1 /* 2 * Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved. 3 * Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 /* 9 * Top-level SMC handler for Versal power management calls and 10 * IPI setup functions for communication with PMC. 11 */ 12 13 #include <errno.h> 14 #include <stdbool.h> 15 16 #include "../drivers/arm/gic/v3/gicv3_private.h" 17 18 #include <common/runtime_svc.h> 19 #include <drivers/arm/gicv3.h> 20 #include <lib/psci/psci.h> 21 #include <plat/arm/common/plat_arm.h> 22 #include <plat/common/platform.h> 23 24 #include <plat_private.h> 25 #include "pm_api_sys.h" 26 #include "pm_client.h" 27 #include "pm_ipi.h" 28 #include "pm_svc_main.h" 29 30 #define MODE 0x80000000U 31 32 #define XSCUGIC_SGIR_EL1_INITID_SHIFT 24U 33 #define INVALID_SGI 0xFFU 34 #define PM_INIT_SUSPEND_CB (30U) 35 #define PM_NOTIFY_CB (32U) 36 #define EVENT_CPU_PWRDWN (4U) 37 #define MBOX_SGI_SHARED_IPI (7U) 38 39 /** 40 * upper_32_bits - return bits 32-63 of a number 41 * @n: the number we're accessing 42 */ 43 #define upper_32_bits(n) ((uint32_t)((n) >> 32U)) 44 45 /** 46 * lower_32_bits - return bits 0-31 of a number 47 * @n: the number we're accessing 48 */ 49 #define lower_32_bits(n) ((uint32_t)((n) & 0xffffffffU)) 50 51 /** 52 * EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments 53 * @pm_arg: array of 32-bit payloads 54 * @x: array of 64-bit SMC arguments 55 */ 56 #define EXTRACT_ARGS(pm_arg, x) \ 57 for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) { \ 58 if ((i % 2U) != 0U) { \ 59 pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]); \ 60 } else { \ 61 pm_arg[i] = upper_32_bits(x[i / 2U]); \ 62 } \ 63 } 64 65 /* 1 sec of wait timeout for secondary core down */ 66 #define PWRDWN_WAIT_TIMEOUT (1000U) 67 68 /* pm_up = true - UP, pm_up = false - DOWN */ 69 static bool pm_up; 70 static uint32_t sgi = (uint32_t)INVALID_SGI; 71 bool pwrdwn_req_received; 72 73 static void notify_os(void) 74 { 75 plat_ic_raise_ns_sgi((int)sgi, read_mpidr_el1()); 76 } 77 78 static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags, 79 void *handle, void *cookie) 80 { 81 (void)id; 82 (void)flags; 83 (void)handle; 84 (void)cookie; 85 uint32_t cpu_id = plat_my_core_pos(); 86 87 VERBOSE("Powering down CPU %d\n", cpu_id); 88 89 /* Deactivate CPU power down SGI */ 90 plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR); 91 92 return (uint64_t)psci_cpu_off(); 93 } 94 95 /** 96 * raise_pwr_down_interrupt() - Callback function to raise SGI. 97 * @mpidr: MPIDR for the target CPU. 98 * 99 * Raise SGI interrupt to trigger the CPU power down sequence on all the 100 * online secondary cores. 101 */ 102 static void raise_pwr_down_interrupt(u_register_t mpidr) 103 { 104 plat_ic_raise_el3_sgi((int)CPU_PWR_DOWN_REQ_INTR, mpidr); 105 } 106 107 void request_cpu_pwrdwn(void) 108 { 109 int ret; 110 111 VERBOSE("CPU power down request received\n"); 112 113 /* Send powerdown request to online secondary core(s) */ 114 ret = psci_stop_other_cores(plat_my_core_pos(), PWRDWN_WAIT_TIMEOUT, 115 raise_pwr_down_interrupt); 116 if (ret != PSCI_E_SUCCESS) { 117 ERROR("Failed to powerdown secondary core(s)\n"); 118 } 119 120 /* Clear IPI IRQ */ 121 pm_ipi_irq_clear(primary_proc); 122 123 /* Deactivate IPI IRQ */ 124 plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ); 125 } 126 127 static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle, 128 void *cookie) 129 { 130 (void)flags; 131 (void)handle; 132 (void)cookie; 133 uint32_t payload[4] = {0}; 134 enum pm_ret_status ret; 135 uint32_t ipi_status, i; 136 137 VERBOSE("Received IPI FIQ from firmware\n"); 138 139 console_flush(); 140 (void)plat_ic_acknowledge_interrupt(); 141 142 /* Check status register for each IPI except PMC */ 143 for (i = IPI_ID_APU; i <= IPI_ID_5; i++) { 144 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, i); 145 146 /* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */ 147 if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) != 0U) { 148 plat_ic_raise_ns_sgi((int)MBOX_SGI_SHARED_IPI, read_mpidr_el1()); 149 break; 150 } 151 } 152 153 /* If PMC has not generated interrupt then end ISR */ 154 ipi_status = ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC); 155 if ((ipi_status & IPI_MB_STATUS_RECV_PENDING) == 0U) { 156 plat_ic_end_of_interrupt(id); 157 goto exit_label; 158 } 159 160 /* Handle PMC case */ 161 ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0); 162 if (ret != PM_RET_SUCCESS) { 163 payload[0] = (uint32_t)ret; 164 } 165 166 switch (payload[0]) { 167 case PM_INIT_SUSPEND_CB: 168 if (sgi != INVALID_SGI) { 169 notify_os(); 170 } 171 break; 172 case PM_NOTIFY_CB: 173 if (sgi != INVALID_SGI) { 174 if (payload[2] == EVENT_CPU_PWRDWN) { 175 if (pwrdwn_req_received) { 176 pwrdwn_req_received = false; 177 request_cpu_pwrdwn(); 178 (void)psci_cpu_off(); 179 break; 180 } else { 181 pwrdwn_req_received = true; 182 } 183 } 184 notify_os(); 185 } else { 186 if (payload[2] == EVENT_CPU_PWRDWN) { 187 request_cpu_pwrdwn(); 188 (void)psci_cpu_off(); 189 } 190 } 191 break; 192 case (uint32_t)PM_RET_ERROR_INVALID_CRC: 193 pm_ipi_irq_clear(primary_proc); 194 WARN("Invalid CRC in the payload\n"); 195 break; 196 197 default: 198 pm_ipi_irq_clear(primary_proc); 199 WARN("Invalid IPI payload\n"); 200 break; 201 } 202 203 /* Clear FIQ */ 204 plat_ic_end_of_interrupt(id); 205 206 exit_label: 207 return 0; 208 } 209 210 /** 211 * pm_register_sgi() - PM register the IPI interrupt. 212 * @sgi_num: SGI number to be used for communication. 213 * @reset: Reset to invalid SGI when reset=1. 214 * 215 * Return: On success, the initialization function must return 0. 216 * Any other return value will cause the framework to ignore 217 * the service. 218 * 219 * Update the SGI number to be used. 220 * 221 */ 222 int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset) 223 { 224 int32_t ret = 0; 225 226 if (reset == 1U) { 227 sgi = INVALID_SGI; 228 } else if (sgi != INVALID_SGI) { 229 ret = -EBUSY; 230 } else if (sgi_num >= GICV3_MAX_SGI_TARGETS) { 231 ret = -EINVAL; 232 } else { 233 sgi = (uint32_t)sgi_num; 234 } 235 236 return ret; 237 } 238 239 /** 240 * pm_setup() - PM service setup. 241 * 242 * Return: On success, the initialization function must return 0. 243 * Any other return value will cause the framework to ignore 244 * the service. 245 * 246 * Initialization functions for Versal power management for 247 * communicaton with PMC. 248 * 249 * Called from sip_svc_setup initialization function with the 250 * rt_svc_init signature. 251 * 252 */ 253 int32_t pm_setup(void) 254 { 255 int32_t ret = 0; 256 257 pm_ipi_init(primary_proc); 258 pm_up = true; 259 260 /* register SGI handler for CPU power down request */ 261 ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler); 262 if (ret != 0) { 263 WARN("BL31: registering SGI interrupt failed\n"); 264 } 265 266 /* 267 * Enable IPI IRQ 268 * assume the rich OS is OK to handle callback IRQs now. 269 * Even if we were wrong, it would not enable the IRQ in 270 * the GIC. 271 */ 272 pm_ipi_irq_enable(primary_proc); 273 274 ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler); 275 if (ret != 0) { 276 WARN("BL31: registering IPI interrupt failed\n"); 277 } 278 279 gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE); 280 281 /* Register for idle callback during force power down/restart */ 282 ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN, 283 0x0U, 0x1U, SECURE_FLAG); 284 if (ret != 0) { 285 WARN("BL31: registering idle callback for restart/force power down failed\n"); 286 } 287 288 return ret; 289 } 290 291 /** 292 * eemi_for_compatibility() - EEMI calls handler for deprecated calls. 293 * @api_id: identifier for the API being called. 294 * @pm_arg: pointer to the argument data for the API call. 295 * @handle: Pointer to caller's context structure. 296 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 297 * 298 * Return: If EEMI API found then, uintptr_t type address, else 0. 299 * 300 * Some EEMI API's use case needs to be changed in Linux driver, so they 301 * can take advantage of common EEMI handler in TF-A. As of now the old 302 * implementation of these APIs are required to maintain backward compatibility 303 * until their use case in linux driver changes. 304 * 305 */ 306 static uintptr_t eemi_for_compatibility(uint32_t api_id, uint32_t *pm_arg, 307 void *handle, uint32_t security_flag) 308 { 309 enum pm_ret_status ret; 310 311 switch (api_id) { 312 313 case (uint32_t)PM_FEATURE_CHECK: 314 { 315 uint32_t result[RET_PAYLOAD_ARG_CNT] = {0U}; 316 317 ret = pm_feature_check(pm_arg[0], result, security_flag); 318 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U), 319 (uint64_t)result[1] | ((uint64_t)result[2] << 32U)); 320 } 321 322 case PM_LOAD_PDI: 323 { 324 ret = pm_load_pdi(pm_arg[0], pm_arg[1], pm_arg[2], 325 security_flag); 326 SMC_RET1(handle, (uint64_t)ret); 327 } 328 329 default: 330 return (uintptr_t)0; 331 } 332 } 333 334 /** 335 * eemi_psci_debugfs_handler() - EEMI API invoked from PSCI. 336 * @api_id: identifier for the API being called. 337 * @pm_arg: pointer to the argument data for the API call. 338 * @handle: Pointer to caller's context structure. 339 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 340 * 341 * These EEMI APIs performs CPU specific power management tasks. 342 * These EEMI APIs are invoked either from PSCI or from debugfs in kernel. 343 * These calls require CPU specific processing before sending IPI request to 344 * Platform Management Controller. For example enable/disable CPU specific 345 * interrupts. This requires separate handler for these calls and may not be 346 * handled using common eemi handler. 347 * 348 * Return: If EEMI API found then, uintptr_t type address, else 0. 349 * 350 */ 351 static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, uint32_t *pm_arg, 352 void *handle, uint32_t security_flag) 353 { 354 enum pm_ret_status ret; 355 356 switch (api_id) { 357 358 case (uint32_t)PM_SELF_SUSPEND: 359 ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], 360 pm_arg[3], security_flag); 361 SMC_RET1(handle, (u_register_t)ret); 362 363 case (uint32_t)PM_FORCE_POWERDOWN: 364 ret = pm_force_powerdown(pm_arg[0], (uint8_t)pm_arg[1], security_flag); 365 SMC_RET1(handle, (u_register_t)ret); 366 367 case (uint32_t)PM_REQ_SUSPEND: 368 ret = pm_req_suspend(pm_arg[0], (uint8_t)pm_arg[1], pm_arg[2], 369 pm_arg[3], security_flag); 370 SMC_RET1(handle, (u_register_t)ret); 371 372 case (uint32_t)PM_ABORT_SUSPEND: 373 ret = pm_abort_suspend((enum pm_abort_reason)pm_arg[0], security_flag); 374 SMC_RET1(handle, (u_register_t)ret); 375 376 case (uint32_t)PM_SYSTEM_SHUTDOWN: 377 ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag); 378 SMC_RET1(handle, (u_register_t)ret); 379 380 default: 381 return (uintptr_t)0; 382 } 383 } 384 385 /** 386 * TF_A_specific_handler() - SMC handler for TF-A specific functionality. 387 * @api_id: identifier for the API being called. 388 * @pm_arg: pointer to the argument data for the API call. 389 * @handle: Pointer to caller's context structure. 390 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 391 * 392 * These EEMI calls performs functionality that does not require 393 * IPI transaction. The handler ends in TF-A and returns requested data to 394 * kernel from TF-A. 395 * 396 * Return: If TF-A specific API found then, uintptr_t type address, else 0 397 * 398 */ 399 static uintptr_t TF_A_specific_handler(uint32_t api_id, uint32_t *pm_arg, 400 void *handle, uint32_t security_flag) 401 { 402 switch (api_id) { 403 404 case TF_A_FEATURE_CHECK: 405 { 406 enum pm_ret_status ret; 407 uint32_t result[PAYLOAD_ARG_CNT] = {0U}; 408 409 ret = eemi_feature_check(pm_arg[0], result); 410 SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U)); 411 } 412 413 case TF_A_PM_REGISTER_SGI: 414 { 415 int32_t ret; 416 417 ret = pm_register_sgi(pm_arg[0], pm_arg[1]); 418 if (ret != 0) { 419 SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS); 420 } 421 422 SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS); 423 } 424 425 case PM_GET_CALLBACK_DATA: 426 { 427 uint32_t result[4] = {0}; 428 enum pm_ret_status ret; 429 430 ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U); 431 if (ret != PM_RET_SUCCESS) { 432 result[0] = (uint32_t)ret; 433 } 434 435 SMC_RET2(handle, 436 (uint64_t)result[0] | ((uint64_t)result[1] << 32U), 437 (uint64_t)result[2] | ((uint64_t)result[3] << 32U)); 438 } 439 440 case PM_GET_TRUSTZONE_VERSION: 441 SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | 442 ((uint64_t)TZ_VERSION << 32U)); 443 444 default: 445 return (uintptr_t)0; 446 } 447 } 448 449 /** 450 * eemi_handler() - Prepare EEMI payload and perform IPI transaction. 451 * @api_id: identifier for the API being called. 452 * @pm_arg: pointer to the argument data for the API call. 453 * @handle: Pointer to caller's context structure. 454 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 455 * 456 * EEMI - Embedded Energy Management Interface is Xilinx proprietary protocol 457 * to allow communication between power management controller and different 458 * processing clusters. 459 * 460 * This handler prepares EEMI protocol payload received from kernel and performs 461 * IPI transaction. 462 * 463 * Return: If EEMI API found then, uintptr_t type address, else 0 464 * 465 */ 466 static uintptr_t eemi_handler(uint32_t api_id, uint32_t *pm_arg, 467 void *handle, uint32_t security_flag) 468 { 469 enum pm_ret_status ret; 470 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0}; 471 472 ret = pm_handle_eemi_call(security_flag, api_id, pm_arg[0], pm_arg[1], 473 pm_arg[2], pm_arg[3], pm_arg[4], buf); 474 /* 475 * Two IOCTLs, to get clock name and pinctrl name of pm_query_data API 476 * receives 5 words of respoonse from firmware. Currently linux driver can 477 * receive only 4 words from TF-A. So, this needs to be handled separately 478 * than other eemi calls. 479 */ 480 if (api_id == (uint32_t)PM_QUERY_DATA) { 481 if (((pm_arg[0] == (uint32_t)XPM_QID_CLOCK_GET_NAME) || 482 (pm_arg[0] == (uint32_t)XPM_QID_PINCTRL_GET_FUNCTION_NAME)) && 483 (ret == PM_RET_SUCCESS)) { 484 SMC_RET2(handle, (uint64_t)buf[0] | ((uint64_t)buf[1] << 32U), 485 (uint64_t)buf[2] | ((uint64_t)buf[3] << 32U)); 486 } 487 } 488 489 SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 490 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U)); 491 } 492 493 /** 494 * eemi_api_handler() - Prepare EEMI payload and perform IPI transaction. 495 * @api_id: identifier for the API being called. 496 * @pm_arg: pointer to the argument data for the API call. 497 * @handle: Pointer to caller's context structure. 498 * @security_flag: SECURE_FLAG or NON_SECURE_FLAG. 499 * 500 * EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary 501 * protocol to allow communication between power management controller and 502 * different processing clusters. 503 * 504 * This handler prepares EEMI protocol payload received from kernel and performs 505 * IPI transaction. 506 * 507 * Return: If EEMI API found then, uintptr_t type address, else 0 508 */ 509 static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg, 510 void *handle, uint32_t security_flag) 511 { 512 enum pm_ret_status ret; 513 uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U}; 514 uint32_t payload[PAYLOAD_ARG_CNT] = {0U}; 515 uint32_t module_id; 516 517 module_id = (api_id & MODULE_ID_MASK) >> 8U; 518 519 PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id, 520 pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], 521 pm_arg[4], pm_arg[5]); 522 523 ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf, 524 RET_PAYLOAD_ARG_CNT); 525 526 SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U), 527 (uint64_t)buf[1] | ((uint64_t)buf[2] << 32U), 528 (uint64_t)buf[3] | ((uint64_t)buf[4] << 32U), 529 (uint64_t)buf[5]); 530 } 531 532 /** 533 * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. 534 * @smc_fid: Function Identifier. 535 * @x1: SMC64 Arguments from kernel. 536 * @x2: SMC64 Arguments from kernel. 537 * @x3: SMC64 Arguments from kernel (upper 32-bits). 538 * @x4: Unused. 539 * @cookie: Unused. 540 * @handle: Pointer to caller's context structure. 541 * @flags: SECURE_FLAG or NON_SECURE_FLAG. 542 * 543 * Return: Unused. 544 * 545 * Determines that smc_fid is valid and supported PM SMC Function ID from the 546 * list of pm_api_ids, otherwise completes the request with 547 * the unknown SMC Function ID. 548 * 549 * The SMC calls for PM service are forwarded from SIP Service SMC handler 550 * function with rt_svc_handle signature. 551 * 552 */ 553 uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, 554 uint64_t x4, const void *cookie, void *handle, uint64_t flags) 555 { 556 (void)cookie; 557 uintptr_t ret; 558 uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0}; 559 uint32_t security_flag = NON_SECURE_FLAG; 560 uint32_t api_id; 561 bool status = false, status_tmp = false; 562 const uint64_t x[4] = {x1, x2, x3, x4}; 563 564 /* Handle case where PM wasn't initialized properly */ 565 if (pm_up == false) { 566 SMC_RET1(handle, SMC_UNK); 567 } 568 569 /* 570 * Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0) 571 * if smc called is secure 572 * 573 * Add redundant macro call to immune the code from glitches 574 */ 575 SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags); 576 if ((status != false) && (status_tmp != false)) { 577 security_flag = SECURE_FLAG; 578 } 579 580 if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) { 581 api_id = lower_32_bits(x[0]); 582 583 EXTRACT_ARGS(pm_arg, x); 584 585 return eemi_api_handler(api_id, pm_arg, handle, security_flag); 586 } 587 588 pm_arg[0] = (uint32_t)x1; 589 pm_arg[1] = (uint32_t)(x1 >> 32U); 590 pm_arg[2] = (uint32_t)x2; 591 pm_arg[3] = (uint32_t)(x2 >> 32U); 592 pm_arg[4] = (uint32_t)x3; 593 (void)(x4); 594 api_id = smc_fid & FUNCID_NUM_MASK; 595 596 ret = eemi_for_compatibility(api_id, pm_arg, handle, security_flag); 597 if (ret != (uintptr_t)0) { 598 return ret; 599 } 600 601 ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, 602 (uint32_t)flags); 603 if (ret != (uintptr_t)0) { 604 return ret; 605 } 606 607 ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag); 608 if (ret != (uintptr_t)0) { 609 return ret; 610 } 611 612 ret = eemi_handler(api_id, pm_arg, handle, security_flag); 613 614 return ret; 615 } 616