xref: /rk3399_ARM-atf/plat/xilinx/common/pm_service/pm_svc_main.c (revision 79e7aae82dd173d1ccc63e5d553222f1d58f12f5)
1 /*
2  * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved.
3  * Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 /*
9  * Top-level SMC handler for Versal power management calls and
10  * IPI setup functions for communication with PMC.
11  */
12 
13 #include <errno.h>
14 #include <stdbool.h>
15 
16 #include "../drivers/arm/gic/v3/gicv3_private.h"
17 
18 #include <common/runtime_svc.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/psci/psci.h>
21 #include <plat/arm/common/plat_arm.h>
22 #include <plat/common/platform.h>
23 
24 #include <plat_private.h>
25 #include "pm_api_sys.h"
26 #include "pm_client.h"
27 #include "pm_ipi.h"
28 #include "pm_svc_main.h"
29 
30 #define MODE				0x80000000U
31 
32 #define XSCUGIC_SGIR_EL1_INITID_SHIFT    24U
33 #define INVALID_SGI    0xFFU
34 #define PM_INIT_SUSPEND_CB	(30U)
35 #define PM_NOTIFY_CB		(32U)
36 #define EVENT_CPU_PWRDWN	(4U)
37 #define MBOX_SGI_SHARED_IPI	(7U)
38 
39 /**
40  * upper_32_bits - return bits 32-63 of a number
41  * @n: the number we're accessing
42  */
43 #define upper_32_bits(n)	((uint32_t)((n) >> 32U))
44 
45 /**
46  * lower_32_bits - return bits 0-31 of a number
47  * @n: the number we're accessing
48  */
49 #define lower_32_bits(n)	((uint32_t)((n) & 0xffffffffU))
50 
51 /**
52  * EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments
53  * @pm_arg: array of 32-bit payloads
54  * @x: array of 64-bit SMC arguments
55  */
56 #define EXTRACT_ARGS(pm_arg, x)						\
57 	for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) {	\
58 		if ((i % 2U) != 0U) {					\
59 			pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]);	\
60 		} else {						\
61 			pm_arg[i] = upper_32_bits(x[i / 2U]);		\
62 		}							\
63 	}
64 
65 /* 1 sec of wait timeout for secondary core down */
66 #define PWRDWN_WAIT_TIMEOUT	(1000U)
67 
68 /* pm_up = true - UP, pm_up = false - DOWN */
69 static bool pm_up;
70 static uint32_t sgi = (uint32_t)INVALID_SGI;
71 bool pwrdwn_req_received;
72 
73 static void notify_os(void)
74 {
75 	plat_ic_raise_ns_sgi(sgi, read_mpidr_el1());
76 }
77 
78 static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags,
79 				       void *handle, void *cookie)
80 {
81 	(void)id;
82 	(void)flags;
83 	(void)handle;
84 	(void)cookie;
85 	uint32_t cpu_id = plat_my_core_pos();
86 
87 	VERBOSE("Powering down CPU %d\n", cpu_id);
88 
89 	/* Deactivate CPU power down SGI */
90 	plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR);
91 
92 	return psci_cpu_off();
93 }
94 
95 /**
96  * raise_pwr_down_interrupt() - Callback function to raise SGI.
97  * @mpidr: MPIDR for the target CPU.
98  *
99  * Raise SGI interrupt to trigger the CPU power down sequence on all the
100  * online secondary cores.
101  */
102 static void raise_pwr_down_interrupt(u_register_t mpidr)
103 {
104 	plat_ic_raise_el3_sgi(CPU_PWR_DOWN_REQ_INTR, mpidr);
105 }
106 
107 void request_cpu_pwrdwn(void)
108 {
109 	enum pm_ret_status ret;
110 
111 	VERBOSE("CPU power down request received\n");
112 
113 	/* Send powerdown request to online secondary core(s) */
114 	ret = psci_stop_other_cores(plat_my_core_pos(), PWRDWN_WAIT_TIMEOUT,
115 				    raise_pwr_down_interrupt);
116 	if (ret != (uint32_t)PSCI_E_SUCCESS) {
117 		ERROR("Failed to powerdown secondary core(s)\n");
118 	}
119 
120 	/* Clear IPI IRQ */
121 	pm_ipi_irq_clear(primary_proc);
122 
123 	/* Deactivate IPI IRQ */
124 	plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ);
125 }
126 
127 static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle,
128 				void *cookie)
129 {
130 	(void)flags;
131 	(void)handle;
132 	(void)cookie;
133 	uint32_t payload[4] = {0};
134 	enum pm_ret_status ret;
135 	int ipi_status, i;
136 
137 	VERBOSE("Received IPI FIQ from firmware\n");
138 
139 	console_flush();
140 	(void)plat_ic_acknowledge_interrupt();
141 
142 	/* Check status register for each IPI except PMC */
143 	for (i = (int32_t)IPI_ID_APU; i <= IPI_ID_5; i++) {
144 		ipi_status = ipi_mb_enquire_status(IPI_ID_APU, i);
145 
146 		/* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */
147 		if ((uint32_t)ipi_status & IPI_MB_STATUS_RECV_PENDING) {
148 			plat_ic_raise_ns_sgi(MBOX_SGI_SHARED_IPI, read_mpidr_el1());
149 			break;
150 		}
151 	}
152 
153 	/* If PMC has not generated interrupt then end ISR */
154 	ipi_status = ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC);
155 	if (((uint32_t)ipi_status & IPI_MB_STATUS_RECV_PENDING) == 0U) {
156 		plat_ic_end_of_interrupt(id);
157 		goto exit_label;
158 	}
159 
160 	/* Handle PMC case */
161 	ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0);
162 	if (ret != PM_RET_SUCCESS) {
163 		payload[0] = (uint32_t)ret;
164 	}
165 
166 	switch (payload[0]) {
167 	case PM_INIT_SUSPEND_CB:
168 		if (sgi != INVALID_SGI) {
169 			notify_os();
170 		}
171 		break;
172 	case PM_NOTIFY_CB:
173 		if (sgi != INVALID_SGI) {
174 			if (payload[2] == EVENT_CPU_PWRDWN) {
175 				if (pwrdwn_req_received) {
176 					pwrdwn_req_received = false;
177 					request_cpu_pwrdwn();
178 					(void)psci_cpu_off();
179 					break;
180 				} else {
181 					pwrdwn_req_received = true;
182 				}
183 			}
184 			notify_os();
185 		} else if (payload[2] == EVENT_CPU_PWRDWN) {
186 			request_cpu_pwrdwn();
187 			(void)psci_cpu_off();
188 		}
189 		break;
190 	case PM_RET_ERROR_INVALID_CRC:
191 		pm_ipi_irq_clear(primary_proc);
192 		WARN("Invalid CRC in the payload\n");
193 		break;
194 
195 	default:
196 		pm_ipi_irq_clear(primary_proc);
197 		WARN("Invalid IPI payload\n");
198 		break;
199 	}
200 
201 	/* Clear FIQ */
202 	plat_ic_end_of_interrupt(id);
203 
204 exit_label:
205 	return 0;
206 }
207 
208 /**
209  * pm_register_sgi() - PM register the IPI interrupt.
210  * @sgi_num: SGI number to be used for communication.
211  * @reset: Reset to invalid SGI when reset=1.
212  *
213  * Return: On success, the initialization function must return 0.
214  *         Any other return value will cause the framework to ignore
215  *         the service.
216  *
217  * Update the SGI number to be used.
218  *
219  */
220 int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset)
221 {
222 	int32_t ret = 0;
223 
224 	if (reset == 1U) {
225 		sgi = INVALID_SGI;
226 	} else if (sgi != INVALID_SGI) {
227 		ret = -EBUSY;
228 	} else if (sgi_num >= GICV3_MAX_SGI_TARGETS) {
229 		ret = -EINVAL;
230 	} else {
231 		sgi = (uint32_t)sgi_num;
232 	}
233 
234 	return ret;
235 }
236 
237 /**
238  * pm_setup() - PM service setup.
239  *
240  * Return: On success, the initialization function must return 0.
241  *         Any other return value will cause the framework to ignore
242  *         the service.
243  *
244  * Initialization functions for Versal power management for
245  * communicaton with PMC.
246  *
247  * Called from sip_svc_setup initialization function with the
248  * rt_svc_init signature.
249  *
250  */
251 int32_t pm_setup(void)
252 {
253 	int32_t ret = 0;
254 
255 	pm_ipi_init(primary_proc);
256 	pm_up = true;
257 
258 	/* register SGI handler for CPU power down request */
259 	ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler);
260 	if (ret != 0) {
261 		WARN("BL31: registering SGI interrupt failed\n");
262 	}
263 
264 	/*
265 	 * Enable IPI IRQ
266 	 * assume the rich OS is OK to handle callback IRQs now.
267 	 * Even if we were wrong, it would not enable the IRQ in
268 	 * the GIC.
269 	 */
270 	pm_ipi_irq_enable(primary_proc);
271 
272 	ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler);
273 	if (ret != 0) {
274 		WARN("BL31: registering IPI interrupt failed\n");
275 	}
276 
277 	gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE);
278 
279 	/* Register for idle callback during force power down/restart */
280 	ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN,
281 				   0x0U, 0x1U, SECURE_FLAG);
282 	if (ret != 0) {
283 		WARN("BL31: registering idle callback for restart/force power down failed\n");
284 	}
285 
286 	return ret;
287 }
288 
289 /**
290  * eemi_for_compatibility() - EEMI calls handler for deprecated calls.
291  * @api_id: identifier for the API being called.
292  * @pm_arg: pointer to the argument data for the API call.
293  * @handle: Pointer to caller's context structure.
294  * @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
295  *
296  * Return: If EEMI API found then, uintptr_t type address, else 0.
297  *
298  * Some EEMI API's use case needs to be changed in Linux driver, so they
299  * can take advantage of common EEMI handler in TF-A. As of now the old
300  * implementation of these APIs are required to maintain backward compatibility
301  * until their use case in linux driver changes.
302  *
303  */
304 static uintptr_t eemi_for_compatibility(uint32_t api_id, uint32_t *pm_arg,
305 					void *handle, uint32_t security_flag)
306 {
307 	enum pm_ret_status ret;
308 
309 	switch (api_id) {
310 
311 	case (uint32_t)PM_FEATURE_CHECK:
312 	{
313 		uint32_t result[RET_PAYLOAD_ARG_CNT] = {0U};
314 
315 		ret = pm_feature_check(pm_arg[0], result, security_flag);
316 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
317 			 (uint64_t)result[1] | ((uint64_t)result[2] << 32U));
318 	}
319 
320 	case PM_LOAD_PDI:
321 	{
322 		ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2],
323 				  security_flag);
324 		SMC_RET1(handle, (uint64_t)ret);
325 	}
326 
327 	default:
328 		return (uintptr_t)0;
329 	}
330 }
331 
332 /**
333  * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI.
334  * @api_id: identifier for the API being called.
335  * @pm_arg: pointer to the argument data for the API call.
336  * @handle: Pointer to caller's context structure.
337  * @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
338  *
339  * These EEMI APIs performs CPU specific power management tasks.
340  * These EEMI APIs are invoked either from PSCI or from debugfs in kernel.
341  * These calls require CPU specific processing before sending IPI request to
342  * Platform Management Controller. For example enable/disable CPU specific
343  * interrupts. This requires separate handler for these calls and may not be
344  * handled using common eemi handler.
345  *
346  * Return: If EEMI API found then, uintptr_t type address, else 0.
347  *
348  */
349 static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, uint32_t *pm_arg,
350 					   void *handle, uint32_t security_flag)
351 {
352 	enum pm_ret_status ret;
353 
354 	switch (api_id) {
355 
356 	case (uint32_t)PM_SELF_SUSPEND:
357 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
358 				      pm_arg[3], security_flag);
359 		SMC_RET1(handle, (u_register_t)ret);
360 
361 	case (uint32_t)PM_FORCE_POWERDOWN:
362 		ret = pm_force_powerdown(pm_arg[0], pm_arg[1], security_flag);
363 		SMC_RET1(handle, (u_register_t)ret);
364 
365 	case (uint32_t)PM_REQ_SUSPEND:
366 		ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
367 				     pm_arg[3], security_flag);
368 		SMC_RET1(handle, (u_register_t)ret);
369 
370 	case (uint32_t)PM_ABORT_SUSPEND:
371 		ret = pm_abort_suspend(pm_arg[0], security_flag);
372 		SMC_RET1(handle, (u_register_t)ret);
373 
374 	case (uint32_t)PM_SYSTEM_SHUTDOWN:
375 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag);
376 		SMC_RET1(handle, (u_register_t)ret);
377 
378 	default:
379 		return (uintptr_t)0;
380 	}
381 }
382 
383 /**
384  * TF_A_specific_handler() - SMC handler for TF-A specific functionality.
385  * @api_id: identifier for the API being called.
386  * @pm_arg: pointer to the argument data for the API call.
387  * @handle: Pointer to caller's context structure.
388  * @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
389  *
390  * These EEMI calls performs functionality that does not require
391  * IPI transaction. The handler ends in TF-A and returns requested data to
392  * kernel from TF-A.
393  *
394  * Return: If TF-A specific API found then, uintptr_t type address, else 0
395  *
396  */
397 static uintptr_t TF_A_specific_handler(uint32_t api_id, uint32_t *pm_arg,
398 				       void *handle, uint32_t security_flag)
399 {
400 	switch (api_id) {
401 
402 	case TF_A_FEATURE_CHECK:
403 	{
404 		enum pm_ret_status ret;
405 		uint32_t result[PAYLOAD_ARG_CNT] = {0U};
406 
407 		ret = eemi_feature_check(pm_arg[0], result);
408 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U));
409 	}
410 
411 	case TF_A_PM_REGISTER_SGI:
412 	{
413 		int32_t ret;
414 
415 		ret = pm_register_sgi(pm_arg[0], pm_arg[1]);
416 		if (ret != 0) {
417 			SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS);
418 		}
419 
420 		SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS);
421 	}
422 
423 	case PM_GET_CALLBACK_DATA:
424 	{
425 		uint32_t result[4] = {0};
426 		enum pm_ret_status ret;
427 
428 		ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U);
429 		if (ret != 0) {
430 			result[0] = (uint32_t)ret;
431 		}
432 
433 		SMC_RET2(handle,
434 			(uint64_t)result[0] | ((uint64_t)result[1] << 32U),
435 			(uint64_t)result[2] | ((uint64_t)result[3] << 32U));
436 	}
437 
438 	case PM_GET_TRUSTZONE_VERSION:
439 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
440 			 ((uint64_t)TZ_VERSION << 32U));
441 
442 	default:
443 		return (uintptr_t)0;
444 	}
445 }
446 
447 /**
448  * eemi_handler() - Prepare EEMI payload and perform IPI transaction.
449  * @api_id: identifier for the API being called.
450  * @pm_arg: pointer to the argument data for the API call.
451  * @handle: Pointer to caller's context structure.
452  * @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
453  *
454  * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol
455  * to allow communication between power management controller and different
456  * processing clusters.
457  *
458  * This handler prepares EEMI protocol payload received from kernel and performs
459  * IPI transaction.
460  *
461  * Return: If EEMI API found then, uintptr_t type address, else 0
462  *
463  */
464 static uintptr_t eemi_handler(uint32_t api_id, uint32_t *pm_arg,
465 			      void *handle, uint32_t security_flag)
466 {
467 	enum pm_ret_status ret;
468 	uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0};
469 
470 	ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1],
471 				  pm_arg[2], pm_arg[3], pm_arg[4],
472 				  (uint64_t *)buf);
473 	/*
474 	 * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API
475 	 * receives 5 words of respoonse from firmware. Currently linux driver can
476 	 * receive only 4 words from TF-A. So, this needs to be handled separately
477 	 * than other eemi calls.
478 	 */
479 	if (api_id == (uint32_t)PM_QUERY_DATA) {
480 		if (((pm_arg[0] == (uint32_t)XPM_QID_CLOCK_GET_NAME) ||
481 		    (pm_arg[0] == (uint32_t)XPM_QID_PINCTRL_GET_FUNCTION_NAME)) &&
482 		    (ret == PM_RET_SUCCESS)) {
483 			SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32U),
484 				(uint64_t)buf[2] | ((uint64_t)buf[3] << 32U));
485 		}
486 	}
487 
488 	SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U),
489 		 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U));
490 }
491 
492 /**
493  * eemi_api_handler() - Prepare EEMI payload and perform IPI transaction.
494  * @api_id: identifier for the API being called.
495  * @pm_arg: pointer to the argument data for the API call.
496  * @handle: Pointer to caller's context structure.
497  * @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
498  *
499  * EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary
500  * protocol to allow communication between power management controller and
501  * different processing clusters.
502  *
503  * This handler prepares EEMI protocol payload received from kernel and performs
504  * IPI transaction.
505  *
506  * Return: If EEMI API found then, uintptr_t type address, else 0
507  */
508 static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg,
509 				  void *handle, uint32_t security_flag)
510 {
511 	enum pm_ret_status ret;
512 	uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U};
513 	uint32_t payload[PAYLOAD_ARG_CNT] = {0U};
514 	uint32_t module_id;
515 
516 	module_id = (api_id & MODULE_ID_MASK) >> 8U;
517 
518 	PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id,
519 			 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
520 			 pm_arg[4], pm_arg[5]);
521 
522 	ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf,
523 			       RET_PAYLOAD_ARG_CNT);
524 
525 	SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U),
526 		 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U),
527 		 (uint64_t)buf[3] | ((uint64_t)buf[4] << 32U),
528 		 (uint64_t)buf[5]);
529 }
530 
531 /**
532  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
533  * @smc_fid: Function Identifier.
534  * @x1: SMC64 Arguments from kernel.
535  * @x2: SMC64 Arguments from kernel.
536  * @x3: SMC64 Arguments from kernel (upper 32-bits).
537  * @x4: Unused.
538  * @cookie: Unused.
539  * @handle: Pointer to caller's context structure.
540  * @flags: SECURE_FLAG or NON_SECURE_FLAG.
541  *
542  * Return: Unused.
543  *
544  * Determines that smc_fid is valid and supported PM SMC Function ID from the
545  * list of pm_api_ids, otherwise completes the request with
546  * the unknown SMC Function ID.
547  *
548  * The SMC calls for PM service are forwarded from SIP Service SMC handler
549  * function with rt_svc_handle signature.
550  *
551  */
552 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
553 			uint64_t x4, const void *cookie, void *handle, uint64_t flags)
554 {
555 	(void)cookie;
556 	uintptr_t ret;
557 	uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0};
558 	uint32_t security_flag = NON_SECURE_FLAG;
559 	uint32_t api_id;
560 	bool status = false, status_tmp = false;
561 	const uint64_t x[4] = {x1, x2, x3, x4};
562 
563 	/* Handle case where PM wasn't initialized properly */
564 	if (pm_up == false) {
565 		SMC_RET1(handle, SMC_UNK);
566 	}
567 
568 	/*
569 	 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0)
570 	 * if smc called is secure
571 	 *
572 	 * Add redundant macro call to immune the code from glitches
573 	 */
574 	SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags);
575 	if ((status != false) && (status_tmp != false)) {
576 		security_flag = SECURE_FLAG;
577 	}
578 
579 	if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) {
580 		api_id = lower_32_bits(x[0]);
581 
582 		EXTRACT_ARGS(pm_arg, x);
583 
584 		return eemi_api_handler(api_id, pm_arg, handle, security_flag);
585 	}
586 
587 	pm_arg[0] = (uint32_t)x1;
588 	pm_arg[1] = (uint32_t)(x1 >> 32U);
589 	pm_arg[2] = (uint32_t)x2;
590 	pm_arg[3] = (uint32_t)(x2 >> 32U);
591 	pm_arg[4] = (uint32_t)x3;
592 	(void)(x4);
593 	api_id = smc_fid & FUNCID_NUM_MASK;
594 
595 	ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag);
596 	if (ret != (uintptr_t)0) {
597 		return ret;
598 	}
599 
600 	ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, flags);
601 	if (ret !=  (uintptr_t)0) {
602 		return ret;
603 	}
604 
605 	ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag);
606 	if (ret !=  (uintptr_t)0) {
607 		return ret;
608 	}
609 
610 	ret = eemi_handler(api_id, pm_arg, handle, security_flag);
611 
612 	return ret;
613 }
614