1 /* 2 * Copyright (c) 2014-2020, Arm Limited and Contributors. All rights reserved. 3 * Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <assert.h> 9 #include <inttypes.h> 10 #include <stdint.h> 11 12 #include <arch_helpers.h> 13 #include <common/debug.h> 14 #include <plat_startup.h> 15 16 17 /* 18 * TFAHandoffParams 19 * Parameter bitfield encoding 20 * ----------------------------------------------------------------------------- 21 * Exec State 0 0 -> Aarch64, 1-> Aarch32 22 * endianness 1 0 -> LE, 1 -> BE 23 * secure (TZ) 2 0 -> Non secure, 1 -> secure 24 * EL 3:4 00 -> EL0, 01 -> EL1, 10 -> EL2, 11 -> EL3 25 * CPU# 5:6 00 -> A53_0, 01 -> A53_1, 10 -> A53_2, 11 -> A53_3 26 */ 27 28 #define FSBL_FLAGS_ESTATE_SHIFT 0U 29 #define FSBL_FLAGS_ESTATE_MASK (1U << FSBL_FLAGS_ESTATE_SHIFT) 30 #define FSBL_FLAGS_ESTATE_A64 0U 31 #define FSBL_FLAGS_ESTATE_A32 1U 32 33 #define FSBL_FLAGS_ENDIAN_SHIFT 1U 34 #define FSBL_FLAGS_ENDIAN_MASK (1U << FSBL_FLAGS_ENDIAN_SHIFT) 35 #define FSBL_FLAGS_ENDIAN_LE 0U 36 #define FSBL_FLAGS_ENDIAN_BE 1U 37 38 #define FSBL_FLAGS_TZ_SHIFT 2U 39 #define FSBL_FLAGS_TZ_MASK (1U << FSBL_FLAGS_TZ_SHIFT) 40 #define FSBL_FLAGS_NON_SECURE 0U 41 #define FSBL_FLAGS_SECURE 1U 42 43 #define FSBL_FLAGS_EL_SHIFT 3U 44 #define FSBL_FLAGS_EL_MASK (3U << FSBL_FLAGS_EL_SHIFT) 45 #define FSBL_FLAGS_EL0 0U 46 #define FSBL_FLAGS_EL1 1U 47 #define FSBL_FLAGS_EL2 2U 48 #define FSBL_FLAGS_EL3 3U 49 50 #define FSBL_FLAGS_CPU_SHIFT 5U 51 #define FSBL_FLAGS_CPU_MASK (3U << FSBL_FLAGS_CPU_SHIFT) 52 #define FSBL_FLAGS_A53_0 0U 53 #define FSBL_FLAGS_A53_1 1U 54 #define FSBL_FLAGS_A53_2 2U 55 #define FSBL_FLAGS_A53_3 3U 56 57 /** 58 * @partition: Pointer to partition struct 59 * 60 * Get the target CPU for @partition. 61 * 62 * Return: FSBL_FLAGS_A53_0, FSBL_FLAGS_A53_1, FSBL_FLAGS_A53_2 or FSBL_FLAGS_A53_3 63 */ 64 static int32_t get_fsbl_cpu(const struct xfsbl_partition *partition) 65 { 66 uint64_t flags = partition->flags & FSBL_FLAGS_CPU_MASK; 67 68 return flags >> FSBL_FLAGS_CPU_SHIFT; 69 } 70 71 /** 72 * @partition: Pointer to partition struct 73 * 74 * Get the target exception level for @partition. 75 * 76 * Return: FSBL_FLAGS_EL0, FSBL_FLAGS_EL1, FSBL_FLAGS_EL2 or FSBL_FLAGS_EL3 77 */ 78 static int32_t get_fsbl_el(const struct xfsbl_partition *partition) 79 { 80 uint64_t flags = partition->flags & FSBL_FLAGS_EL_MASK; 81 82 return flags >> FSBL_FLAGS_EL_SHIFT; 83 } 84 85 /** 86 * @partition: Pointer to partition struct 87 * 88 * Get the target security state for @partition. 89 * 90 * Return: FSBL_FLAGS_NON_SECURE or FSBL_FLAGS_SECURE 91 */ 92 static int32_t get_fsbl_ss(const struct xfsbl_partition *partition) 93 { 94 uint64_t flags = partition->flags & FSBL_FLAGS_TZ_MASK; 95 96 return flags >> FSBL_FLAGS_TZ_SHIFT; 97 } 98 99 /** 100 * @partition: Pointer to partition struct 101 * 102 * Get the target endianness for @partition. 103 * 104 * Return: SPSR_E_LITTLE or SPSR_E_BIG 105 */ 106 static int32_t get_fsbl_endian(const struct xfsbl_partition *partition) 107 { 108 uint64_t flags = partition->flags & FSBL_FLAGS_ENDIAN_MASK; 109 110 flags >>= FSBL_FLAGS_ENDIAN_SHIFT; 111 112 if (flags == FSBL_FLAGS_ENDIAN_BE) { 113 return SPSR_E_BIG; 114 } else { 115 return SPSR_E_LITTLE; 116 } 117 } 118 119 /** 120 * @partition: Pointer to partition struct 121 * 122 * Get the target execution state for @partition. 123 * 124 * Return: FSBL_FLAGS_ESTATE_A32 or FSBL_FLAGS_ESTATE_A64 125 */ 126 static int32_t get_fsbl_estate(const struct xfsbl_partition *partition) 127 { 128 uint64_t flags = partition->flags & FSBL_FLAGS_ESTATE_MASK; 129 130 return flags >> FSBL_FLAGS_ESTATE_SHIFT; 131 } 132 133 /** 134 * Populates the bl32 and bl33 image info structures 135 * @bl32: BL32 image info structure 136 * @bl33: BL33 image info structure 137 * tfa_handoff_addr: TF-A handoff address 138 * 139 * Process the handoff parameters from the FSBL and populate the BL32 and BL33 140 * image info structures accordingly. 141 * 142 * Return: Return the status of the handoff. The value will be from the 143 * fsbl_handoff enum. 144 */ 145 enum fsbl_handoff fsbl_tfa_handover(entry_point_info_t *bl32, 146 entry_point_info_t *bl33, 147 uint64_t tfa_handoff_addr) 148 { 149 const struct xfsbl_tfa_handoff_params *TFAHandoffParams; 150 if (!tfa_handoff_addr) { 151 WARN("BL31: No TFA handoff structure passed\n"); 152 return FSBL_HANDOFF_NO_STRUCT; 153 } 154 155 TFAHandoffParams = (struct xfsbl_tfa_handoff_params *)tfa_handoff_addr; 156 if ((TFAHandoffParams->magic[0] != 'X') || 157 (TFAHandoffParams->magic[1] != 'L') || 158 (TFAHandoffParams->magic[2] != 'N') || 159 (TFAHandoffParams->magic[3] != 'X')) { 160 ERROR("BL31: invalid TF-A handoff structure at %" PRIx64 "\n", 161 tfa_handoff_addr); 162 return FSBL_HANDOFF_INVAL_STRUCT; 163 } 164 165 VERBOSE("BL31: TF-A handoff params at:0x%" PRIx64 ", entries:%u\n", 166 tfa_handoff_addr, TFAHandoffParams->num_entries); 167 if (TFAHandoffParams->num_entries > FSBL_MAX_PARTITIONS) { 168 ERROR("BL31: TF-A handoff params: too many partitions (%u/%u)\n", 169 TFAHandoffParams->num_entries, FSBL_MAX_PARTITIONS); 170 return FSBL_HANDOFF_TOO_MANY_PARTS; 171 } 172 173 /* 174 * we loop over all passed entries but only populate two image structs 175 * (bl32, bl33). I.e. the last applicable images in the handoff 176 * structure will be used for the hand off 177 */ 178 for (size_t i = 0; i < TFAHandoffParams->num_entries; i++) { 179 entry_point_info_t *image; 180 int32_t target_estate, target_secure, target_cpu; 181 uint32_t target_endianness, target_el; 182 183 VERBOSE("BL31: %zd: entry:0x%" PRIx64 ", flags:0x%" PRIx64 "\n", i, 184 TFAHandoffParams->partition[i].entry_point, 185 TFAHandoffParams->partition[i].flags); 186 187 target_cpu = get_fsbl_cpu(&TFAHandoffParams->partition[i]); 188 if (target_cpu != FSBL_FLAGS_A53_0) { 189 WARN("BL31: invalid target CPU (%i)\n", target_cpu); 190 continue; 191 } 192 193 target_el = get_fsbl_el(&TFAHandoffParams->partition[i]); 194 if ((target_el == FSBL_FLAGS_EL3) || 195 (target_el == FSBL_FLAGS_EL0)) { 196 WARN("BL31: invalid exception level (%i)\n", target_el); 197 continue; 198 } 199 200 target_secure = get_fsbl_ss(&TFAHandoffParams->partition[i]); 201 if (target_secure == FSBL_FLAGS_SECURE && 202 target_el == FSBL_FLAGS_EL2) { 203 WARN("BL31: invalid security state (%i) for exception level (%i)\n", 204 target_secure, target_el); 205 continue; 206 } 207 208 target_estate = get_fsbl_estate(&TFAHandoffParams->partition[i]); 209 target_endianness = get_fsbl_endian(&TFAHandoffParams->partition[i]); 210 211 if (target_secure == FSBL_FLAGS_SECURE) { 212 image = bl32; 213 214 if (target_estate == FSBL_FLAGS_ESTATE_A32) { 215 bl32->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM, 216 target_endianness, 217 DISABLE_ALL_EXCEPTIONS); 218 } else { 219 bl32->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, 220 DISABLE_ALL_EXCEPTIONS); 221 } 222 } else { 223 image = bl33; 224 225 if (target_estate == FSBL_FLAGS_ESTATE_A32) { 226 if (target_el == FSBL_FLAGS_EL2) { 227 target_el = MODE32_hyp; 228 } else { 229 target_el = MODE32_sys; 230 } 231 232 bl33->spsr = SPSR_MODE32(target_el, SPSR_T_ARM, 233 target_endianness, 234 DISABLE_ALL_EXCEPTIONS); 235 } else { 236 if (target_el == FSBL_FLAGS_EL2) { 237 target_el = MODE_EL2; 238 } else { 239 target_el = MODE_EL1; 240 } 241 242 bl33->spsr = SPSR_64(target_el, MODE_SP_ELX, 243 DISABLE_ALL_EXCEPTIONS); 244 } 245 } 246 247 VERBOSE("Setting up %s entry point to:%" PRIx64 ", el:%x\n", 248 target_secure == FSBL_FLAGS_SECURE ? "BL32" : "BL33", 249 TFAHandoffParams->partition[i].entry_point, 250 target_el); 251 image->pc = TFAHandoffParams->partition[i].entry_point; 252 253 if (target_endianness == SPSR_E_BIG) { 254 EP_SET_EE(image->h.attr, EP_EE_BIG); 255 } else { 256 EP_SET_EE(image->h.attr, EP_EE_LITTLE); 257 } 258 } 259 260 return FSBL_HANDOFF_SUCCESS; 261 } 262