xref: /rk3399_ARM-atf/plat/st/common/stm32mp_crypto_lib.c (revision 87612eaefff34548b72fed0d8c93dcf73f9b8c81)
1 /*
2  * Copyright (c) 2022, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <endian.h>
9 #include <errno.h>
10 
11 #include <common/debug.h>
12 #include <drivers/auth/crypto_mod.h>
13 #include <drivers/io/io_storage.h>
14 #include <drivers/st/bsec.h>
15 #include <drivers/st/stm32_hash.h>
16 #include <drivers/st/stm32_pka.h>
17 #include <drivers/st/stm32_rng.h>
18 #include <drivers/st/stm32_saes.h>
19 #include <lib/xlat_tables/xlat_tables_v2.h>
20 #include <mbedtls/asn1.h>
21 #include <mbedtls/md.h>
22 #include <mbedtls/oid.h>
23 #include <mbedtls/platform.h>
24 #include <mbedtls/x509.h>
25 #include <plat/common/platform.h>
26 #include <tools_share/firmware_encrypted.h>
27 
28 #include <platform_def.h>
29 
30 #define CRYPTO_HASH_MAX_SIZE	32U
31 #define CRYPTO_SIGN_MAX_SIZE	64U
32 #define CRYPTO_PUBKEY_MAX_SIZE	64U
33 #define CRYPTO_MAX_TAG_SIZE	16U
34 
35 /* brainpoolP256t1 OID is not defined in mbedTLS */
36 #define OID_EC_GRP_BP256T1          MBEDTLS_OID_EC_BRAINPOOL_V1 "\x08"
37 
38 #if STM32MP_CRYPTO_ROM_LIB
39 struct stm32mp_auth_ops {
40 	uint32_t (*verify_signature)(uint8_t *hash_in, uint8_t *pubkey_in,
41 				     uint8_t *signature, uint32_t ecc_algo);
42 };
43 
44 static struct stm32mp_auth_ops auth_ops;
45 #endif
46 
47 static void crypto_lib_init(void)
48 {
49 	boot_api_context_t *boot_context __maybe_unused;
50 	int ret;
51 
52 	NOTICE("TRUSTED_BOARD_BOOT support enabled\n");
53 
54 	ret = stm32_hash_register();
55 	if (ret != 0) {
56 		ERROR("HASH init (%d)\n", ret);
57 		panic();
58 	}
59 
60 	if (stm32mp_is_closed_device() || stm32mp_is_auth_supported()) {
61 #if STM32MP_CRYPTO_ROM_LIB
62 		boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address();
63 		auth_ops.verify_signature = boot_context->bootrom_ecdsa_verify_signature;
64 #else
65 		/* Use hardware peripherals */
66 		if (stm32_rng_init() != 0) {
67 			panic();
68 		}
69 
70 		if (stm32_saes_driver_init() != 0) {
71 			panic();
72 		}
73 
74 		if (stm32_pka_init() != 0) {
75 			panic();
76 		}
77 #endif
78 	}
79 }
80 
81 int get_plain_pk_from_asn1(void *pk_ptr, unsigned int pk_len, void **plain_pk,
82 			   unsigned int *len, int *pk_alg)
83 {
84 	int ret;
85 	mbedtls_pk_context mbedtls_pk = {0};
86 	unsigned char *p, *end;
87 	mbedtls_asn1_buf alg_params = {0};
88 	mbedtls_asn1_buf alg_oid = {0};
89 
90 	*plain_pk = NULL;
91 	*len = 0U;
92 
93 	/* Parse the public key */
94 	mbedtls_pk_init(&mbedtls_pk);
95 	p = (unsigned char *)pk_ptr;
96 	end = (unsigned char *)(p + pk_len);
97 
98 	ret =  mbedtls_asn1_get_tag(&p, end, len,
99 				    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
100 	if (ret != 0) {
101 		return -EINVAL;
102 	}
103 
104 	end = p + *len;
105 	ret = mbedtls_asn1_get_alg(&p, end, &alg_oid, &alg_params);
106 	if (ret != 0) {
107 		VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
108 		return -EINVAL;
109 	}
110 
111 	if (pk_alg != NULL) {
112 		if ((strlen(MBEDTLS_OID_EC_GRP_SECP256R1) == alg_params.len) &&
113 		    (memcmp(MBEDTLS_OID_EC_GRP_SECP256R1, alg_params.p, alg_params.len) == 0)) {
114 			*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_P256NIST;
115 		} else if ((strlen(OID_EC_GRP_BP256T1) == alg_params.len) &&
116 		    (memcmp(OID_EC_GRP_BP256T1, alg_params.p, alg_params.len) == 0)) {
117 			*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256;
118 		} else {
119 			ERROR("%s: Algorithm is not supported\n", __func__);
120 			return -EINVAL;
121 		}
122 	}
123 
124 	ret = mbedtls_asn1_get_bitstring_null(&p, end, len);
125 	if (ret != 0) {
126 		VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
127 		return -EINVAL;
128 	}
129 
130 	/* We remove the ident (0x04) first byte. */
131 	if ((*len < 1U) || (p[0] !=  MBEDTLS_ASN1_OCTET_STRING)) {
132 		VERBOSE("%s: not expected len or tag\n", __func__);
133 		return -EINVAL;
134 	}
135 
136 	*len = *len - 1U;
137 	*plain_pk = p + 1U;
138 
139 	return 0;
140 }
141 
142 #if STM32MP_CRYPTO_ROM_LIB
143 uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
144 			  uint8_t *signature, uint32_t ecc_algo)
145 {
146 	int ret;
147 
148 	ret = mmap_add_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_BASE,
149 				      STM32MP_ROM_SIZE_2MB_ALIGNED, MT_CODE | MT_SECURE);
150 	if (ret != 0) {
151 		VERBOSE("%s: mmap_add_dynamic_region (%d)\n", __func__, ret);
152 		return CRYPTO_ERR_SIGNATURE;
153 	}
154 
155 	ret = auth_ops.verify_signature(hash_in, pubkey_in, signature, ecc_algo);
156 
157 	if (ret != BOOT_API_RETURN_OK) {
158 		VERBOSE("%s: auth_ops.verify_sign (%d)\n", __func__, ret);
159 		ret = CRYPTO_ERR_SIGNATURE;
160 	} else {
161 		ret = 0;
162 	}
163 
164 	mmap_remove_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED);
165 
166 	return ret;
167 }
168 
169 int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
170 		    void **hashed_pk_ptr, unsigned int *hashed_pk_len)
171 {
172 	return get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, hashed_pk_ptr, hashed_pk_len, NULL);
173 }
174 #else /* STM32MP_CRYPTO_ROM_LIB*/
175 static uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
176 				 uint8_t *signature, uint32_t ecc_algo)
177 {
178 	int ret = -1;
179 	enum stm32_pka_ecdsa_curve_id cid;
180 
181 	switch (ecc_algo) {
182 	case BOOT_API_ECDSA_ALGO_TYPE_P256NIST:
183 #if PKA_USE_NIST_P256
184 		cid = PKA_NIST_P256;
185 		ret = 0;
186 #else
187 		WARN("%s nist_p256 requested but not included\n", __func__);
188 #endif
189 		break;
190 	case BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256:
191 #if PKA_USE_BRAINPOOL_P256T1
192 		cid = PKA_BRAINPOOL_P256T1;
193 		ret = 0;
194 #else
195 		WARN("%s brainpool_p256t1 requested but not included\n", __func__);
196 #endif
197 		break;
198 	default:
199 		WARN("%s unexpected ecc_algo(%u)\n", __func__, ecc_algo);
200 		break;
201 	}
202 
203 	if (ret < 0) {
204 		return CRYPTO_ERR_SIGNATURE;
205 	}
206 
207 	ret = stm32_pka_ecdsa_verif(hash_in,
208 				    BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES,
209 				    signature, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
210 				    signature + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
211 				    BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
212 				    pubkey_in, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
213 				    pubkey_in + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
214 				    BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, cid);
215 	if (ret < 0) {
216 		return CRYPTO_ERR_SIGNATURE;
217 	}
218 
219 	return 0;
220 }
221 
222 int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
223 		    void **hashed_pk_ptr, unsigned int *hashed_pk_len)
224 {
225 	static uint8_t st_pk[CRYPTO_PUBKEY_MAX_SIZE + sizeof(uint32_t)];
226 	int ret;
227 	void *plain_pk;
228 	unsigned int len;
229 	int curve_id;
230 	uint32_t cid;
231 
232 	ret = get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, &plain_pk, &len, &curve_id);
233 	if ((ret != 0) || (len > CRYPTO_PUBKEY_MAX_SIZE))  {
234 		return -EINVAL;
235 	}
236 
237 	cid = curve_id; /* we want value of curve_id (1 or 2) in a uint32_t */
238 
239 	memcpy(st_pk, &cid, sizeof(cid));
240 	memcpy(st_pk + sizeof(cid), plain_pk, len);
241 
242 	*hashed_pk_ptr = st_pk;
243 	*hashed_pk_len = len + sizeof(cid);
244 
245 	return 0;
246 }
247 #endif /* STM32MP_CRYPTO_ROM_LIB */
248 
249 static int get_plain_digest_from_asn1(void *digest_ptr, unsigned int digest_len,
250 				      uint8_t **out, size_t *out_len, mbedtls_md_type_t *md_alg)
251 {
252 	int ret;
253 	mbedtls_asn1_buf hash_oid, params;
254 	size_t len;
255 	unsigned char *p, *end;
256 
257 	*out = NULL;
258 	*out_len = 0U;
259 
260 	/* Digest info should be an MBEDTLS_ASN1_SEQUENCE */
261 	p = (unsigned char *)digest_ptr;
262 	end = p + digest_len;
263 	ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
264 				   MBEDTLS_ASN1_SEQUENCE);
265 	if (ret != 0) {
266 		return ret;
267 	}
268 
269 	/* Get the hash algorithm */
270 	ret = mbedtls_asn1_get_alg(&p, end, &hash_oid, &params);
271 	if (ret != 0) {
272 		return ret;
273 	}
274 
275 	ret = mbedtls_oid_get_md_alg(&hash_oid, md_alg);
276 	if (ret != 0) {
277 		return ret;
278 	}
279 
280 	ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
281 	if (ret != 0) {
282 		return ret;
283 	}
284 
285 	/* Length of hash must match the algorithm's size */
286 	if (len != BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES) {
287 		return -1;
288 	}
289 
290 	*out = p;
291 	*out_len = len;
292 
293 	return 0;
294 }
295 
296 static int crypto_verify_signature(void *data_ptr, unsigned int data_len,
297 				   void *sig_ptr, unsigned int sig_len,
298 				   void *sig_alg, unsigned int sig_alg_len,
299 				   void *pk_ptr, unsigned int pk_len)
300 {
301 	uint8_t image_hash[CRYPTO_HASH_MAX_SIZE] = {0};
302 	uint8_t sig[CRYPTO_SIGN_MAX_SIZE];
303 	uint8_t my_pk[CRYPTO_PUBKEY_MAX_SIZE];
304 	int ret;
305 	size_t len;
306 	mbedtls_asn1_sequence seq;
307 	mbedtls_asn1_sequence *cur;
308 	unsigned char *p, *end;
309 	int curve_id;
310 	mbedtls_asn1_buf sig_oid, sig_params;
311 	mbedtls_md_type_t md_alg;
312 	mbedtls_pk_type_t pk_alg;
313 	size_t bignum_len = sizeof(sig) / 2U;
314 	unsigned int seq_num = 0U;
315 
316 	if (!stm32mp_is_closed_device() && !stm32mp_is_auth_supported()) {
317 		return CRYPTO_SUCCESS;
318 	}
319 
320 	/* Get pointers to signature OID and parameters */
321 	p = (unsigned char *)sig_alg;
322 	end = (unsigned char *)(p + sig_alg_len);
323 	ret = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params);
324 	if (ret != 0) {
325 		VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
326 		return CRYPTO_ERR_SIGNATURE;
327 	}
328 
329 	/* Get the actual signature algorithm (MD + PK) */
330 	ret = mbedtls_oid_get_sig_alg(&sig_oid, &md_alg, &pk_alg);
331 	if (ret != 0) {
332 		VERBOSE("%s: mbedtls_oid_get_sig_alg (%d)\n", __func__, ret);
333 		return CRYPTO_ERR_SIGNATURE;
334 	}
335 
336 	if ((md_alg != MBEDTLS_MD_SHA256) || (pk_alg != MBEDTLS_PK_ECDSA)) {
337 		VERBOSE("%s: md_alg=%u pk_alg=%u\n", __func__, md_alg, pk_alg);
338 		return CRYPTO_ERR_SIGNATURE;
339 	}
340 
341 	ret = get_plain_pk_from_asn1(pk_ptr, pk_len, &pk_ptr, &pk_len, &curve_id);
342 	if (ret != 0) {
343 		VERBOSE("%s: get_plain_pk_from_asn1 (%d)\n", __func__, ret);
344 		return CRYPTO_ERR_SIGNATURE;
345 	}
346 
347 	/* We expect a known pk_len */
348 	if (pk_len != sizeof(my_pk)) {
349 		VERBOSE("%s: pk_len=%u sizeof(my_pk)=%zu)\n", __func__, pk_len, sizeof(my_pk));
350 		return CRYPTO_ERR_SIGNATURE;
351 	}
352 
353 	/* Need to copy as auth_ops.verify_signature
354 	 * expects aligned public key.
355 	 */
356 	memcpy(my_pk, pk_ptr, sizeof(my_pk));
357 
358 	/* Get the signature (bitstring) */
359 	p = (unsigned char *)sig_ptr;
360 	end = (unsigned char *)(p + sig_len);
361 	ret = mbedtls_asn1_get_bitstring_null(&p, end, &len);
362 	if (ret != 0) {
363 		VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
364 		return CRYPTO_ERR_SIGNATURE;
365 	}
366 
367 	/* Get r and s from sequence */
368 	ret = mbedtls_asn1_get_sequence_of(&p, end, &seq, MBEDTLS_ASN1_INTEGER);
369 	if (ret != 0) {
370 		VERBOSE("%s: mbedtls_asn1_get_sequence_of (%d)\n", __func__, ret);
371 		return CRYPTO_ERR_SIGNATURE;
372 	}
373 
374 	/* We expect only 2 integers (r and s) from the sequence */
375 	if (seq.next->next != NULL) {
376 		cur = seq.next;
377 		mbedtls_asn1_sequence *next;
378 
379 		VERBOSE("%s: nb seq != 2\n", __func__);
380 		/* Free all the sequences */
381 		while (cur != NULL) {
382 			next = cur->next;
383 			mbedtls_free(cur);
384 			cur = next;
385 		}
386 
387 		return CRYPTO_ERR_SIGNATURE;
388 	}
389 
390 	/*
391 	 * ECDSA signatures are composed of a tuple (R,S) where R and S are between 0 and n.
392 	 * This means that the R and S can have a maximum of 32 each, but can also be smaller.
393 	 * Also seen the integer sequence may (sometime) start with 0x00 as MSB, but we can only
394 	 * manage exactly 2*32 bytes, we remove this higher byte if there are not 00,
395 	 * we will fail either.
396 	 */
397 	cur = &seq;
398 	memset(sig, 0U, sizeof(sig));
399 
400 	while (cur != NULL) {
401 		size_t skip = 0U;
402 		size_t seek = seq_num * bignum_len;
403 
404 		if (cur->buf.len > bignum_len) {
405 			/* Remove extra 0x00 bytes */
406 			skip = cur->buf.len - bignum_len;
407 		} else if (cur->buf.len < bignum_len) {
408 			/* Add padding to match HW required size */
409 			seek += (bignum_len % cur->buf.len);
410 		}
411 
412 		if (seek + cur->buf.len > sizeof(sig) + skip) {
413 			panic();
414 		}
415 
416 		memcpy(sig + seek, cur->buf.p + skip, cur->buf.len - skip);
417 		cur = cur->next;
418 		seq_num++;
419 	}
420 
421 	/* Need to free allocated 'next' in mbedtls_asn1_get_sequence_of */
422 	mbedtls_free(seq.next);
423 
424 	/* Compute hash for the data covered by the signature */
425 	stm32_hash_init(HASH_SHA256);
426 
427 	ret = stm32_hash_final_update((uint8_t *)data_ptr, data_len, image_hash);
428 	if (ret != 0) {
429 		VERBOSE("%s: stm32_hash_final_update (%d)\n", __func__, ret);
430 		return CRYPTO_ERR_SIGNATURE;
431 	}
432 
433 	return verify_signature(image_hash, my_pk, sig, curve_id);
434 }
435 
436 static int crypto_verify_hash(void *data_ptr, unsigned int data_len,
437 			      void *digest_info_ptr,
438 			      unsigned int digest_info_len)
439 {
440 	int ret;
441 	uint8_t calc_hash[BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES];
442 	unsigned char *p;
443 	mbedtls_md_type_t md_alg;
444 	size_t len;
445 
446 	/* we receive an asn1 encapsulated digest, we flatten it */
447 	ret = get_plain_digest_from_asn1(digest_info_ptr,
448 					 digest_info_len, &p, &len,
449 					 &md_alg);
450 	if ((ret != 0) || (md_alg != MBEDTLS_MD_SHA256) || (len != sizeof(calc_hash))) {
451 		return CRYPTO_ERR_HASH;
452 	}
453 
454 	digest_info_ptr = p;
455 	digest_info_len = len;
456 
457 	stm32_hash_init(HASH_SHA256);
458 
459 	ret = stm32_hash_final_update(data_ptr, data_len, calc_hash);
460 	if (ret != 0) {
461 		VERBOSE("%s: hash failed\n", __func__);
462 		return CRYPTO_ERR_HASH;
463 	}
464 
465 	ret = memcmp(calc_hash, digest_info_ptr, digest_info_len);
466 	if (ret != 0) {
467 		VERBOSE("%s: not expected digest\n", __func__);
468 		ret = CRYPTO_ERR_HASH;
469 	}
470 
471 	return ret;
472 }
473 
474 #if !defined(DECRYPTION_SUPPORT_none)
475 static int derive_key(uint8_t *key, size_t *key_len, size_t len,
476 		      unsigned int *flags, const uint8_t *img_id, size_t img_id_len)
477 {
478 	size_t i, j;
479 
480 	assert(*key_len >= 32U);
481 
482 	/*
483 	 * Not a real derivation yet
484 	 *
485 	 * But we expect a 32 bytes key, and OTP is only 16 bytes
486 	 *   => duplicate.
487 	 */
488 	for (i = 0U, j = len; j < 32U;
489 	     i += sizeof(uint32_t), j += sizeof(uint32_t)) {
490 		memcpy(key + j, key + i, sizeof(uint32_t));
491 	}
492 
493 	*key_len = 32U;
494 	/* Variable 'key' store a real key */
495 	*flags = 0U;
496 
497 	return 0;
498 }
499 
500 int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status, uint8_t *key,
501 			  size_t *key_len, unsigned int *flags,
502 			  const uint8_t *img_id, size_t img_id_len)
503 {
504 	uint32_t otp_idx;
505 	uint32_t otp_len;
506 	size_t read_len;
507 	size_t i;
508 
509 	if (fw_enc_status == FW_ENC_WITH_BSSK) {
510 		return -EINVAL;
511 	}
512 
513 	if (stm32_get_otp_index(ENCKEY_OTP, &otp_idx, &otp_len) != 0) {
514 		VERBOSE("%s: get %s index error\n", __func__, ENCKEY_OTP);
515 		return -EINVAL;
516 	}
517 
518 	if (otp_len > (*key_len * CHAR_BIT)) {
519 		VERBOSE("%s: length Error otp_len=%u key_len=%u\n", __func__,
520 			otp_len, *key_len * CHAR_BIT);
521 		return -EINVAL;
522 	}
523 
524 	read_len = otp_len / CHAR_BIT;
525 	assert(read_len % sizeof(uint32_t) == 0);
526 
527 	for (i = 0U; i < read_len / sizeof(uint32_t); i++) {
528 		uint32_t tmp;
529 		uint32_t otp_val;
530 
531 		if (stm32_get_otp_value_from_idx(otp_idx + i, &otp_val) != 0) {
532 			zeromem(key, *key_len);
533 			VERBOSE("%s: unable to read from otp\n", __func__);
534 			return -EINVAL;
535 		}
536 
537 		tmp = bswap32(otp_val);
538 		memcpy(key + i * sizeof(uint32_t), &tmp, sizeof(tmp));
539 	}
540 
541 	/* Now we have the OTP values in key till read_len */
542 
543 	if (derive_key(key, key_len, read_len, flags, img_id,
544 		       img_id_len) != 0) {
545 		zeromem(key, *key_len);
546 		return -EINVAL;
547 	}
548 
549 	return 0;
550 }
551 
552 static enum stm32_saes_key_selection select_key(unsigned int key_flags)
553 {
554 	if ((key_flags & ENC_KEY_IS_IDENTIFIER) != 0U) {
555 		panic();
556 	}
557 
558 	/* Use the provided key buffer */
559 	return STM32_SAES_KEY_SOFT;
560 }
561 
562 static int stm32_decrypt_aes_gcm(void *data, size_t data_len,
563 				 const void *key, unsigned int key_len,
564 				 unsigned int key_flags,
565 				 const void *iv, unsigned int iv_len,
566 				 const void *tag, unsigned int tag_len)
567 {
568 	int ret;
569 	struct stm32_saes_context ctx;
570 	unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE];
571 	enum stm32_saes_key_selection key_mode;
572 	unsigned int diff = 0U;
573 	unsigned int i;
574 
575 	key_mode = select_key(key_flags);
576 
577 	ret = stm32_saes_init(&ctx, true, STM32_SAES_MODE_GCM, key_mode, key,
578 			      key_len, iv, iv_len);
579 	if (ret != 0) {
580 		return CRYPTO_ERR_INIT;
581 	}
582 
583 	ret = stm32_saes_update_assodata(&ctx, true, NULL, 0U);
584 	if (ret != 0) {
585 		return CRYPTO_ERR_DECRYPTION;
586 	}
587 
588 	ret = stm32_saes_update_load(&ctx, true, data, data, data_len);
589 	if (ret != 0) {
590 		return CRYPTO_ERR_DECRYPTION;
591 	}
592 
593 	ret = stm32_saes_final(&ctx, tag_buf, sizeof(tag_buf));
594 	if (ret != 0) {
595 		return CRYPTO_ERR_DECRYPTION;
596 	}
597 
598 	/* Check tag in "constant-time" */
599 	for (i = 0U; i < tag_len; i++) {
600 		diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i];
601 	}
602 
603 	if (diff != 0U) {
604 		return CRYPTO_ERR_DECRYPTION;
605 	}
606 
607 	return CRYPTO_SUCCESS;
608 }
609 
610 /*
611  * Authenticated decryption of an image
612  *
613  */
614 static int crypto_auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len,
615 			       const void *key, unsigned int key_len, unsigned int key_flags,
616 			       const void *iv, unsigned int iv_len, const void *tag,
617 			       unsigned int tag_len)
618 {
619 	int rc = -1;
620 	uint32_t real_iv[4];
621 
622 	switch (dec_algo) {
623 	case CRYPTO_GCM_DECRYPT:
624 		/*
625 		 * GCM expect a Nonce
626 		 * The AES IV is the nonce (a uint32_t[3])
627 		 * then a counter (a uint32_t big endian)
628 		 * The counter starts at 2.
629 		 */
630 		memcpy(real_iv, iv, iv_len);
631 		real_iv[3] = htobe32(0x2U);
632 
633 		rc = stm32_decrypt_aes_gcm(data_ptr, len, key, key_len, key_flags,
634 					   real_iv, sizeof(real_iv), tag, tag_len);
635 		break;
636 	default:
637 		rc = CRYPTO_ERR_DECRYPTION;
638 		break;
639 	}
640 
641 	if (rc != 0) {
642 		return rc;
643 	}
644 
645 	return CRYPTO_SUCCESS;
646 }
647 
648 REGISTER_CRYPTO_LIB("stm32_crypto_lib",
649 		    crypto_lib_init,
650 		    crypto_verify_signature,
651 		    crypto_verify_hash,
652 		    crypto_auth_decrypt);
653 
654 #else /* No decryption support */
655 REGISTER_CRYPTO_LIB("stm32_crypto_lib",
656 		    crypto_lib_init,
657 		    crypto_verify_signature,
658 		    crypto_verify_hash,
659 		    NULL);
660 
661 #endif
662