1 /* 2 * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved. 3 * Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 /* 9 * Top-level SMC handler for Versal power management calls and 10 * IPI setup functions for communication with PMC. 11 */ 12 13 #include <errno.h> 14 #include <stdbool.h> 15 16 #include "../drivers/arm/gic/v3/gicv3_private.h" 17 18 #include <common/runtime_svc.h> 19 #include <drivers/arm/gicv3.h> 20 #include <lib/psci/psci.h> 21 #include <plat/arm/common/plat_arm.h> 22 #include <plat/common/platform.h> 23 24 #include <plat_private.h> 25 #include "pm_api_sys.h" 26 #include "pm_client.h" 27 #include "pm_ipi.h" 28 #include "pm_svc_main.h" 29 30 #define MODE 0x80000000U 31 32 #define XSCUGIC_SGIR_EL1_INITID_SHIFT 24U 33 #define INVALID_SGI 0xFFU 34 #define PM_INIT_SUSPEND_CB (30U) 35 #define PM_NOTIFY_CB (32U) 36 #define EVENT_CPU_PWRDWN (4U) 37 #define MBOX_SGI_SHARED_IPI (7U) 38 39 /** 40 * upper_32_bits - return bits 32-63 of a number 41 * @n: the number we're accessing 42 */ 43 #define upper_32_bits(n) ((uint32_t)((n) >> 32U)) 44 45 /** 46 * lower_32_bits - return bits 0-31 of a number 47 * @n: the number we're accessing 48 */ 49 #define lower_32_bits(n) ((uint32_t)((n) & 0xffffffffU)) 50 51 /** 52 * EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments 53 * @pm_arg: array of 32-bit payloads 54 * @x: array of 64-bit SMC arguments 55 */ 56 #define EXTRACT_ARGS(pm_arg, x) \ 57 for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) { \ 58 if ((i % 2U) != 0U) { \ 59 pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]); \ 60 } else { \ 61 pm_arg[i] = upper_32_bits(x[i / 2U]); \ 62 } \ 63 } 64 65 /* 1 sec of wait timeout for secondary core down */ 66 #define PWRDWN_WAIT_TIMEOUT (1000U) 67 68 /* pm_up = true - UP, pm_up = false - DOWN */ 69 static bool pm_up; 70 static uint32_t sgi = (uint32_t)INVALID_SGI; 71 bool pwrdwn_req_received; 72 73 static void notify_os(void) 74 { 75 plat_ic_raise_ns_sgi(sgi, read_mpidr_el1()); 76 } 77 78 static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags, 79 void *handle, void *cookie) 80 { 81 (void)id; 82 (void)flags; 83 (void)handle; 84 (void)cookie; 85 uint32_t cpu_id = plat_my_core_pos(); 86 87 VERBOSE("Powering down CPU %d\n", cpu_id); 88 89 /* Deactivate CPU power down SGI */ 90 plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR); 91 92 return psci_cpu_off(); 93 } 94 95 /** 96 * raise_pwr_down_interrupt() - Callback function to raise SGI. 97 * @mpidr: MPIDR for the target CPU. 98 * 99 * Raise SGI interrupt to trigger the CPU power down sequence on all the 100 * online secondary cores. 101 */ 102 static void raise_pwr_down_interrupt(u_register_t mpidr) 103 { 104 plat_ic_raise_el3_sgi(CPU_PWR_DOWN_REQ_INTR, mpidr); 105 } 106 107 void request_cpu_pwrdwn(void) 108 { 109 enum pm_ret_status ret; 110 111 VERBOSE("CPU power down request received\n"); 112 113 /* Send powerdown request to online secondary core(s) */ 114 ret = psci_stop_other_cores(plat_my_core_pos(), PWRDWN_WAIT_TIMEOUT, 115 raise_pwr_down_interrupt); 116 if (ret != (uint32_t)PSCI_E_SUCCESS) { 117 ERROR("Failed to powerdown secondary core(s)\n"); 118 } 119 120 /* Clear IPI IRQ */ 121 pm_ipi_irq_clear(primary_proc); 122 123 /* Deactivate IPI IRQ */ 124 plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ); 125 } 126 127 static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle, 128 void *cookie) 129 { 130 (void)flags; 131 (void)handle; 132 (void)cookie; 133 uint32_t payload[4] = {0}; 134 enum pm_ret_status ret; 135 int ipi_status, i; 136 137 VERBOSE("Received IPI FIQ from firmware\n"); 138 139 console_flush(); 140 (void)plat_ic_acknowledge_interrupt(); 141 142 /* Check status register for each IPI except PMC */ 143 for (i = (int32_t)IPI_ID_APU; i <= IPI_ID_5; i++) { 144 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, i); 145 146 /* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */ 147 if ((uint32_t)ipi_status & IPI_MB_STATUS_RECV_PENDING) { 148 plat_ic_raise_ns_sgi(MBOX_SGI_SHARED_IPI, read_mpidr_el1()); 149 break; 150 } 151 } 152 153 /* If PMC has not generated interrupt then end ISR */ 154 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC); 155 if (((uint32_t)ipi_status & IPI_MB_STATUS_RECV_PENDING) == 0U) { 156 plat_ic_end_of_interrupt(id); 157 goto exit_label; 158 } 159 160 /* Handle PMC case */ 161 ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0); 162 if (ret != PM_RET_SUCCESS) { 163 payload[0] = (uint32_t)ret; 164 } 165 166 switch (payload[0]) { 167 case PM_INIT_SUSPEND_CB: 168 if (sgi != INVALID_SGI) { 169 notify_os(); 170 } 171 break; 172 case PM_NOTIFY_CB: 173 if (sgi != INVALID_SGI) { 174 if (payload[2] == EVENT_CPU_PWRDWN) { 175 if (pwrdwn_req_received) { 176 pwrdwn_req_received = false; 177 request_cpu_pwrdwn(); 178 (void)psci_cpu_off(); 179 break; 180 } else { 181 pwrdwn_req_received = true; 182 } 183 } 184 notify_os(); 185 } else if (payload[2] == EVENT_CPU_PWRDWN) { 186 request_cpu_pwrdwn(); 187 (void)psci_cpu_off(); 188 } 189 break; 190 case PM_RET_ERROR_INVALID_CRC: 191 pm_ipi_irq_clear(primary_proc); 192 WARN("Invalid CRC in the payload\n"); 193 break; 194 195 default: 196 pm_ipi_irq_clear(primary_proc); 197 WARN("Invalid IPI payload\n"); 198 break; 199 } 200 201 /* Clear FIQ */ 202 plat_ic_end_of_interrupt(id); 203 204 exit_label: 205 return 0; 206 } 207 208 /** 209 * pm_register_sgi() - PM register the IPI interrupt. 210 * @sgi_num: SGI number to be used for communication. 211 * @reset: Reset to invalid SGI when reset=1. 212 * 213 * Return: On success, the initialization function must return 0. 214 * Any other return value will cause the framework to ignore 215 * the service. 216 * 217 * Update the SGI number to be used. 218 * 219 */ 220 int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset) 221 { 222 int32_t ret = 0; 223 224 if (reset == 1U) { 225 sgi = INVALID_SGI; 226 } else if (sgi != INVALID_SGI) { 227 ret = -EBUSY; 228 } else if (sgi_num >= GICV3_MAX_SGI_TARGETS) { 229 ret = -EINVAL; 230 } else { 231 sgi = (uint32_t)sgi_num; 232 } 233 234 return ret; 235 } 236 237 /** 238 * pm_setup() - PM service setup. 239 * 240 * Return: On success, the initialization function must return 0. 241 * Any other return value will cause the framework to ignore 242 * the service. 243 * 244 * Initialization functions for Versal power management for 245 * communicaton with PMC. 246 * 247 * Called from sip_svc_setup initialization function with the 248 * rt_svc_init signature. 249 * 250 */ 251 int32_t pm_setup(void) 252 { 253 int32_t ret = 0; 254 255 pm_ipi_init(primary_proc); 256 pm_up = true; 257 258 /* register SGI handler for CPU power down request */ 259 ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler); 260 if (ret != 0) { 261 WARN("BL31: registering SGI interrupt failed\n"); 262 } 263 264 /* 265 * Enable IPI IRQ 266 * assume the rich OS is OK to handle callback IRQs now. 267 * Even if we were wrong, it would not enable the IRQ in 268 * the GIC. 269 */ 270 pm_ipi_irq_enable(primary_proc); 271 272 ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler); 273 if (ret != 0) { 274 WARN("BL31: registering IPI interrupt failed\n"); 275 } 276 277 gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE); 278 279 /* Register for idle callback during force power down/restart */ 280 ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN, 281 0x0U, 0x1U, SECURE_FLAG); 282 if (ret != 0) { 283 WARN("BL31: registering idle callback for restart/force power down failed\n"); 284 } 285 286 return ret; 287 } 288 289 /** 290 * eemi_for_compatibility() - EEMI calls handler for deprecated calls. 291 * @api_id: identifier for the API being called. 292 * @pm_arg: pointer to the argument data for the API call. 293 * @handle: Pointer to caller's context structure. 294 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 295 * 296 * Return: If EEMI API found then, uintptr_t type address, else 0. 297 * 298 * Some EEMI API's use case needs to be changed in Linux driver, so they 299 * can take advantage of common EEMI handler in TF-A. As of now the old 300 * implementation of these APIs are required to maintain backward compatibility 301 * until their use case in linux driver changes. 302 * 303 */ 304 static uintptr_t eemi_for_compatibility(uint32_t api_id, uint32_t *pm_arg, 305 void *handle, uint32_t security_flag) 306 { 307 enum pm_ret_status ret; 308 309 switch (api_id) { 310 311 case (uint32_t)PM_FEATURE_CHECK: 312 { 313 uint32_t result[RET_PAYLOAD_ARG_CNT] = {0U}; 314 315 ret = pm_feature_check(pm_arg[0], result, security_flag); 316 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U), 317 (uint64_t)result[1] | ((uint64_t)result[2] << 32U)); 318 } 319 320 case PM_LOAD_PDI: 321 { 322 ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2], 323 security_flag); 324 SMC_RET1(handle, (uint64_t)ret); 325 } 326 327 default: 328 return (uintptr_t)0; 329 } 330 } 331 332 /** 333 * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI. 334 * @api_id: identifier for the API being called. 335 * @pm_arg: pointer to the argument data for the API call. 336 * @handle: Pointer to caller's context structure. 337 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 338 * 339 * These EEMI APIs performs CPU specific power management tasks. 340 * These EEMI APIs are invoked either from PSCI or from debugfs in kernel. 341 * These calls require CPU specific processing before sending IPI request to 342 * Platform Management Controller. For example enable/disable CPU specific 343 * interrupts. This requires separate handler for these calls and may not be 344 * handled using common eemi handler. 345 * 346 * Return: If EEMI API found then, uintptr_t type address, else 0. 347 * 348 */ 349 static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, uint32_t *pm_arg, 350 void *handle, uint32_t security_flag) 351 { 352 enum pm_ret_status ret; 353 354 switch (api_id) { 355 356 case (uint32_t)PM_SELF_SUSPEND: 357 ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], 358 pm_arg[3], security_flag); 359 SMC_RET1(handle, (u_register_t)ret); 360 361 case (uint32_t)PM_FORCE_POWERDOWN: 362 ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag); 363 SMC_RET1(handle, (u_register_t)ret); 364 365 case (uint32_t)PM_REQ_SUSPEND: 366 ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2], 367 pm_arg[3], security_flag); 368 SMC_RET1(handle, (u_register_t)ret); 369 370 case (uint32_t)PM_ABORT_SUSPEND: 371 ret = pm_abort_suspend(pm_arg[0], security_flag); 372 SMC_RET1(handle, (u_register_t)ret); 373 374 case (uint32_t)PM_SYSTEM_SHUTDOWN: 375 ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag); 376 SMC_RET1(handle, (u_register_t)ret); 377 378 default: 379 return (uintptr_t)0; 380 } 381 } 382 383 /** 384 * TF_A_specific_handler() - SMC handler for TF-A specific functionality. 385 * @api_id: identifier for the API being called. 386 * @pm_arg: pointer to the argument data for the API call. 387 * @handle: Pointer to caller's context structure. 388 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 389 * 390 * These EEMI calls performs functionality that does not require 391 * IPI transaction. The handler ends in TF-A and returns requested data to 392 * kernel from TF-A. 393 * 394 * Return: If TF-A specific API found then, uintptr_t type address, else 0 395 * 396 */ 397 static uintptr_t TF_A_specific_handler(uint32_t api_id, uint32_t *pm_arg, 398 void *handle, uint32_t security_flag) 399 { 400 switch (api_id) { 401 402 case TF_A_FEATURE_CHECK: 403 { 404 enum pm_ret_status ret; 405 uint32_t result[PAYLOAD_ARG_CNT] = {0U}; 406 407 ret = eemi_feature_check(pm_arg[0], result); 408 SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U)); 409 } 410 411 case TF_A_PM_REGISTER_SGI: 412 { 413 int32_t ret; 414 415 ret = pm_register_sgi(pm_arg[0], pm_arg[1]); 416 if (ret != 0) { 417 SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS); 418 } 419 420 SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS); 421 } 422 423 case PM_GET_CALLBACK_DATA: 424 { 425 uint32_t result[4] = {0}; 426 enum pm_ret_status ret; 427 428 ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U); 429 if (ret != 0) { 430 result[0] = (uint32_t)ret; 431 } 432 433 SMC_RET2(handle, 434 (uint64_t)result[0] | ((uint64_t)result[1] << 32U), 435 (uint64_t)result[2] | ((uint64_t)result[3] << 32U)); 436 } 437 438 case PM_GET_TRUSTZONE_VERSION: 439 SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | 440 ((uint64_t)TZ_VERSION << 32U)); 441 442 default: 443 return (uintptr_t)0; 444 } 445 } 446 447 /** 448 * eemi_handler() - Prepare EEMI payload and perform IPI transaction. 449 * @api_id: identifier for the API being called. 450 * @pm_arg: pointer to the argument data for the API call. 451 * @handle: Pointer to caller's context structure. 452 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 453 * 454 * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol 455 * to allow communication between power management controller and different 456 * processing clusters. 457 * 458 * This handler prepares EEMI protocol payload received from kernel and performs 459 * IPI transaction. 460 * 461 * Return: If EEMI API found then, uintptr_t type address, else 0 462 * 463 */ 464 static uintptr_t eemi_handler(uint32_t api_id, uint32_t *pm_arg, 465 void *handle, uint32_t security_flag) 466 { 467 enum pm_ret_status ret; 468 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0}; 469 470 ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1], 471 pm_arg[2], pm_arg[3], pm_arg[4], 472 (uint64_t *)buf); 473 /* 474 * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API 475 * receives 5 words of respoonse from firmware. Currently linux driver can 476 * receive only 4 words from TF-A. So, this needs to be handled separately 477 * than other eemi calls. 478 */ 479 if (api_id == (uint32_t)PM_QUERY_DATA) { 480 if (((pm_arg[0] == (uint32_t)XPM_QID_CLOCK_GET_NAME) || 481 (pm_arg[0] == (uint32_t)XPM_QID_PINCTRL_GET_FUNCTION_NAME)) && 482 (ret == PM_RET_SUCCESS)) { 483 SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32U), 484 (uint64_t)buf[2] | ((uint64_t)buf[3] << 32U)); 485 } 486 } 487 488 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 489 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U)); 490 } 491 492 /** 493 * eemi_api_handler() - Prepare EEMI payload and perform IPI transaction. 494 * @api_id: identifier for the API being called. 495 * @pm_arg: pointer to the argument data for the API call. 496 * @handle: Pointer to caller's context structure. 497 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 498 * 499 * EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary 500 * protocol to allow communication between power management controller and 501 * different processing clusters. 502 * 503 * This handler prepares EEMI protocol payload received from kernel and performs 504 * IPI transaction. 505 * 506 * Return: If EEMI API found then, uintptr_t type address, else 0 507 */ 508 static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg, 509 void *handle, uint32_t security_flag) 510 { 511 enum pm_ret_status ret; 512 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U}; 513 uint32_t payload[PAYLOAD_ARG_CNT] = {0U}; 514 uint32_t module_id; 515 516 module_id = (api_id & MODULE_ID_MASK) >> 8U; 517 518 PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id, 519 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], 520 pm_arg[4], pm_arg[5]); 521 522 ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf, 523 RET_PAYLOAD_ARG_CNT); 524 525 SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 526 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U), 527 (uint64_t)buf[3] | ((uint64_t)buf[4] << 32U), 528 (uint64_t)buf[5]); 529 } 530 531 /** 532 * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. 533 * @smc_fid: Function Identifier. 534 * @x1: SMC64 Arguments from kernel. 535 * @x2: SMC64 Arguments from kernel. 536 * @x3: SMC64 Arguments from kernel (upper 32-bits). 537 * @x4: Unused. 538 * @cookie: Unused. 539 * @handle: Pointer to caller's context structure. 540 * @flags: SECURE_FLAG or NON_SECURE_FLAG. 541 * 542 * Return: Unused. 543 * 544 * Determines that smc_fid is valid and supported PM SMC Function ID from the 545 * list of pm_api_ids, otherwise completes the request with 546 * the unknown SMC Function ID. 547 * 548 * The SMC calls for PM service are forwarded from SIP Service SMC handler 549 * function with rt_svc_handle signature. 550 * 551 */ 552 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, 553 uint64_t x4, const void *cookie, void *handle, uint64_t flags) 554 { 555 (void)cookie; 556 uintptr_t ret; 557 uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0}; 558 uint32_t security_flag = NON_SECURE_FLAG; 559 uint32_t api_id; 560 bool status = false, status_tmp = false; 561 const uint64_t x[4] = {x1, x2, x3, x4}; 562 563 /* Handle case where PM wasn't initialized properly */ 564 if (pm_up == false) { 565 SMC_RET1(handle, SMC_UNK); 566 } 567 568 /* 569 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0) 570 * if smc called is secure 571 * 572 * Add redundant macro call to immune the code from glitches 573 */ 574 SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags); 575 if ((status != false) && (status_tmp != false)) { 576 security_flag = SECURE_FLAG; 577 } 578 579 if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) { 580 api_id = lower_32_bits(x[0]); 581 582 EXTRACT_ARGS(pm_arg, x); 583 584 return eemi_api_handler(api_id, pm_arg, handle, security_flag); 585 } 586 587 pm_arg[0] = (uint32_t)x1; 588 pm_arg[1] = (uint32_t)(x1 >> 32U); 589 pm_arg[2] = (uint32_t)x2; 590 pm_arg[3] = (uint32_t)(x2 >> 32U); 591 pm_arg[4] = (uint32_t)x3; 592 (void)(x4); 593 api_id = smc_fid & FUNCID_NUM_MASK; 594 595 ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag); 596 if (ret != (uintptr_t)0) { 597 return ret; 598 } 599 600 ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, flags); 601 if (ret != (uintptr_t)0) { 602 return ret; 603 } 604 605 ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag); 606 if (ret != (uintptr_t)0) { 607 return ret; 608 } 609 610 ret = eemi_handler(api_id, pm_arg, handle, security_flag); 611 612 return ret; 613 } 614