1 /* 2 * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved. 3 * Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 /* 9 * Top-level SMC handler for Versal power management calls and 10 * IPI setup functions for communication with PMC. 11 */ 12 13 #include <errno.h> 14 #include <stdbool.h> 15 16 #include "../drivers/arm/gic/v3/gicv3_private.h" 17 18 #include <common/runtime_svc.h> 19 #include <drivers/arm/gicv3.h> 20 #include <lib/psci/psci.h> 21 #include <plat/arm/common/plat_arm.h> 22 #include <plat/common/platform.h> 23 24 #include <plat_private.h> 25 #include "pm_api_sys.h" 26 #include "pm_client.h" 27 #include "pm_ipi.h" 28 #include "pm_svc_main.h" 29 30 #define MODE 0x80000000U 31 32 #define INVALID_SGI 0xFFU 33 #define PM_INIT_SUSPEND_CB (30U) 34 #define PM_NOTIFY_CB (32U) 35 #define EVENT_CPU_PWRDWN (4U) 36 #define MBOX_SGI_SHARED_IPI (7U) 37 38 /** 39 * upper_32_bits - return bits 32-63 of a number 40 * @n: the number we're accessing 41 */ 42 #define upper_32_bits(n) ((uint32_t)((n) >> 32U)) 43 44 /** 45 * lower_32_bits - return bits 0-31 of a number 46 * @n: the number we're accessing 47 */ 48 #define lower_32_bits(n) ((uint32_t)((n) & 0xffffffffU)) 49 50 /** 51 * EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments 52 * @pm_arg: array of 32-bit payloads 53 * @x: array of 64-bit SMC arguments 54 */ 55 #define EXTRACT_ARGS(pm_arg, x) \ 56 for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) { \ 57 if ((i % 2U) != 0U) { \ 58 pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]); \ 59 } else { \ 60 pm_arg[i] = upper_32_bits(x[i / 2U]); \ 61 } \ 62 } 63 64 /* 1 sec of wait timeout for secondary core down */ 65 #define PWRDWN_WAIT_TIMEOUT (1000U) 66 67 /* pm_up = true - UP, pm_up = false - DOWN */ 68 static bool pm_up; 69 static uint32_t sgi = (uint32_t)INVALID_SGI; 70 static bool pwrdwn_req_received; 71 72 bool pm_pwrdwn_req_status(void) 73 { 74 return pwrdwn_req_received; 75 } 76 77 static void notify_os(void) 78 { 79 plat_ic_raise_ns_sgi((int)sgi, read_mpidr_el1()); 80 } 81 82 static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags, 83 void *handle, void *cookie) 84 { 85 (void)id; 86 (void)flags; 87 (void)handle; 88 (void)cookie; 89 uint32_t cpu_id = plat_my_core_pos(); 90 91 VERBOSE("Powering down CPU %d\n", cpu_id); 92 93 /* Deactivate CPU power down SGI */ 94 plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR); 95 96 return (uint64_t)psci_cpu_off(); 97 } 98 99 /** 100 * raise_pwr_down_interrupt() - Callback function to raise SGI. 101 * @mpidr: MPIDR for the target CPU. 102 * 103 * Raise SGI interrupt to trigger the CPU power down sequence on all the 104 * online secondary cores. 105 */ 106 static void raise_pwr_down_interrupt(u_register_t mpidr) 107 { 108 plat_ic_raise_el3_sgi((int)CPU_PWR_DOWN_REQ_INTR, mpidr); 109 } 110 111 void request_cpu_pwrdwn(void) 112 { 113 int ret; 114 115 VERBOSE("CPU power down request received\n"); 116 117 /* Send powerdown request to online secondary core(s) */ 118 ret = psci_stop_other_cores(plat_my_core_pos(), PWRDWN_WAIT_TIMEOUT, 119 raise_pwr_down_interrupt); 120 if (ret != PSCI_E_SUCCESS) { 121 ERROR("Failed to powerdown secondary core(s)\n"); 122 } 123 124 /* Clear IPI IRQ */ 125 pm_ipi_irq_clear(primary_proc); 126 127 /* Deactivate IPI IRQ */ 128 plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ); 129 } 130 131 static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle, 132 void *cookie) 133 { 134 (void)flags; 135 (void)handle; 136 (void)cookie; 137 uint32_t payload[4] = {0}; 138 enum pm_ret_status ret; 139 uint32_t ipi_status, i; 140 141 VERBOSE("Received IPI FIQ from firmware\n"); 142 143 console_flush(); 144 (void)plat_ic_acknowledge_interrupt(); 145 146 /* Check status register for each IPI except PMC */ 147 for (i = IPI_ID_APU; i <= IPI_ID_5; i++) { 148 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, i); 149 150 /* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */ 151 if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) != 0U) { 152 plat_ic_raise_ns_sgi((int)MBOX_SGI_SHARED_IPI, read_mpidr_el1()); 153 break; 154 } 155 } 156 157 /* If PMC has not generated interrupt then end ISR */ 158 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC); 159 if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) == 0U) { 160 plat_ic_end_of_interrupt(id); 161 goto exit_label; 162 } 163 164 /* Handle PMC case */ 165 ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0); 166 if (ret != PM_RET_SUCCESS) { 167 payload[0] = (uint32_t)ret; 168 } 169 170 switch (payload[0]) { 171 case PM_INIT_SUSPEND_CB: 172 if (sgi != INVALID_SGI) { 173 notify_os(); 174 } 175 break; 176 case PM_NOTIFY_CB: 177 if (sgi != INVALID_SGI) { 178 if ((payload[2] == EVENT_CPU_PWRDWN) && 179 (NODECLASS(payload[1]) == (uint32_t)XPM_NODECLASS_DEVICE)) { 180 if (pwrdwn_req_received) { 181 pwrdwn_req_received = false; 182 request_cpu_pwrdwn(); 183 (void)psci_cpu_off(); 184 break; 185 } else { 186 pwrdwn_req_received = true; 187 } 188 } 189 notify_os(); 190 } else { 191 if ((payload[2] == EVENT_CPU_PWRDWN) && 192 (NODECLASS(payload[1]) == (uint32_t)XPM_NODECLASS_DEVICE)) { 193 request_cpu_pwrdwn(); 194 (void)psci_cpu_off(); 195 } 196 } 197 break; 198 case (uint32_t)PM_RET_ERROR_INVALID_CRC: 199 pm_ipi_irq_clear(primary_proc); 200 WARN("Invalid CRC in the payload\n"); 201 break; 202 203 default: 204 pm_ipi_irq_clear(primary_proc); 205 WARN("Invalid IPI payload\n"); 206 break; 207 } 208 209 /* Clear FIQ */ 210 plat_ic_end_of_interrupt(id); 211 212 exit_label: 213 return 0; 214 } 215 216 /** 217 * pm_register_sgi() - PM register the IPI interrupt. 218 * @sgi_num: SGI number to be used for communication. 219 * @reset: Reset to invalid SGI when reset=1. 220 * 221 * Return: On success, the initialization function must return 0. 222 * Any other return value will cause the framework to ignore 223 * the service. 224 * 225 * Update the SGI number to be used. 226 * 227 */ 228 int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset) 229 { 230 int32_t ret = 0; 231 232 if (reset == 1U) { 233 sgi = INVALID_SGI; 234 } else if (sgi != INVALID_SGI) { 235 ret = -EBUSY; 236 } else if (sgi_num >= GICV3_MAX_SGI_TARGETS) { 237 ret = -EINVAL; 238 } else { 239 sgi = (uint32_t)sgi_num; 240 } 241 242 return ret; 243 } 244 245 /** 246 * pm_setup() - PM service setup. 247 * 248 * Return: On success, the initialization function must return 0. 249 * Any other return value will cause the framework to ignore 250 * the service. 251 * 252 * Initialization functions for Versal power management for 253 * communicaton with PMC. 254 * 255 * Called from sip_svc_setup initialization function with the 256 * rt_svc_init signature. 257 * 258 */ 259 int32_t pm_setup(void) 260 { 261 int32_t ret = 0; 262 263 pm_ipi_init(primary_proc); 264 pm_up = true; 265 pwrdwn_req_received = false; 266 267 /* register SGI handler for CPU power down request */ 268 ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler); 269 if (ret != 0) { 270 WARN("BL31: registering SGI interrupt failed\n"); 271 } 272 273 /* 274 * Enable IPI IRQ 275 * assume the rich OS is OK to handle callback IRQs now. 276 * Even if we were wrong, it would not enable the IRQ in 277 * the GIC. 278 */ 279 pm_ipi_irq_enable(primary_proc); 280 281 ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler); 282 if (ret != 0) { 283 WARN("BL31: registering IPI interrupt failed\n"); 284 } 285 286 gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE); 287 288 /* Register for idle callback during force power down/restart */ 289 ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN, 290 0x0U, 0x1U, SECURE_FLAG); 291 if (ret != 0) { 292 WARN("BL31: registering idle callback for restart/force power down failed\n"); 293 } 294 295 return ret; 296 } 297 298 /** 299 * eemi_for_compatibility() - EEMI calls handler for deprecated calls. 300 * @api_id: identifier for the API being called. 301 * @pm_arg: pointer to the argument data for the API call. 302 * @handle: Pointer to caller's context structure. 303 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 304 * 305 * Return: If EEMI API found then, uintptr_t type address, else 0. 306 * 307 * Some EEMI API's use case needs to be changed in Linux driver, so they 308 * can take advantage of common EEMI handler in TF-A. As of now the old 309 * implementation of these APIs are required to maintain backward compatibility 310 * until their use case in linux driver changes. 311 * 312 */ 313 static uintptr_t eemi_for_compatibility(uint32_t api_id, const uint32_t *pm_arg, 314 void *handle, uint32_t security_flag) 315 { 316 enum pm_ret_status ret; 317 318 switch (api_id) { 319 320 case (uint32_t)PM_FEATURE_CHECK: 321 { 322 uint32_t result[RET_PAYLOAD_ARG_CNT] = {0U}; 323 324 ret = pm_feature_check(pm_arg[0], result, security_flag); 325 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U), 326 (uint64_t)result[1] | ((uint64_t)result[2] << 32U)); 327 } 328 329 case PM_LOAD_PDI: 330 { 331 ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2], 332 security_flag); 333 SMC_RET1(handle, (uint64_t)ret); 334 } 335 336 default: 337 return (uintptr_t)0; 338 } 339 } 340 341 /** 342 * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI. 343 * @api_id: identifier for the API being called. 344 * @pm_arg: pointer to the argument data for the API call. 345 * @handle: Pointer to caller's context structure. 346 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 347 * 348 * These EEMI APIs performs CPU specific power management tasks. 349 * These EEMI APIs are invoked either from PSCI or from debugfs in kernel. 350 * These calls require CPU specific processing before sending IPI request to 351 * Platform Management Controller. For example enable/disable CPU specific 352 * interrupts. This requires separate handler for these calls and may not be 353 * handled using common eemi handler. 354 * 355 * Return: If EEMI API found then, uintptr_t type address, else 0. 356 * 357 */ 358 static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, const uint32_t *pm_arg, 359 void *handle, uint32_t security_flag) 360 { 361 enum pm_ret_status ret; 362 363 switch (api_id) { 364 365 case (uint32_t)PM_SELF_SUSPEND: 366 ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], 367 pm_arg[3], security_flag); 368 SMC_RET1(handle, (u_register_t)ret); 369 370 case (uint32_t)PM_FORCE_POWERDOWN: 371 ret = pm_force_powerdown(pm_arg[0], (uint8_t)pm_arg[1], security_flag); 372 SMC_RET1(handle, (u_register_t)ret); 373 374 case (uint32_t)PM_REQ_SUSPEND: 375 ret = pm_req_suspend(pm_arg[0], (uint8_t)pm_arg[1], pm_arg[2], 376 pm_arg[3], security_flag); 377 SMC_RET1(handle, (u_register_t)ret); 378 379 case (uint32_t)PM_ABORT_SUSPEND: 380 ret = pm_abort_suspend((enum pm_abort_reason)pm_arg[0], security_flag); 381 SMC_RET1(handle, (u_register_t)ret); 382 383 case (uint32_t)PM_SYSTEM_SHUTDOWN: 384 ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag); 385 SMC_RET1(handle, (u_register_t)ret); 386 387 default: 388 return (uintptr_t)0; 389 } 390 } 391 392 /** 393 * TF_A_specific_handler() - SMC handler for TF-A specific functionality. 394 * @api_id: identifier for the API being called. 395 * @pm_arg: pointer to the argument data for the API call. 396 * @handle: Pointer to caller's context structure. 397 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 398 * 399 * These EEMI calls performs functionality that does not require 400 * IPI transaction. The handler ends in TF-A and returns requested data to 401 * kernel from TF-A. 402 * 403 * Return: If TF-A specific API found then, uintptr_t type address, else 0 404 * 405 */ 406 static uintptr_t TF_A_specific_handler(uint32_t api_id, const uint32_t *pm_arg, 407 void *handle, uint32_t security_flag) 408 { 409 switch (api_id) { 410 411 case TF_A_FEATURE_CHECK: 412 { 413 enum pm_ret_status ret; 414 uint32_t result[PAYLOAD_ARG_CNT] = {0U}; 415 416 ret = eemi_feature_check(pm_arg[0], result); 417 SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U)); 418 } 419 420 case TF_A_PM_REGISTER_SGI: 421 { 422 int32_t ret; 423 424 ret = pm_register_sgi(pm_arg[0], pm_arg[1]); 425 if (ret != 0) { 426 SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS); 427 } 428 429 SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS); 430 } 431 432 case PM_GET_CALLBACK_DATA: 433 { 434 uint32_t result[4] = {0}; 435 enum pm_ret_status ret; 436 437 ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U); 438 if (ret != PM_RET_SUCCESS) { 439 result[0] = (uint32_t)ret; 440 } 441 442 SMC_RET2(handle, 443 (uint64_t)result[0] | ((uint64_t)result[1] << 32U), 444 (uint64_t)result[2] | ((uint64_t)result[3] << 32U)); 445 } 446 447 case PM_GET_TRUSTZONE_VERSION: 448 SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | 449 ((uint64_t)TZ_VERSION << 32U)); 450 451 default: 452 return (uintptr_t)0; 453 } 454 } 455 456 /** 457 * eemi_handler() - Prepare EEMI payload and perform IPI transaction. 458 * @api_id: identifier for the API being called. 459 * @pm_arg: pointer to the argument data for the API call. 460 * @handle: Pointer to caller's context structure. 461 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 462 * 463 * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol 464 * to allow communication between power management controller and different 465 * processing clusters. 466 * 467 * This handler prepares EEMI protocol payload received from kernel and performs 468 * IPI transaction. 469 * 470 * Return: If EEMI API found then, uintptr_t type address, else 0 471 * 472 */ 473 static uintptr_t eemi_handler(uint32_t api_id, const uint32_t *pm_arg, 474 void *handle, uint32_t security_flag) 475 { 476 enum pm_ret_status ret; 477 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0}; 478 479 ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1], 480 pm_arg[2], pm_arg[3], pm_arg[4], buf); 481 /* 482 * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API 483 * receives 5 words of respoonse from firmware. Currently linux driver can 484 * receive only 4 words from TF-A. So, this needs to be handled separately 485 * than other eemi calls. 486 */ 487 if (api_id == (uint32_t)PM_QUERY_DATA) { 488 if (((pm_arg[0] == (uint32_t)XPM_QID_CLOCK_GET_NAME) || 489 (pm_arg[0] == (uint32_t)XPM_QID_PINCTRL_GET_FUNCTION_NAME)) && 490 (ret == PM_RET_SUCCESS)) { 491 SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32U), 492 (uint64_t)buf[2] | ((uint64_t)buf[3] << 32U)); 493 } 494 } 495 496 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 497 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U)); 498 } 499 500 /** 501 * eemi_api_handler() - Prepare EEMI payload and perform IPI transaction. 502 * @api_id: identifier for the API being called. 503 * @pm_arg: pointer to the argument data for the API call. 504 * @handle: Pointer to caller's context structure. 505 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 506 * 507 * EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary 508 * protocol to allow communication between power management controller and 509 * different processing clusters. 510 * 511 * This handler prepares EEMI protocol payload received from kernel and performs 512 * IPI transaction. 513 * 514 * Return: If EEMI API found then, uintptr_t type address, else 0 515 */ 516 static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg, 517 void *handle, uint32_t security_flag) 518 { 519 enum pm_ret_status ret; 520 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U}; 521 uint32_t payload[PAYLOAD_ARG_CNT] = {0U}; 522 uint32_t module_id; 523 524 module_id = (api_id & MODULE_ID_MASK) >> 8U; 525 526 PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id, 527 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], 528 pm_arg[4], pm_arg[5]); 529 530 ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf, 531 RET_PAYLOAD_ARG_CNT); 532 533 SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 534 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U), 535 (uint64_t)buf[3] | ((uint64_t)buf[4] << 32U), 536 (uint64_t)buf[5]); 537 } 538 539 /** 540 * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. 541 * @smc_fid: Function Identifier. 542 * @x1: SMC64 Arguments from kernel. 543 * @x2: SMC64 Arguments from kernel. 544 * @x3: SMC64 Arguments from kernel (upper 32-bits). 545 * @x4: Unused. 546 * @cookie: Unused. 547 * @handle: Pointer to caller's context structure. 548 * @flags: SECURE_FLAG or NON_SECURE_FLAG. 549 * 550 * Return: Unused. 551 * 552 * Determines that smc_fid is valid and supported PM SMC Function ID from the 553 * list of pm_api_ids, otherwise completes the request with 554 * the unknown SMC Function ID. 555 * 556 * The SMC calls for PM service are forwarded from SIP Service SMC handler 557 * function with rt_svc_handle signature. 558 * 559 */ 560 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, 561 uint64_t x4, const void *cookie, void *handle, uint64_t flags) 562 { 563 (void)cookie; 564 uintptr_t ret; 565 uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0}; 566 uint32_t security_flag = NON_SECURE_FLAG; 567 uint32_t api_id; 568 bool status = false, status_tmp = false; 569 const uint64_t x[4] = {x1, x2, x3, x4}; 570 571 /* Handle case where PM wasn't initialized properly */ 572 if (pm_up == false) { 573 SMC_RET1(handle, SMC_UNK); 574 } 575 576 /* 577 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0) 578 * if smc called is secure 579 * 580 * Add redundant macro call to immune the code from glitches 581 */ 582 SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags); 583 if ((status != false) && (status_tmp != false)) { 584 security_flag = SECURE_FLAG; 585 } 586 587 if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) { 588 api_id = lower_32_bits(x[0]); 589 590 EXTRACT_ARGS(pm_arg, x); 591 592 return eemi_api_handler(api_id, pm_arg, handle, security_flag); 593 } 594 595 pm_arg[0] = (uint32_t)x1; 596 pm_arg[1] = (uint32_t)(x1 >> 32U); 597 pm_arg[2] = (uint32_t)x2; 598 pm_arg[3] = (uint32_t)(x2 >> 32U); 599 pm_arg[4] = (uint32_t)x3; 600 (void)(x4); 601 api_id = smc_fid & FUNCID_NUM_MASK; 602 603 ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag); 604 if (ret != (uintptr_t)0) { 605 return ret; 606 } 607 608 ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, 609 (uint32_t)flags); 610 if (ret != (uintptr_t)0) { 611 return ret; 612 } 613 614 ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag); 615 if (ret != (uintptr_t)0) { 616 return ret; 617 } 618 619 ret = eemi_handler(api_id, pm_arg, handle, security_flag); 620 621 return ret; 622 } 623