	return ret;
248 }
249 
250 /**
251  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
252  * @smc_fid - Function Identifier
253  * @x1 - x4 - Arguments
254  * @cookie  - Unused
255  * @handler - Pointer to caller's context structure
256  *
257  * @return  - Unused
258  *
259  * Determines that smc_fid is valid and supported PM SMC Function ID from the
260  * list of pm_api_ids, otherwise completes the request with
261  * the unknown SMC Function ID
262  *
263  * The SMC calls for PM service are forwarded from SIP Service SMC handler
264  * function with rt_svc_handle signature
265  */
266 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
267 			uint64_t x4, const void *cookie, void *handle, uint64_t flags)
268 {
269 	enum pm_ret_status ret;
270 	uint32_t payload[PAYLOAD_ARG_CNT];
271 
272 	uint32_t pm_arg[5];
273 	uint32_t result[PAYLOAD_ARG_CNT] = {0};
274 	uint32_t api_id;
275 
276 	/* Handle case where PM wasn't initialized properly */
277 	if (pm_up == 0)
278 		SMC_RET1(handle, SMC_UNK);
279 
280 	pm_arg[0] = (uint32_t)x1;
281 	pm_arg[1] = (uint32_t)(x1 >> 32);
282 	pm_arg[2] = (uint32_t)x2;
283 	pm_arg[3] = (uint32_t)(x2 >> 32);
284 	pm_arg[4] = (uint32_t)x3;
285 
286 	api_id = smc_fid & FUNCID_NUM_MASK;
287 
288 	switch (api_id) {
289 	/* PM API Functions */
290 	case PM_SELF_SUSPEND:
291 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
292 				      pm_arg[3]);
293 		SMC_RET1(handle, (uint64_t)ret);
294 
295 	case PM_REQ_SUSPEND:
296 		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
297 				     pm_arg[3]);
298 		SMC_RET1(handle, (uint64_t)ret);
299 
300 	case PM_REQ_WAKEUP:
301 	{
302 		/* Use address flag is encoded in the 1st bit of the low-word */
303 		uint32_t set_addr = pm_arg[1] & 0x1U;
304 		uint64_t address = (uint64_t)pm_arg[2] << 32U;
305 
306 		address |= pm_arg[1] & (~0x1U);
307 		ret = pm_req_wakeup(pm_arg[0], set_addr, address,
308 				    pm_arg[3]);
309 		SMC_RET1(handle, (uint64_t)ret);
310 	}
311 
312 	case PM_FORCE_POWERDOWN:
313 		ret = pm_force_powerdown(pm_arg[0], pm_arg[1]);
314 		SMC_RET1(handle, (uint64_t)ret);
315 
316 	case PM_ABORT_SUSPEND:
317 		ret = pm_abort_suspend(pm_arg[0]);
318 		SMC_RET1(handle, (uint64_t)ret);
319 
320 	case PM_SET_WAKEUP_SOURCE:
321 		ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]);
322 		SMC_RET1(handle, (uint64_t)ret);
323 
324 	case PM_SYSTEM_SHUTDOWN:
325 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1]);
326 		SMC_RET1(handle, (uint64_t)ret);
327 
328 	case PM_REQ_NODE:
329 		ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
330 		SMC_RET1(handle, (uint64_t)ret);
331 
332 	case PM_SET_REQUIREMENT:
333 		ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
334 					 pm_arg[3]);
335 		SMC_RET1(handle, (uint64_t)ret);
336 
337 	case PM_GET_API_VERSION:
338 		if (ipi_irq_flag == 0U) {
339 			/*
340 			 * Enable IPI IRQ
341 			 * assume the rich OS is OK to handle callback IRQs now.
342 			 * Even if we were wrong, it would not enable the IRQ in
343 			 * the GIC.
344 			 */
345 			pm_ipi_irq_enable(primary_proc);
346 			ipi_irq_flag = 1U;
347 		}
348 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
349 			 ((uint64_t)pm_ctx.api_version << 32));
350 	case PM_FPGA_LOAD:
351 		ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
352 		SMC_RET1(handle, (uint64_t)ret);
353 
354 	case PM_FPGA_GET_STATUS:
355 	{
356 		uint32_t value = 0U;
357 
358 		ret = pm_fpga_get_status(&value);
359 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
360 	}
361 
362 	case PM_SECURE_RSA_AES:
363 		ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
364 				       pm_arg[3]);
365 		SMC_RET1(handle, (uint64_t)ret);
366 
367 	case PM_GET_CALLBACK_DATA:
368 		ret = pm_get_callbackdata(result, ARRAY_SIZE(result));
369 		if (ret != PM_RET_SUCCESS) {
370 			result[0] = ret;
371 		}
372 
373 		SMC_RET2(handle,
374 			 (uint64_t)result[0] | ((uint64_t)result[1] << 32),
375 			 (uint64_t)result[2] | ((uint64_t)result[3] << 32));
376 	case PM_IOCTL:
377 	{
378 		uint32_t value = 0U;
379 
380 		ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
381 			       pm_arg[3], &value);
382 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
383 	}
384 
385 	case PM_QUERY_DATA:
386 	{
387 		uint32_t data[4] = { 0 };
388 
389 		pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
390 			      pm_arg[3], data);
391 		SMC_RET2(handle, (uint64_t)data[0]  | ((uint64_t)data[1] << 32),
392 			 (uint64_t)data[2] | ((uint64_t)data[3] << 32));
393 	}
394 
395 	case PM_CLOCK_ENABLE:
396 		ret = pm_clock_enable(pm_arg[0]);
397 		SMC_RET1(handle, (uint64_t)ret);
398 
399 	case PM_CLOCK_DISABLE:
400 		ret = pm_clock_disable(pm_arg[0]);
401 		SMC_RET1(handle, (uint64_t)ret);
402 
403 	case PM_CLOCK_GETSTATE:
404 	{
405 		uint32_t value = 0U;
406 
407 		ret = pm_clock_getstate(pm_arg[0], &value);
408 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
409 	}
410 
411 	case PM_CLOCK_SETDIVIDER:
412 		ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]);
413 		SMC_RET1(handle, (uint64_t)ret);
414 
415 	case PM_CLOCK_GETDIVIDER:
416 	{
417 		uint32_t value = 0U;
418 
419 		ret = pm_clock_getdivider(pm_arg[0], &value);
420 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32);
421 	}
422 
423 	case PM_CLOCK_SETRATE:
424 		ret = pm_clock_setrate(pm_arg[0],
425 		       ((uint64_t)pm_arg[2]) << 32 | pm_arg[1]);
426 
427 		SMC_RET1(handle, (uint64_t)ret);
428 
429 	case PM_CLOCK_GETRATE:
430 	{
431 		uint64_t value = 0;
432 
433 		ret = pm_clock_getrate(pm_arg[0], &value);
434 		SMC_RET2(handle, (uint64_t)ret |
435 				  (((uint64_t)value & 0xFFFFFFFFU) << 32U),
436 			 (value >> 32U) & 0xFFFFFFFFU);
437 
438 	}
439 
440 	case PM_CLOCK_SETPARENT:
441 		ret = pm_clock_setparent(pm_arg[0], pm_arg[1]);
442 		SMC_RET1(handle, (uint64_t)ret);
443 
444 	case PM_CLOCK_GETPARENT:
445 	{
446 		uint32_t value = 0U;
447 
448 		ret = pm_clock_getparent(pm_arg[0], &value);
449 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
450 	}
451 
452 	case PM_GET_TRUSTZONE_VERSION:
453 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
454 			 ((uint64_t)ZYNQMP_TZ_VERSION << 32U));
455 
456 	case PM_SET_SUSPEND_MODE:
457 		ret = pm_set_suspend_mode(pm_arg[0]);
458 		SMC_RET1(handle, (uint64_t)ret);
459 
460 	case PM_SECURE_SHA:
461 		ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
462 				pm_arg[3]);
463 		SMC_RET1(handle, (uint64_t)ret);
464 
465 	case PM_SECURE_RSA:
466 		ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
467 				       pm_arg[3]);
468 		SMC_RET1(handle, (uint64_t)ret);
469 
470 	case PM_SECURE_IMAGE:
471 	{
472 		ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
473 				      pm_arg[3], &result[0]);
474 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
475 			 result[1]);
476 	}
477 
478 	case PM_FPGA_READ:
479 	{
480 		uint32_t value = 0U;
481 
482 		ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
483 				   &value);
484 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
485 	}
486 
487 	case PM_SECURE_AES:
488 	{
489 		uint32_t value = 0U;
490 
491 		ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value);
492 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
493 	}
494 
495 	case PM_PLL_SET_PARAMETER:
496 		ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2]);
497 		SMC_RET1(handle, (uint64_t)ret);
498 
499 	case PM_PLL_GET_PARAMETER:
500 	{
501 		uint32_t value = 0U;
502 
503 		ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value);
504 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32U));
505 	}
506 
507 	case PM_PLL_SET_MODE:
508 		ret = pm_pll_set_mode(pm_arg[0], pm_arg[1]);
509 		SMC_RET1(handle, (uint64_t)ret);
510 
511 	case PM_PLL_GET_MODE:
512 	{
513 		uint32_t mode = 0U;
514 
515 		ret = pm_pll_get_mode(pm_arg[0], &mode);
516 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32U));
517 	}
518 
519 	case PM_REGISTER_ACCESS:
520 	{
521 		uint32_t value = 0U;
522 
523 		ret = pm_register_access(pm_arg[0], pm_arg[1], pm_arg[2],
524 					 pm_arg[3], &value);
525 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
526 	}
527 
528 	case PM_EFUSE_ACCESS:
529 	{
530 		uint32_t value = 0U;
531 
532 #if defined(ZYNQMP_SECURE_EFUSES)
533 		if (is_caller_non_secure(flags)) {
534 			SMC_RET1(handle,
535 				 (((uint64_t)PM_RET_ERROR_NOT_ENABLED) << 32U) |
536 				 (uint64_t)PM_RET_ERROR_ACCESS);
537 		}
538 #endif
539 		ret = pm_efuse_access(pm_arg[0], pm_arg[1], &value);
540 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32U);
541 	}
542 
543 	case PM_FPGA_GET_VERSION:
544 	case PM_FPGA_GET_FEATURE_LIST:
545 	{
546 		uint32_t ret_payload[PAYLOAD_ARG_CNT];
547 
548 		PM_PACK_PAYLOAD5(payload, smc_fid & FUNCID_NUM_MASK,
549 				 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
550 		ret = pm_ipi_send_sync(primary_proc, payload, ret_payload, 3U);
551 		SMC_RET2(handle, (uint64_t)ret | (uint64_t)ret_payload[0] << 32U,
552 			 (uint64_t)ret_payload[1] | (uint64_t)ret_payload[2] << 32U);
553 	}
554 
555 	case PM_FEATURE_CHECK:
556 	{
557 		uint32_t version = 0;
558 		uint32_t bit_mask[2] = {0};
559 
560 		ret = pm_feature_check(pm_arg[0], &version, bit_mask,
561 				       ARRAY_SIZE(bit_mask));
562 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)version << 32U),
563 			 (uint64_t)bit_mask[0] | ((uint64_t)bit_mask[1] << 32U));
564 	}
565 
566 	default:
567 		/* Send request to the PMU */
568 		PM_PACK_PAYLOAD6(payload, api_id, pm_arg[0], pm_arg[1],
569 				 pm_arg[2], pm_arg[3], pm_arg[4]);
570 		ret = pm_ipi_send_sync(primary_proc, payload, result,
571 				       PAYLOAD_ARG_CNT);
572 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
573 			 (uint64_t)result[1] | ((uint64_t)result[2] << 32U));
574 	}
575 }
576