xref: /rk3399_ARM-atf/plat/xilinx/zynqmp/pm_service/zynqmp_pm_svc_main.c (revision 5be66449a98c341493b3cb70bde171399912abd9)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023-2025, Advanced Micro Devices, Inc. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 /*
9  * Top-level SMC handler for ZynqMP power management calls and
10  * IPI setup functions for communication with PMU.
11  */
12 
13 #include <errno.h>
14 
15 #include <arch_helpers.h>
16 #include <common/runtime_svc.h>
17 #include <drivers/arm/gicv2.h>
18 #include <lib/mmio.h>
19 #include <lib/spinlock.h>
20 #include <plat/common/platform.h>
21 #include <plat_pm_common.h>
22 
23 #include <plat_private.h>
24 #include "pm_client.h"
25 #include "pm_ipi.h"
26 #include "pm_svc_main.h"
27 #include "zynqmp_pm_api_sys.h"
28 #include "zynqmp_pm_defs.h"
29 
30 /* pm_up = !0 - UP, pm_up = 0 - DOWN */
31 static int32_t pm_up, ipi_irq_flag;
32 
33 #if ZYNQMP_WDT_RESTART
34 static spinlock_t inc_lock;
35 static int active_cores = 0;
36 #endif
37 
38 /**
39  * typedef pm_ctx_t - Structure which contains data for power management.
40  * @api_version: version of PM API, must match with one on PMU side.
41  * @payload: payload array used to store received.
42  *           data from ipi buffer registers.
43  *
44  */
45 typedef struct {
46 	uint32_t api_version;
47 	uint32_t payload[PAYLOAD_ARG_CNT];
48 } pm_ctx_t;
49 
50 static pm_ctx_t pm_ctx;
51 
52 #if ZYNQMP_WDT_RESTART
53 /**
54  * trigger_wdt_restart() - Trigger warm restart event to APU cores.
55  *
56  * This function triggers SGI for all active APU CPUs. SGI handler then
57  * power down CPU and call system reset.
58  *
59  */
60 static void trigger_wdt_restart(void)
61 {
62 	uint32_t core_count = 0;
63 	uint32_t core_status[3];
64 	uint32_t target_cpu_list = 0;
65 	int i;
66 
67 	for (i = 0; i < 4; i++) {
68 		pm_get_node_status(NODE_APU_0 + i, core_status, SECURE);
69 		if (core_status[0] == 1) {
70 			core_count++;
71 			target_cpu_list |= (1 << i);
72 		}
73 	}
74 
75 	spin_lock(&inc_lock);
76 	active_cores = core_count;
77 	spin_unlock(&inc_lock);
78 
79 	INFO("Active Cores: %d\n", active_cores);
80 
81 	for (i = PLATFORM_CORE_COUNT - 1; i >= 0; i--) {
82 		if (target_cpu_list & (1 << i)) {
83 			/* trigger SGI to active cores */
84 			plat_ic_raise_el3_sgi(ARM_IRQ_SEC_SGI_7, i);
85 		}
86 	}
87 }
88 
89 /**
90  * ttc_fiq_handler() - TTC Handler for timer event.
91  * @id: number of the highest priority pending interrupt of the type
92  *      that this handler was registered for.
93  * @flags: security state, bit[0].
94  * @handle: pointer to 'cpu_context' structure of the current CPU for the
95  *           security state specified in the 'flags' parameter.
96  * @cookie: unused.
97  *
98  * Function registered as INTR_TYPE_EL3 interrupt handler.
99  *
100  * When WDT event is received in PMU, PMU needs to notify master to do cleanup
101  * if required. PMU sets up timer and starts timer to overflow in zero time upon
102  * WDT event. TF-A handles this timer event and takes necessary action required
103  * for warm restart.
104  *
105  * In presence of non-secure software layers (EL1/2) sets the interrupt
106  * at registered entrance in GIC and informs that PMU responded or demands
107  * action.
108  *
109  * Return: 0 on success.
110  *
111  */
112 static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle,
113 				void *cookie)
114 {
115 	INFO("BL31: Got TTC FIQ\n");
116 
117 	plat_ic_end_of_interrupt(id);
118 
119 	/* Clear TTC interrupt by reading interrupt register */
120 	mmio_read_32(TTC3_INTR_REGISTER_1);
121 
122 	/* Disable the timer interrupts */
123 	mmio_write_32(TTC3_INTR_ENABLE_1, 0);
124 
125 	trigger_wdt_restart();
126 
127 	return 0;
128 }
129 
130 /**
131  * zynqmp_sgi7_irq() - Handler for SGI7 IRQ.
132  * @id: number of the highest priority pending interrupt of the type
133  *      that this handler was registered for.
134  * @flags: security state, bit[0].
135  * @handle: pointer to 'cpu_context' structure of the current CPU for the
136  *           security state specified in the 'flags' parameter.
137  * @cookie: unused.
138  *
139  * Function registered as INTR_TYPE_EL3 interrupt handler
140  *
141  * On receiving WDT event from PMU, TF-A generates SGI7 to all running CPUs.
142  * In response to SGI7 interrupt, each CPUs do clean up if required and last
143  * running CPU calls system restart.
144  *
145  * Return: This function does not return a value and it enters into wfi.
146  */
147 static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags,
148 						 void *handle, void *cookie)
149 {
150 	int i;
151 	uint32_t value;
152 
153 	/* enter wfi and stay there */
154 	INFO("Entering wfi\n");
155 
156 	spin_lock(&inc_lock);
157 	active_cores--;
158 
159 	for (i = 0; i < 4; i++) {
160 		mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i,
161 				0xffffffff);
162 	}
163 
164 	dsb();
165 
166 	spin_unlock(&inc_lock);
167 
168 	if (active_cores == 0) {
169 		pm_mmio_read(PMU_GLOBAL_GEN_STORAGE4, &value, SECURE);
170 		value = (value & RESTART_SCOPE_MASK) >> RESTART_SCOPE_SHIFT;
171 		pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET, value, SECURE);
172 	}
173 
174 	/* enter wfi and stay there */
175 	while (1)
176 		wfi();
177 }
178 
179 /**
180  * pm_wdt_restart_setup() - Setup warm restart interrupts.
181  *
182  * Return: Returns status, 0 on success or error+reason.
183  *
184  * This function sets up handler for SGI7 and TTC interrupts
185  * used for warm restart.
186  */
187 static int pm_wdt_restart_setup(void)
188 {
189 	int ret;
190 
191 	/* register IRQ handler for SGI7 */
192 	ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq);
193 	if (ret) {
194 		WARN("BL31: registering SGI7 interrupt failed\n");
195 		goto err;
196 	}
197 
198 	ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler);
199 	if (ret)
200 		WARN("BL31: registering TTC3 interrupt failed\n");
201 
202 err:
203 	return ret;
204 }
205 #endif
206 
207 /**
208  * pm_setup() - PM service setup.
209  *
210  * Return: On success, the initialization function must return 0.
211  *         Any other return value will cause the framework to ignore
212  *         the service.
213  *
214  * Initialization functions for ZynqMP power management for
215  * communicaton with PMU.
216  *
217  * Called from sip_svc_setup initialization function with the
218  * rt_svc_init signature.
219  *
220  */
221 int32_t pm_setup(void)
222 {
223 	enum pm_ret_status err;
224 	int32_t ret = -EINVAL;
225 
226 	pm_ipi_init(primary_proc);
227 
228 	err = pm_get_api_version(&pm_ctx.api_version, SECURE);
229 	if (err != PM_RET_SUCCESS) {
230 		ERROR("BL31: Failed to read Platform Management API version. "
231 		      "Return: %d\n", err);
232 		goto exit_label;
233 	}
234 	if (pm_ctx.api_version < PM_VERSION) {
235 		ERROR("BL31: Platform Management API version error. Expected: "
236 		      "v%d.%d - Found: v%d.%d\n", PM_VERSION_MAJOR,
237 		      PM_VERSION_MINOR, pm_ctx.api_version >> 16,
238 		      pm_ctx.api_version & 0xFFFFU);
239 		goto exit_label;
240 	}
241 
242 	int32_t status = 0;
243 #if ZYNQMP_WDT_RESTART
244 	status = pm_wdt_restart_setup();
245 	if (status)
246 		WARN("BL31: warm-restart setup failed\n");
247 #endif
248 
249 	if (status >= 0) {
250 		INFO("BL31: PM Service Init Complete: API v%d.%d\n",
251 		     PM_VERSION_MAJOR, PM_VERSION_MINOR);
252 		ret = 0;
253 	} else {
254 		INFO("BL31: PM Service Init Failed, Error Code %d!\n", status);
255 		ret = status;
256 	}
257 
258 	pm_up = (status == 0);
259 
260 exit_label:
261 	return ret;
262 }
263 
264 /**
265  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
266  * @smc_fid: Function Identifier.
267  * @x1: Arguments.
268  * @x2: Arguments.
269  * @x3: Arguments.
270  * @x4: Arguments.
271  * @cookie: Unused.
272  * @handle: Pointer to caller's context structure.
273  * @flags: SECURE or NON_SECURE
274  *
275  * Determines that smc_fid is valid and supported PM SMC Function ID from the
276  * list of pm_api_ids, otherwise completes the request with
277  * the unknown SMC Function ID.
278  *
279  * The SMC calls for PM service are forwarded from SIP Service SMC handler
280  * function with rt_svc_handle signature.
281  *
282  * Return: Unused.
283  *
284  */
285 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
286 			uint64_t x4, const void *cookie, void *handle, uint64_t flags)
287 {
288 	(void)x4;
289 	(void)cookie;
290 	enum pm_ret_status ret;
291 	uint32_t payload[PAYLOAD_ARG_CNT];
292 
293 	uint32_t pm_arg[5];
294 	uint32_t result[RET_PAYLOAD_ARG_CNT] = {0};
295 	uint32_t api_id;
296 	uint32_t security_flag = NON_SECURE;
297 	bool status = false, status_tmp = false;
298 
299 	/* Handle case where PM wasn't initialized properly */
300 	if (pm_up == 0)
301 		SMC_RET1(handle, SMC_UNK);
302 
303 	/*
304 	 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0)
305 	 * if smc called is secure
306 	 *
307 	 * Add redundant macro call to immune the code from glitches
308 	 */
309 	SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags);
310 	if ((status != false) && (status_tmp != false)) {
311 		security_flag = SECURE;
312 	}
313 
314 	pm_arg[0] = (uint32_t)x1;
315 	pm_arg[1] = (uint32_t)(x1 >> 32);
316 	pm_arg[2] = (uint32_t)x2;
317 	pm_arg[3] = (uint32_t)(x2 >> 32);
318 	pm_arg[4] = (uint32_t)x3;
319 
320 	api_id = smc_fid & FUNCID_NUM_MASK;
321 
322 	switch (api_id) {
323 	/* PM API Functions */
324 	case PM_SELF_SUSPEND:
325 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
326 				      pm_arg[3], security_flag);
327 		SMC_RET1(handle, (uint64_t)ret);
328 
329 	case PM_REQ_SUSPEND:
330 		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
331 				     pm_arg[3], security_flag);
332 		SMC_RET1(handle, (uint64_t)ret);
333 
334 	case PM_REQ_WAKEUP:
335 	{
336 		/* Use address flag is encoded in the 1st bit of the low-word */
337 		uint32_t set_addr = pm_arg[1] & 0x1U;
338 		uint64_t address = (uint64_t)pm_arg[2] << 32U;
339 
340 		address |= (uint64_t)(pm_arg[1] & (~0x1U));
341 		ret = pm_req_wakeup(pm_arg[0], set_addr, address,
342 				    pm_arg[3], security_flag);
343 		SMC_RET1(handle, (uint64_t)ret);
344 	}
345 
346 	case PM_FORCE_POWERDOWN:
347 		ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag);
348 		SMC_RET1(handle, (uint64_t)ret);
349 
350 	case PM_ABORT_SUSPEND:
351 		ret = pm_abort_suspend(pm_arg[0], security_flag);
352 		SMC_RET1(handle, (uint64_t)ret);
353 
354 	case PM_SET_WAKEUP_SOURCE:
355 		ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2], security_flag);
356 		SMC_RET1(handle, (uint64_t)ret);
357 
358 	case PM_SYSTEM_SHUTDOWN:
359 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag);
360 		SMC_RET1(handle, (uint64_t)ret);
361 
362 	case PM_REQ_NODE:
363 		ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag);
364 		SMC_RET1(handle, (uint64_t)ret);
365 
366 	case PM_SET_REQUIREMENT:
367 		ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2],
368 					 pm_arg[3], security_flag);
369 		SMC_RET1(handle, (uint64_t)ret);
370 
371 	case PM_GET_API_VERSION:
372 		if ((uint32_t)ipi_irq_flag == 0U) {
373 			/*
374 			 * Enable IPI IRQ
375 			 * assume the rich OS is OK to handle callback IRQs now.
376 			 * Even if we were wrong, it would not enable the IRQ in
377 			 * the GIC.
378 			 */
379 			pm_ipi_irq_enable(primary_proc);
380 			ipi_irq_flag = 1U;
381 		}
382 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
383 			 ((uint64_t)pm_ctx.api_version << 32));
384 	case PM_FPGA_LOAD:
385 		ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], security_flag);
386 		SMC_RET1(handle, (uint64_t)ret);
387 
388 	case PM_FPGA_GET_STATUS:
389 	{
390 		uint32_t value = 0U;
391 
392 		ret = pm_fpga_get_status(&value, security_flag);
393 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32)));
394 	}
395 
396 	case PM_SECURE_RSA_AES:
397 		ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2],
398 				       pm_arg[3], security_flag);
399 		SMC_RET1(handle, (uint64_t)ret);
400 
401 	case PM_GET_CALLBACK_DATA:
402 		ret = pm_get_callbackdata(result, ARRAY_SIZE(result));
403 		if (ret != PM_RET_SUCCESS) {
404 			result[0] = ret;
405 		}
406 
407 		SMC_RET2(handle,
408 			 ((uint64_t)result[0] | ((uint64_t)result[1] << 32)),
409 			 ((uint64_t)result[2] | ((uint64_t)result[3] << 32)));
410 	case PM_IOCTL:
411 	{
412 		uint32_t value = 0U;
413 
414 		ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2],
415 			       pm_arg[3], &value, security_flag);
416 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32)));
417 	}
418 
419 	case PM_QUERY_DATA:
420 	{
421 		uint32_t data[4] = { 0 };
422 
423 		pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2],
424 			      pm_arg[3], data, security_flag);
425 		SMC_RET2(handle, ((uint64_t)data[0]  | ((uint64_t)data[1] << 32)),
426 			 ((uint64_t)data[2] | ((uint64_t)data[3] << 32)));
427 	}
428 
429 	case PM_CLOCK_ENABLE:
430 		ret = pm_clock_enable(pm_arg[0], security_flag);
431 		SMC_RET1(handle, (uint64_t)ret);
432 
433 	case PM_CLOCK_DISABLE:
434 		ret = pm_clock_disable(pm_arg[0], security_flag);
435 		SMC_RET1(handle, (uint64_t)ret);
436 
437 	case PM_CLOCK_GETSTATE:
438 	{
439 		uint32_t value = 0U;
440 
441 		ret = pm_clock_getstate(pm_arg[0], &value, security_flag);
442 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32)));
443 	}
444 
445 	case PM_CLOCK_SETDIVIDER:
446 		ret = pm_clock_setdivider(pm_arg[0], pm_arg[1], security_flag);
447 		SMC_RET1(handle, (uint64_t)ret);
448 
449 	case PM_CLOCK_GETDIVIDER:
450 	{
451 		uint32_t value = 0U;
452 
453 		ret = pm_clock_getdivider(pm_arg[0], &value, security_flag);
454 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32)));
455 	}
456 
457 	case PM_CLOCK_SETPARENT:
458 		ret = pm_clock_setparent(pm_arg[0], pm_arg[1], security_flag);
459 		SMC_RET1(handle, (uint64_t)ret);
460 
461 	case PM_CLOCK_GETPARENT:
462 	{
463 		uint32_t value = 0U;
464 
465 		ret = pm_clock_getparent(pm_arg[0], &value, security_flag);
466 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32U)));
467 	}
468 
469 	case PM_GET_TRUSTZONE_VERSION:
470 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
471 			 ((uint64_t)ZYNQMP_TZ_VERSION << 32U));
472 
473 	case PM_SET_SUSPEND_MODE:
474 		ret = pm_set_suspend_mode(pm_arg[0]);
475 		SMC_RET1(handle, (uint64_t)ret);
476 
477 	case PM_SECURE_SHA:
478 		ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2],
479 				  pm_arg[3], security_flag);
480 		SMC_RET1(handle, (uint64_t)ret);
481 
482 	case PM_SECURE_RSA:
483 		ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2],
484 				  pm_arg[3], security_flag);
485 		SMC_RET1(handle, (uint64_t)ret);
486 
487 	case PM_SECURE_IMAGE:
488 	{
489 		ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2],
490 				      pm_arg[3], &result[0], security_flag);
491 		SMC_RET2(handle, ((uint64_t)ret | ((uint64_t)result[0] << 32U)),
492 			 result[1]);
493 	}
494 
495 	case PM_FPGA_READ:
496 	{
497 		uint32_t value = 0U;
498 
499 		ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
500 				   &value, security_flag);
501 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32U)));
502 	}
503 
504 	case PM_SECURE_AES:
505 	{
506 		uint32_t value = 0U;
507 
508 		ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value, security_flag);
509 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32U)));
510 	}
511 
512 	case PM_PLL_SET_PARAMETER:
513 		ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2],
514 					   security_flag);
515 		SMC_RET1(handle, (uint64_t)ret);
516 
517 	case PM_PLL_GET_PARAMETER:
518 	{
519 		uint32_t value = 0U;
520 
521 		ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value,
522 					   security_flag);
523 		SMC_RET1(handle, ((uint64_t)ret | ((uint64_t)value << 32U)));
524 	}
525 
526 	case PM_PLL_SET_MODE:
527 		ret = pm_pll_set_mode(pm_arg[0], pm_arg[1], security_flag);
528 		SMC_RET1(handle, (uint64_t)ret);
529 
530 	case PM_PLL_GET_MODE:
531 	{
532 		uint32_t mode = 0U;
533 
534 		ret = pm_pll_get_mode(pm_arg[0], &mode, security_flag);
535 		SMC_RET1(handle, ((uint64_t)ret | ((uint64_t)mode << 32U)));
536 	}
537 
538 	case PM_REGISTER_ACCESS:
539 	{
540 		uint32_t value = 0U;
541 
542 		ret = pm_register_access(pm_arg[0], pm_arg[1], pm_arg[2],
543 					 pm_arg[3], &value, security_flag);
544 		SMC_RET1(handle, ((uint64_t)ret | (((uint64_t)value) << 32U)));
545 	}
546 
547 	case PM_EFUSE_ACCESS:
548 	{
549 		uint32_t value = 0U;
550 
551 #if defined(ZYNQMP_SECURE_EFUSES)
552 		if (is_caller_non_secure(flags)) {
553 			SMC_RET1(handle,
554 				 (((uint64_t)PM_RET_ERROR_NOT_ENABLED) << 32U) |
555 				 (uint64_t)PM_RET_ERROR_ACCESS);
556 		}
557 #endif
558 		ret = pm_efuse_access(pm_arg[0], pm_arg[1], &value, security_flag);
559 		SMC_RET1(handle, (uint64_t)ret | (((uint64_t)value) << 32U));
560 	}
561 
562 	case PM_FPGA_GET_VERSION:
563 	case PM_FPGA_GET_FEATURE_LIST:
564 	{
565 		uint32_t ret_payload[PAYLOAD_ARG_CNT];
566 
567 		PM_PACK_PAYLOAD5(payload, security_flag, smc_fid & FUNCID_NUM_MASK,
568 				 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]);
569 		ret = pm_ipi_send_sync(primary_proc, payload, ret_payload, 3U);
570 		SMC_RET2(handle, ((uint64_t)ret | ((uint64_t)ret_payload[0] << 32U)),
571 			 ((uint64_t)ret_payload[1] | ((uint64_t)ret_payload[2] << 32U)));
572 	}
573 
574 	case PM_FEATURE_CHECK:
575 	{
576 		uint32_t version_type = 0;
577 		uint32_t bit_mask[2] = {0};
578 
579 		ret = pm_feature_check(pm_arg[0], &version_type, bit_mask,
580 				       (uint8_t)ARRAY_SIZE(bit_mask),
581 				       security_flag);
582 		SMC_RET2(handle, ((uint64_t)ret | ((uint64_t)version_type << 32U)),
583 			 ((uint64_t)bit_mask[0] | ((uint64_t)bit_mask[1] << 32U)));
584 	}
585 
586 	default:
587 		/* Send request to the PMU */
588 		PM_PACK_PAYLOAD6(payload, security_flag, api_id, pm_arg[0],
589 				 pm_arg[1], pm_arg[2], pm_arg[3], pm_arg[4]);
590 		ret = pm_ipi_send_sync(primary_proc, payload, result,
591 				       RET_PAYLOAD_ARG_CNT);
592 		SMC_RET2(handle, ((uint64_t)ret | ((uint64_t)result[0] << 32U)),
593 			 ((uint64_t)result[1] | ((uint64_t)result[2] << 32U)));
594 	}
595 }
596