xref: /rk3399_ARM-atf/plat/xilinx/common/pm_service/pm_svc_main.c (revision 6fb6bee1dfd7fd896c44cc21b02b4ef3aad3bbd0)
1 /*
2  * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved.
3  * Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 /*
9  * Top-level SMC handler for Versal power management calls and
10  * IPI setup functions for communication with PMC.
11  */
12 
13 #include <errno.h>
14 #include <stdbool.h>
15 
16 #include "../drivers/arm/gic/v3/gicv3_private.h"
17 
18 #include <common/ep_info.h>
19 #include <common/runtime_svc.h>
20 #include <drivers/arm/gicv3.h>
21 #include <lib/psci/psci.h>
22 #include <plat/arm/common/plat_arm.h>
23 #include <plat/common/platform.h>
24 
25 #include <plat_private.h>
26 #include "pm_api_sys.h"
27 #include "pm_client.h"
28 #include "pm_ipi.h"
29 #include "pm_svc_main.h"
30 
31 #define MODE				0x80000000U
32 
33 #define INVALID_SGI    0xFFU
34 #define PM_INIT_SUSPEND_CB	(30U)
35 #define PM_NOTIFY_CB		(32U)
36 #define EVENT_CPU_PWRDWN	(4U)
37 #define MBOX_SGI_SHARED_IPI	(7U)
38 
39 /**
40  * upper_32_bits - return bits 32-63 of a number
41  * @n: the number we're accessing
42  */
43 #define upper_32_bits(n)	((uint32_t)((n) >> 32U))
44 
45 /**
46  * lower_32_bits - return bits 0-31 of a number
47  * @n: the number we're accessing
48  */
49 #define lower_32_bits(n)	((uint32_t)((n) & 0xffffffffU))
50 
51 /**
52  * EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments
53  * @pm_arg: array of 32-bit payloads
54  * @x: array of 64-bit SMC arguments
55  */
56 #define EXTRACT_ARGS(pm_arg, x)						\
57 	for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) {	\
58 		if ((i % 2U) != 0U) {					\
59 			pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]);	\
60 		} else {						\
61 			pm_arg[i] = upper_32_bits(x[i / 2U]);		\
62 		}							\
63 	}
64 
65 /* 1 sec of wait timeout for secondary core down */
66 #define PWRDWN_WAIT_TIMEOUT	(1000U)
67 
68 /* pm_up = true - UP, pm_up = false - DOWN */
69 static bool pm_up;
70 static uint32_t sgi = (uint32_t)INVALID_SGI;
71 static bool pwrdwn_req_received;
72 
73 bool pm_pwrdwn_req_status(void)
74 {
75 	return pwrdwn_req_received;
76 }
77 
78 static void notify_os(void)
79 {
80 	plat_ic_raise_ns_sgi((int)sgi, read_mpidr_el1());
81 }
82 
83 static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags,
84 				       void *handle, void *cookie)
85 {
86 	(void)id;
87 	(void)flags;
88 	(void)handle;
89 	(void)cookie;
90 	uint32_t cpu_id = plat_my_core_pos();
91 
92 	VERBOSE("Powering down CPU %d\n", cpu_id);
93 
94 	/* Deactivate CPU power down SGI */
95 	plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR);
96 
97 	return (uint64_t)psci_cpu_off();
98 }
99 
100 /**
101  * raise_pwr_down_interrupt() - Callback function to raise SGI.
102  * @mpidr: MPIDR for the target CPU.
103  *
104  * Raise SGI interrupt to trigger the CPU power down sequence on all the
105  * online secondary cores.
106  */
107 static void raise_pwr_down_interrupt(u_register_t mpidr)
108 {
109 	plat_ic_raise_el3_sgi((int)CPU_PWR_DOWN_REQ_INTR, mpidr);
110 }
111 
112 void request_cpu_pwrdwn(void)
113 {
114 	int ret;
115 
116 	VERBOSE("CPU power down request received\n");
117 
118 	/* Send powerdown request to online secondary core(s) */
119 	ret = psci_stop_other_cores(plat_my_core_pos(), PWRDWN_WAIT_TIMEOUT,
120 				    raise_pwr_down_interrupt);
121 	if (ret != PSCI_E_SUCCESS) {
122 		ERROR("Failed to powerdown secondary core(s)\n");
123 	}
124 
125 	/* Clear IPI IRQ */
126 	pm_ipi_irq_clear(primary_proc);
127 
128 	/* Deactivate IPI IRQ */
129 	plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ);
130 }
131 
132 static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle,
133 				void *cookie)
134 {
135 	(void)flags;
136 	(void)handle;
137 	(void)cookie;
138 	uint32_t payload[4] = {0};
139 	enum pm_ret_status ret;
140 	uint32_t ipi_status, i;
141 
142 	VERBOSE("Received IPI FIQ from firmware\n");
143 
144 	console_flush();
145 	(void)plat_ic_acknowledge_interrupt();
146 
147 	/* Check status register for each IPI except PMC */
148 	for (i = IPI_ID_APU; i <= IPI_ID_5; i++) {
149 		ipi_status = ipi_mb_enquire_status(IPI_ID_APU, i);
150 
151 		/* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */
152 		if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) != 0U) {
153 			plat_ic_raise_ns_sgi((int)MBOX_SGI_SHARED_IPI, read_mpidr_el1());
154 			break;
155 		}
156 	}
157 
158 	/* If PMC has not generated interrupt then end ISR */
159 	ipi_status = ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC);
160 	if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) == 0U) {
161 		plat_ic_end_of_interrupt(id);
162 		goto exit_label;
163 	}
164 
165 	/* Handle PMC case */
166 	ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0);
167 	if (ret != PM_RET_SUCCESS) {
168 		payload[0] = (uint32_t)ret;
169 	}
170 
171 	switch (payload[0]) {
172 	case PM_INIT_SUSPEND_CB:
173 		if (sgi != INVALID_SGI) {
174 			notify_os();
175 		}
176 		break;
177 	case PM_NOTIFY_CB:
178 		if (sgi != INVALID_SGI) {
179 			if ((payload[2] == EVENT_CPU_PWRDWN) &&
180 			    (NODECLASS(payload[1]) == (uint32_t)XPM_NODECLASS_DEVICE)) {
181 				if (pwrdwn_req_received) {
182 					pwrdwn_req_received = false;
183 					request_cpu_pwrdwn();
184 					(void)psci_cpu_off();
185 					break;
186 				} else {
187 					pwrdwn_req_received = true;
188 				}
189 			}
190 			notify_os();
191 		} else {
192 			if ((payload[2] == EVENT_CPU_PWRDWN) &&
193 			    (NODECLASS(payload[1]) == (uint32_t)XPM_NODECLASS_DEVICE)) {
194 				request_cpu_pwrdwn();
195 				(void)psci_cpu_off();
196 			}
197 		}
198 		break;
199 	case (uint32_t)PM_RET_ERROR_INVALID_CRC:
200 		pm_ipi_irq_clear(primary_proc);
201 		WARN("Invalid CRC in the payload\n");
202 		break;
203 
204 	default:
205 		pm_ipi_irq_clear(primary_proc);
206 		WARN("Invalid IPI payload\n");
207 		break;
208 	}
209 
210 	/* Clear FIQ */
211 	plat_ic_end_of_interrupt(id);
212 
213 exit_label:
214 	return 0;
215 }
216 
217 /**
218  * pm_register_sgi() - PM register the IPI interrupt.
219  * @sgi_num: SGI number to be used for communication.
220  * @reset: Reset to invalid SGI when reset=1.
221  *
222  * Return: On success, the initialization function must return 0.
223  *         Any other return value will cause the framework to ignore
224  *         the service.
225  *
226  * Update the SGI number to be used.
227  *
228  */
229 int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset)
230 {
231 	int32_t ret = 0;
232 
233 	if (reset == 1U) {
234 		sgi = INVALID_SGI;
235 	} else if (sgi != INVALID_SGI) {
236 		ret = -EBUSY;
237 	} else if (sgi_num >= GICV3_MAX_SGI_TARGETS) {
238 		ret = -EINVAL;
239 	} else {
240 		sgi = (uint32_t)sgi_num;
241 	}
242 
243 	return ret;
244 }
245 
246 /**
247  * pm_setup() - PM service setup.
248  *
249  * Return: On success, the initialization function must return 0.
250  *         Any other return value will cause the framework to ignore
251  *         the service.
252  *
253  * Initialization functions for Versal power management for
254  * communicaton with PMC.
255  *
256  * Called from sip_svc_setup initialization function with the
257  * rt_svc_init signature.
258  *
259  */
260 int32_t pm_setup(void)
261 {
262 	int32_t ret = 0;
263 
264 	pm_ipi_init(primary_proc);
265 	pm_up = true;
266 	pwrdwn_req_received = false;
267 
268 	/* register SGI handler for CPU power down request */
269 	ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler);
270 	if (ret != 0) {
271 		WARN("BL31: registering SGI interrupt failed\n");
272 	}
273 
274 	/*
275 	 * Enable IPI IRQ
276 	 * assume the rich OS is OK to handle callback IRQs now.
277 	 * Even if we were wrong, it would not enable the IRQ in
278 	 * the GIC.
279 	 */
280 	pm_ipi_irq_enable(primary_proc);
281 
282 	ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler);
283 	if (ret != 0) {
284 		WARN("BL31: registering IPI interrupt failed\n");
285 	}
286 
287 	gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE);
288 
289 	/* Register for idle callback during force power down/restart */
290 	ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN,
291 					    0x0U, 0x1U, SECURE);
292 	if (ret != 0) {
293 		WARN("BL31: registering idle callback for restart/force power down failed\n");
294 	}
295 
296 	return ret;
297 }
298 
299 /**
300  * eemi_for_compatibility() - EEMI calls handler for deprecated calls.
301  * @api_id: identifier for the API being called.
302  * @pm_arg: pointer to the argument data for the API call.
303  * @handle: Pointer to caller's context structure.
304  * @security_flag: SECURE or NON_SECURE.
305  *
306  * Return: If EEMI API found then, uintptr_t type address, else 0.
307  *
308  * Some EEMI API's use case needs to be changed in Linux driver, so they
309  * can take advantage of common EEMI handler in TF-A. As of now the old
310  * implementation of these APIs are required to maintain backward compatibility
311  * until their use case in linux driver changes.
312  *
313  */
314 static uintptr_t eemi_for_compatibility(uint32_t api_id, const uint32_t *pm_arg,
315 					void *handle, uint32_t security_flag)
316 {
317 	enum pm_ret_status ret;
318 
319 	switch (api_id) {
320 
321 	case (uint32_t)PM_FEATURE_CHECK:
322 	{
323 		uint32_t result[RET_PAYLOAD_ARG_CNT] = {0U};
324 
325 		ret = pm_feature_check(pm_arg[0], result, security_flag);
326 		SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U),
327 			 (uint64_t)result[1] | ((uint64_t)result[2] << 32U));
328 	}
329 
330 	case PM_LOAD_PDI:
331 	{
332 		ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2],
333 				  security_flag);
334 		SMC_RET1(handle, (uint64_t)ret);
335 	}
336 
337 	default:
338 		return (uintptr_t)0;
339 	}
340 }
341 
342 /**
343  * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI.
344  * @api_id: identifier for the API being called.
345  * @pm_arg: pointer to the argument data for the API call.
346  * @handle: Pointer to caller's context structure.
347  * @security_flag: SECURE or NON_SECURE.
348  *
349  * These EEMI APIs performs CPU specific power management tasks.
350  * These EEMI APIs are invoked either from PSCI or from debugfs in kernel.
351  * These calls require CPU specific processing before sending IPI request to
352  * Platform Management Controller. For example enable/disable CPU specific
353  * interrupts. This requires separate handler for these calls and may not be
354  * handled using common eemi handler.
355  *
356  * Return: If EEMI API found then, uintptr_t type address, else 0.
357  *
358  */
359 static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, const uint32_t *pm_arg,
360 					   void *handle, uint32_t security_flag)
361 {
362 	enum pm_ret_status ret;
363 
364 	switch (api_id) {
365 
366 	case (uint32_t)PM_SELF_SUSPEND:
367 		ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
368 				      pm_arg[3], security_flag);
369 		SMC_RET1(handle, (u_register_t)ret);
370 
371 	case (uint32_t)PM_FORCE_POWERDOWN:
372 		ret = pm_force_powerdown(pm_arg[0], (uint8_t)pm_arg[1], security_flag);
373 		SMC_RET1(handle, (u_register_t)ret);
374 
375 	case (uint32_t)PM_SYSTEM_SHUTDOWN:
376 		ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag);
377 		SMC_RET1(handle, (u_register_t)ret);
378 
379 	default:
380 		return (uintptr_t)0;
381 	}
382 }
383 
384 /**
385  * tfa_clear_pm_state() - Reset TF-A-specific PM state.
386  *
387  * This function resets TF-A-specific state that may have been modified,
388  * such as during a kexec-based kernel reload. It resets the SGI number
389  * and the shutdown scope to its default value.
390  */
391 static enum pm_ret_status tfa_clear_pm_state(void)
392 {
393 	/* Reset SGI number to default value(-1). */
394 	sgi = (uint32_t)INVALID_SGI;
395 
396 	/* Reset the shutdown scope to its default value(system). */
397 	return pm_system_shutdown(XPM_SHUTDOWN_TYPE_SETSCOPE_ONLY, XPM_SHUTDOWN_SUBTYPE_RST_SYSTEM,
398 				  0U);
399 }
400 
401 /**
402  * TF_A_specific_handler() - SMC handler for TF-A specific functionality.
403  * @api_id: identifier for the API being called.
404  * @pm_arg: pointer to the argument data for the API call.
405  * @handle: Pointer to caller's context structure.
406  * @security_flag: SECURE or NON_SECURE.
407  *
408  * These EEMI calls performs functionality that does not require
409  * IPI transaction. The handler ends in TF-A and returns requested data to
410  * kernel from TF-A.
411  *
412  * Return: If TF-A specific API found then, uintptr_t type address, else 0
413  *
414  */
415 static uintptr_t TF_A_specific_handler(uint32_t api_id, const uint32_t *pm_arg,
416 				       void *handle, uint32_t security_flag)
417 {
418 	switch (api_id) {
419 
420 	case TF_A_FEATURE_CHECK:
421 	{
422 		enum pm_ret_status ret;
423 		uint32_t result[PAYLOAD_ARG_CNT] = {0U};
424 
425 		ret = tfa_api_feature_check(pm_arg[0], result);
426 		SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U));
427 	}
428 
429 	case TF_A_PM_REGISTER_SGI:
430 	{
431 		int32_t ret;
432 
433 		ret = pm_register_sgi(pm_arg[0], pm_arg[1]);
434 		if (ret != 0) {
435 			SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS);
436 		}
437 
438 		SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS);
439 	}
440 
441 	case PM_GET_CALLBACK_DATA:
442 	{
443 		uint32_t result[4] = {0};
444 		enum pm_ret_status ret;
445 
446 		ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U);
447 		if (ret != PM_RET_SUCCESS) {
448 			result[0] = (uint32_t)ret;
449 		}
450 
451 		SMC_RET2(handle,
452 			(uint64_t)result[0] | ((uint64_t)result[1] << 32U),
453 			(uint64_t)result[2] | ((uint64_t)result[3] << 32U));
454 	}
455 
456 	case PM_GET_TRUSTZONE_VERSION:
457 		SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS |
458 			 ((uint64_t)TZ_VERSION << 32U));
459 
460 	case TF_A_CLEAR_PM_STATE:
461 	{
462 		enum pm_ret_status ret;
463 
464 		ret = tfa_clear_pm_state();
465 
466 		SMC_RET1(handle, (uint64_t)ret);
467 	}
468 
469 	default:
470 		return (uintptr_t)0;
471 	}
472 }
473 
474 /**
475  * eemi_handler() - Prepare EEMI payload and perform IPI transaction.
476  * @api_id: identifier for the API being called.
477  * @pm_arg: pointer to the argument data for the API call.
478  * @handle: Pointer to caller's context structure.
479  * @security_flag: SECURE or NON_SECURE.
480  *
481  * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol
482  * to allow communication between power management controller and different
483  * processing clusters.
484  *
485  * This handler prepares EEMI protocol payload received from kernel and performs
486  * IPI transaction.
487  *
488  * Return: If EEMI API found then, uintptr_t type address, else 0
489  *
490  */
491 static uintptr_t eemi_handler(uint32_t api_id, const uint32_t *pm_arg,
492 			      void *handle, uint32_t security_flag)
493 {
494 	enum pm_ret_status ret;
495 	uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0};
496 
497 	ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1],
498 				  pm_arg[2], pm_arg[3], pm_arg[4], buf);
499 	/*
500 	 * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API
501 	 * receives 5 words of respoonse from firmware. Currently linux driver can
502 	 * receive only 4 words from TF-A. So, this needs to be handled separately
503 	 * than other eemi calls.
504 	 */
505 	if (api_id == (uint32_t)PM_QUERY_DATA) {
506 		if (((pm_arg[0] == (uint32_t)XPM_QID_CLOCK_GET_NAME) ||
507 		    (pm_arg[0] == (uint32_t)XPM_QID_PINCTRL_GET_FUNCTION_NAME)) &&
508 		    (ret == PM_RET_SUCCESS)) {
509 			SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32U),
510 				(uint64_t)buf[2] | ((uint64_t)buf[3] << 32U));
511 		}
512 	}
513 
514 	SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U),
515 		 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U));
516 }
517 
518 /**
519  * eemi_api_handler() - Prepare EEMI payload and perform IPI transaction.
520  * @api_id: identifier for the API being called.
521  * @pm_arg: pointer to the argument data for the API call.
522  * @handle: Pointer to caller's context structure.
523  * @security_flag: SECURE or NON_SECURE.
524  *
525  * EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary
526  * protocol to allow communication between power management controller and
527  * different processing clusters.
528  *
529  * This handler prepares EEMI protocol payload received from kernel and performs
530  * IPI transaction.
531  *
532  * Return: If EEMI API found then, uintptr_t type address, else 0
533  */
534 static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg,
535 				  void *handle, uint32_t security_flag)
536 {
537 	enum pm_ret_status ret;
538 	uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U};
539 	uint32_t payload[PAYLOAD_ARG_CNT] = {0U};
540 	uint32_t module_id;
541 
542 	module_id = (api_id & MODULE_ID_MASK) >> 8U;
543 
544 	PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id,
545 			 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
546 			 pm_arg[4], pm_arg[5]);
547 
548 	ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf,
549 			       RET_PAYLOAD_ARG_CNT);
550 
551 	SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U),
552 		 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U),
553 		 (uint64_t)buf[3] | ((uint64_t)buf[4] << 32U),
554 		 (uint64_t)buf[5]);
555 }
556 
557 /**
558  * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
559  * @smc_fid: Function Identifier.
560  * @x1: SMC64 Arguments from kernel.
561  * @x2: SMC64 Arguments from kernel.
562  * @x3: SMC64 Arguments from kernel (upper 32-bits).
563  * @x4: Unused.
564  * @cookie: Unused.
565  * @handle: Pointer to caller's context structure.
566  * @flags: SECURE or NON_SECURE.
567  *
568  * Return: Unused.
569  *
570  * Determines that smc_fid is valid and supported PM SMC Function ID from the
571  * list of pm_api_ids, otherwise completes the request with
572  * the unknown SMC Function ID.
573  *
574  * The SMC calls for PM service are forwarded from SIP Service SMC handler
575  * function with rt_svc_handle signature.
576  *
577  */
578 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
579 			uint64_t x4, const void *cookie, void *handle, uint64_t flags)
580 {
581 	(void)cookie;
582 	uintptr_t ret;
583 	uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0};
584 	uint32_t security_flag = NON_SECURE;
585 	uint32_t api_id;
586 	bool status = false, status_tmp = false;
587 	const uint64_t x[4] = {x1, x2, x3, x4};
588 
589 	/* Handle case where PM wasn't initialized properly */
590 	if (pm_up == false) {
591 		SMC_RET1(handle, SMC_UNK);
592 	}
593 
594 	/*
595 	 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0)
596 	 * if smc called is secure
597 	 *
598 	 * Add redundant macro call to immune the code from glitches
599 	 */
600 	SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags);
601 	if ((status != false) && (status_tmp != false)) {
602 		security_flag = SECURE;
603 	}
604 
605 	if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) {
606 		api_id = lower_32_bits(x[0]);
607 
608 		EXTRACT_ARGS(pm_arg, x);
609 
610 		return eemi_api_handler(api_id, pm_arg, handle, security_flag);
611 	}
612 
613 	pm_arg[0] = (uint32_t)x1;
614 	pm_arg[1] = (uint32_t)(x1 >> 32U);
615 	pm_arg[2] = (uint32_t)x2;
616 	pm_arg[3] = (uint32_t)(x2 >> 32U);
617 	pm_arg[4] = (uint32_t)x3;
618 	(void)(x4);
619 	api_id = smc_fid & FUNCID_NUM_MASK;
620 
621 	ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag);
622 	if (ret != (uintptr_t)0) {
623 		return ret;
624 	}
625 
626 	ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle,
627 					(uint32_t)flags);
628 	if (ret !=  (uintptr_t)0) {
629 		return ret;
630 	}
631 
632 	ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag);
633 	if (ret !=  (uintptr_t)0) {
634 		return ret;
635 	}
636 
637 	ret = eemi_handler(api_id, pm_arg, handle, security_flag);
638 
639 	return ret;
640 }
641