xref: /rk3399_ARM-atf/plat/st/common/stm32mp_crypto_lib.c (revision 1d2706dbaf98634aa1eecc65e52b54acf330df3d)
1 /*
2  * Copyright (c) 2022-2023, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <endian.h>
9 #include <errno.h>
10 
11 #include <common/debug.h>
12 #include <drivers/auth/crypto_mod.h>
13 #include <drivers/io/io_storage.h>
14 #include <drivers/st/bsec.h>
15 #include <drivers/st/stm32_hash.h>
16 #include <drivers/st/stm32_pka.h>
17 #include <drivers/st/stm32_rng.h>
18 #include <drivers/st/stm32_saes.h>
19 #include <lib/utils.h>
20 #include <lib/xlat_tables/xlat_tables_v2.h>
21 #include <mbedtls/asn1.h>
22 #include <mbedtls/md.h>
23 #include <mbedtls/oid.h>
24 #include <mbedtls/platform.h>
25 #include <mbedtls/x509.h>
26 #include <plat/common/platform.h>
27 #include <tools_share/firmware_encrypted.h>
28 
29 #include <platform_def.h>
30 
31 #define CRYPTO_HASH_MAX_SIZE	32U
32 #define CRYPTO_SIGN_MAX_SIZE	64U
33 #define CRYPTO_PUBKEY_MAX_SIZE	64U
34 #define CRYPTO_MAX_TAG_SIZE	16U
35 
36 /* brainpoolP256t1 OID is not defined in mbedTLS */
37 #define OID_EC_GRP_BP256T1          MBEDTLS_OID_EC_BRAINPOOL_V1 "\x08"
38 
39 #if STM32MP_CRYPTO_ROM_LIB
40 struct stm32mp_auth_ops {
41 	uint32_t (*verify_signature)(uint8_t *hash_in, uint8_t *pubkey_in,
42 				     uint8_t *signature, uint32_t ecc_algo);
43 };
44 
45 static struct stm32mp_auth_ops auth_ops;
46 #endif
47 
48 static void crypto_lib_init(void)
49 {
50 	boot_api_context_t *boot_context __maybe_unused;
51 	int ret;
52 
53 	NOTICE("TRUSTED_BOARD_BOOT support enabled\n");
54 
55 	ret = stm32_hash_register();
56 	if (ret != 0) {
57 		ERROR("HASH init (%d)\n", ret);
58 		panic();
59 	}
60 
61 	if (stm32mp_is_closed_device() || stm32mp_is_auth_supported()) {
62 #if STM32MP_CRYPTO_ROM_LIB
63 		boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address();
64 		auth_ops.verify_signature = boot_context->bootrom_ecdsa_verify_signature;
65 #else
66 		/* Use hardware peripherals */
67 		if (stm32_rng_init() != 0) {
68 			panic();
69 		}
70 
71 		if (stm32_saes_driver_init() != 0) {
72 			panic();
73 		}
74 
75 		if (stm32_pka_init() != 0) {
76 			panic();
77 		}
78 #endif
79 	}
80 }
81 
82 static int get_plain_pk_from_asn1(void *pk_ptr, unsigned int pk_len, void **plain_pk,
83 			   unsigned int *len, int *pk_alg)
84 {
85 	int ret;
86 	mbedtls_pk_context mbedtls_pk = {0};
87 	unsigned char *p, *end;
88 	mbedtls_asn1_buf alg_params = {0};
89 	mbedtls_asn1_buf alg_oid = {0};
90 
91 	*plain_pk = NULL;
92 	*len = 0U;
93 
94 	/* Parse the public key */
95 	mbedtls_pk_init(&mbedtls_pk);
96 	p = (unsigned char *)pk_ptr;
97 	end = (unsigned char *)(p + pk_len);
98 
99 	ret =  mbedtls_asn1_get_tag(&p, end, len,
100 				    MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
101 	if (ret != 0) {
102 		return -EINVAL;
103 	}
104 
105 	end = p + *len;
106 	ret = mbedtls_asn1_get_alg(&p, end, &alg_oid, &alg_params);
107 	if (ret != 0) {
108 		VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
109 		return -EINVAL;
110 	}
111 
112 	if (pk_alg != NULL) {
113 		if ((strlen(MBEDTLS_OID_EC_GRP_SECP256R1) == alg_params.len) &&
114 		    (memcmp(MBEDTLS_OID_EC_GRP_SECP256R1, alg_params.p, alg_params.len) == 0)) {
115 			*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_P256NIST;
116 		} else if ((strlen(OID_EC_GRP_BP256T1) == alg_params.len) &&
117 		    (memcmp(OID_EC_GRP_BP256T1, alg_params.p, alg_params.len) == 0)) {
118 			*pk_alg = BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256;
119 		} else {
120 			ERROR("%s: Algorithm is not supported\n", __func__);
121 			return -EINVAL;
122 		}
123 	}
124 
125 	ret = mbedtls_asn1_get_bitstring_null(&p, end, len);
126 	if (ret != 0) {
127 		VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
128 		return -EINVAL;
129 	}
130 
131 	/* We remove the ident (0x04) first byte. */
132 	if ((*len < 1U) || (p[0] !=  MBEDTLS_ASN1_OCTET_STRING)) {
133 		VERBOSE("%s: not expected len or tag\n", __func__);
134 		return -EINVAL;
135 	}
136 
137 	*len = *len - 1U;
138 	*plain_pk = p + 1U;
139 
140 	return 0;
141 }
142 
143 #if STM32MP_CRYPTO_ROM_LIB
144 uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
145 			  uint8_t *signature, uint32_t ecc_algo)
146 {
147 	int ret;
148 
149 	ret = mmap_add_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_BASE,
150 				      STM32MP_ROM_SIZE_2MB_ALIGNED, MT_CODE | MT_SECURE);
151 	if (ret != 0) {
152 		VERBOSE("%s: mmap_add_dynamic_region (%d)\n", __func__, ret);
153 		return CRYPTO_ERR_SIGNATURE;
154 	}
155 
156 	ret = auth_ops.verify_signature(hash_in, pubkey_in, signature, ecc_algo);
157 
158 	if (ret != BOOT_API_RETURN_OK) {
159 		VERBOSE("%s: auth_ops.verify_sign (%d)\n", __func__, ret);
160 		ret = CRYPTO_ERR_SIGNATURE;
161 	} else {
162 		ret = 0;
163 	}
164 
165 	mmap_remove_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED);
166 
167 	return ret;
168 }
169 
170 static int crypto_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
171 			     void **hashed_pk_ptr, unsigned int *hashed_pk_len)
172 {
173 	return get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, hashed_pk_ptr, hashed_pk_len, NULL);
174 }
175 #else /* STM32MP_CRYPTO_ROM_LIB*/
176 static uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in,
177 				 uint8_t *signature, uint32_t ecc_algo)
178 {
179 	int ret = -1;
180 	enum stm32_pka_ecdsa_curve_id cid;
181 
182 	switch (ecc_algo) {
183 	case BOOT_API_ECDSA_ALGO_TYPE_P256NIST:
184 #if PKA_USE_NIST_P256
185 		cid = PKA_NIST_P256;
186 		ret = 0;
187 #else
188 		WARN("%s nist_p256 requested but not included\n", __func__);
189 #endif
190 		break;
191 	case BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256:
192 #if PKA_USE_BRAINPOOL_P256T1
193 		cid = PKA_BRAINPOOL_P256T1;
194 		ret = 0;
195 #else
196 		WARN("%s brainpool_p256t1 requested but not included\n", __func__);
197 #endif
198 		break;
199 	default:
200 		WARN("%s unexpected ecc_algo(%u)\n", __func__, ecc_algo);
201 		break;
202 	}
203 
204 	if (ret < 0) {
205 		return CRYPTO_ERR_SIGNATURE;
206 	}
207 
208 	ret = stm32_pka_ecdsa_verif(hash_in,
209 				    BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES,
210 				    signature, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
211 				    signature + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
212 				    BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U,
213 				    pubkey_in, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
214 				    pubkey_in + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U,
215 				    BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, cid);
216 	if (ret < 0) {
217 		return CRYPTO_ERR_SIGNATURE;
218 	}
219 
220 	return 0;
221 }
222 
223 static int crypto_convert_pk(void *full_pk_ptr, unsigned int full_pk_len,
224 			     void **hashed_pk_ptr, unsigned int *hashed_pk_len)
225 {
226 	static uint8_t st_pk[CRYPTO_PUBKEY_MAX_SIZE + sizeof(uint32_t)];
227 	int ret;
228 	void *plain_pk;
229 	unsigned int len;
230 	int curve_id;
231 	uint32_t cid;
232 
233 	ret = get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, &plain_pk, &len, &curve_id);
234 	if ((ret != 0) || (len > CRYPTO_PUBKEY_MAX_SIZE))  {
235 		return -EINVAL;
236 	}
237 
238 	cid = curve_id; /* we want value of curve_id (1 or 2) in a uint32_t */
239 
240 	memcpy(st_pk, &cid, sizeof(cid));
241 	memcpy(st_pk + sizeof(cid), plain_pk, len);
242 
243 	*hashed_pk_ptr = st_pk;
244 	*hashed_pk_len = len + sizeof(cid);
245 
246 	return 0;
247 }
248 #endif /* STM32MP_CRYPTO_ROM_LIB */
249 
250 static int get_plain_digest_from_asn1(void *digest_ptr, unsigned int digest_len,
251 				      uint8_t **out, size_t *out_len, mbedtls_md_type_t *md_alg)
252 {
253 	int ret;
254 	mbedtls_asn1_buf hash_oid, params;
255 	size_t len;
256 	unsigned char *p, *end;
257 
258 	*out = NULL;
259 	*out_len = 0U;
260 
261 	/* Digest info should be an MBEDTLS_ASN1_SEQUENCE */
262 	p = (unsigned char *)digest_ptr;
263 	end = p + digest_len;
264 	ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
265 				   MBEDTLS_ASN1_SEQUENCE);
266 	if (ret != 0) {
267 		return ret;
268 	}
269 
270 	/* Get the hash algorithm */
271 	ret = mbedtls_asn1_get_alg(&p, end, &hash_oid, &params);
272 	if (ret != 0) {
273 		return ret;
274 	}
275 
276 	ret = mbedtls_oid_get_md_alg(&hash_oid, md_alg);
277 	if (ret != 0) {
278 		return ret;
279 	}
280 
281 	ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
282 	if (ret != 0) {
283 		return ret;
284 	}
285 
286 	/* Length of hash must match the algorithm's size */
287 	if (len != BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES) {
288 		return -1;
289 	}
290 
291 	*out = p;
292 	*out_len = len;
293 
294 	return 0;
295 }
296 
297 static int crypto_verify_signature(void *data_ptr, unsigned int data_len,
298 				   void *sig_ptr, unsigned int sig_len,
299 				   void *sig_alg, unsigned int sig_alg_len,
300 				   void *pk_ptr, unsigned int pk_len)
301 {
302 	uint8_t image_hash[CRYPTO_HASH_MAX_SIZE] = {0};
303 	uint8_t sig[CRYPTO_SIGN_MAX_SIZE];
304 	uint8_t my_pk[CRYPTO_PUBKEY_MAX_SIZE];
305 	int ret;
306 	size_t len;
307 	mbedtls_asn1_sequence seq;
308 	mbedtls_asn1_sequence *cur;
309 	unsigned char *p, *end;
310 	int curve_id;
311 	mbedtls_asn1_buf sig_oid, sig_params;
312 	mbedtls_md_type_t md_alg;
313 	mbedtls_pk_type_t pk_alg;
314 	size_t bignum_len = sizeof(sig) / 2U;
315 	unsigned int seq_num = 0U;
316 
317 	if (!stm32mp_is_closed_device() && !stm32mp_is_auth_supported()) {
318 		return CRYPTO_SUCCESS;
319 	}
320 
321 	/* Get pointers to signature OID and parameters */
322 	p = (unsigned char *)sig_alg;
323 	end = (unsigned char *)(p + sig_alg_len);
324 	ret = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params);
325 	if (ret != 0) {
326 		VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret);
327 		return CRYPTO_ERR_SIGNATURE;
328 	}
329 
330 	/* Get the actual signature algorithm (MD + PK) */
331 	ret = mbedtls_oid_get_sig_alg(&sig_oid, &md_alg, &pk_alg);
332 	if (ret != 0) {
333 		VERBOSE("%s: mbedtls_oid_get_sig_alg (%d)\n", __func__, ret);
334 		return CRYPTO_ERR_SIGNATURE;
335 	}
336 
337 	if ((md_alg != MBEDTLS_MD_SHA256) || (pk_alg != MBEDTLS_PK_ECDSA)) {
338 		VERBOSE("%s: md_alg=%u pk_alg=%u\n", __func__, md_alg, pk_alg);
339 		return CRYPTO_ERR_SIGNATURE;
340 	}
341 
342 	ret = get_plain_pk_from_asn1(pk_ptr, pk_len, &pk_ptr, &pk_len, &curve_id);
343 	if (ret != 0) {
344 		VERBOSE("%s: get_plain_pk_from_asn1 (%d)\n", __func__, ret);
345 		return CRYPTO_ERR_SIGNATURE;
346 	}
347 
348 	/* We expect a known pk_len */
349 	if (pk_len != sizeof(my_pk)) {
350 		VERBOSE("%s: pk_len=%u sizeof(my_pk)=%zu)\n", __func__, pk_len, sizeof(my_pk));
351 		return CRYPTO_ERR_SIGNATURE;
352 	}
353 
354 	/* Need to copy as auth_ops.verify_signature
355 	 * expects aligned public key.
356 	 */
357 	memcpy(my_pk, pk_ptr, sizeof(my_pk));
358 
359 	/* Get the signature (bitstring) */
360 	p = (unsigned char *)sig_ptr;
361 	end = (unsigned char *)(p + sig_len);
362 	ret = mbedtls_asn1_get_bitstring_null(&p, end, &len);
363 	if (ret != 0) {
364 		VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret);
365 		return CRYPTO_ERR_SIGNATURE;
366 	}
367 
368 	/* Get r and s from sequence */
369 	ret = mbedtls_asn1_get_sequence_of(&p, end, &seq, MBEDTLS_ASN1_INTEGER);
370 	if (ret != 0) {
371 		VERBOSE("%s: mbedtls_asn1_get_sequence_of (%d)\n", __func__, ret);
372 		return CRYPTO_ERR_SIGNATURE;
373 	}
374 
375 	/* We expect only 2 integers (r and s) from the sequence */
376 	if (seq.next->next != NULL) {
377 		cur = seq.next;
378 		mbedtls_asn1_sequence *next;
379 
380 		VERBOSE("%s: nb seq != 2\n", __func__);
381 		/* Free all the sequences */
382 		while (cur != NULL) {
383 			next = cur->next;
384 			mbedtls_free(cur);
385 			cur = next;
386 		}
387 
388 		return CRYPTO_ERR_SIGNATURE;
389 	}
390 
391 	/*
392 	 * ECDSA signatures are composed of a tuple (R,S) where R and S are between 0 and n.
393 	 * This means that the R and S can have a maximum of 32 each, but can also be smaller.
394 	 * Also seen the integer sequence may (sometime) start with 0x00 as MSB, but we can only
395 	 * manage exactly 2*32 bytes, we remove this higher byte if there are not 00,
396 	 * we will fail either.
397 	 */
398 	cur = &seq;
399 	memset(sig, 0U, sizeof(sig));
400 
401 	while (cur != NULL) {
402 		size_t skip = 0U;
403 		size_t seek = seq_num * bignum_len;
404 
405 		if (cur->buf.len > bignum_len) {
406 			/* Remove extra 0x00 bytes */
407 			skip = cur->buf.len - bignum_len;
408 		} else if (cur->buf.len < bignum_len) {
409 			/* Add padding to match HW required size */
410 			seek += (bignum_len % cur->buf.len);
411 		}
412 
413 		if (seek + cur->buf.len > sizeof(sig) + skip) {
414 			panic();
415 		}
416 
417 		memcpy(sig + seek, cur->buf.p + skip, cur->buf.len - skip);
418 		cur = cur->next;
419 		seq_num++;
420 	}
421 
422 	/* Need to free allocated 'next' in mbedtls_asn1_get_sequence_of */
423 	mbedtls_free(seq.next);
424 
425 	/* Compute hash for the data covered by the signature */
426 	stm32_hash_init(HASH_SHA256);
427 
428 	ret = stm32_hash_final_update((uint8_t *)data_ptr, data_len, image_hash);
429 	if (ret != 0) {
430 		VERBOSE("%s: stm32_hash_final_update (%d)\n", __func__, ret);
431 		return CRYPTO_ERR_SIGNATURE;
432 	}
433 
434 	return verify_signature(image_hash, my_pk, sig, curve_id);
435 }
436 
437 static int crypto_verify_hash(void *data_ptr, unsigned int data_len,
438 			      void *digest_info_ptr,
439 			      unsigned int digest_info_len)
440 {
441 	int ret;
442 	uint8_t calc_hash[BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES];
443 	unsigned char *p;
444 	mbedtls_md_type_t md_alg;
445 	size_t len;
446 
447 	/* we receive an asn1 encapsulated digest, we flatten it */
448 	ret = get_plain_digest_from_asn1(digest_info_ptr,
449 					 digest_info_len, &p, &len,
450 					 &md_alg);
451 	if ((ret != 0) || (md_alg != MBEDTLS_MD_SHA256) || (len != sizeof(calc_hash))) {
452 		return CRYPTO_ERR_HASH;
453 	}
454 
455 	digest_info_ptr = p;
456 	digest_info_len = len;
457 
458 	stm32_hash_init(HASH_SHA256);
459 
460 	ret = stm32_hash_final_update(data_ptr, data_len, calc_hash);
461 	if (ret != 0) {
462 		VERBOSE("%s: hash failed\n", __func__);
463 		return CRYPTO_ERR_HASH;
464 	}
465 
466 	ret = memcmp(calc_hash, digest_info_ptr, digest_info_len);
467 	if (ret != 0) {
468 		VERBOSE("%s: not expected digest\n", __func__);
469 		ret = CRYPTO_ERR_HASH;
470 	}
471 
472 	return ret;
473 }
474 
475 #if !defined(DECRYPTION_SUPPORT_none)
476 static int derive_key(uint8_t *key, size_t *key_len, size_t len,
477 		      unsigned int *flags, const uint8_t *img_id, size_t img_id_len)
478 {
479 	size_t i, j;
480 
481 	assert(*key_len >= 32U);
482 
483 	/*
484 	 * Not a real derivation yet
485 	 *
486 	 * But we expect a 32 bytes key, and OTP is only 16 bytes
487 	 *   => duplicate.
488 	 */
489 	for (i = 0U, j = len; j < 32U;
490 	     i += sizeof(uint32_t), j += sizeof(uint32_t)) {
491 		memcpy(key + j, key + i, sizeof(uint32_t));
492 	}
493 
494 	*key_len = 32U;
495 	/* Variable 'key' store a real key */
496 	*flags = 0U;
497 
498 	return 0;
499 }
500 
501 int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status, uint8_t *key,
502 			  size_t *key_len, unsigned int *flags,
503 			  const uint8_t *img_id, size_t img_id_len)
504 {
505 	uint32_t otp_idx;
506 	uint32_t otp_len;
507 	size_t read_len;
508 	size_t i;
509 
510 	if (fw_enc_status == FW_ENC_WITH_BSSK) {
511 		return -EINVAL;
512 	}
513 
514 	if (stm32_get_otp_index(ENCKEY_OTP, &otp_idx, &otp_len) != 0) {
515 		VERBOSE("%s: get %s index error\n", __func__, ENCKEY_OTP);
516 		return -EINVAL;
517 	}
518 
519 	if (otp_len > (*key_len * CHAR_BIT)) {
520 		VERBOSE("%s: length Error otp_len=%u key_len=%u\n", __func__,
521 			otp_len, *key_len * CHAR_BIT);
522 		return -EINVAL;
523 	}
524 
525 	read_len = otp_len / CHAR_BIT;
526 	assert(read_len % sizeof(uint32_t) == 0);
527 
528 	for (i = 0U; i < read_len / sizeof(uint32_t); i++) {
529 		uint32_t tmp;
530 		uint32_t otp_val;
531 
532 		if (stm32_get_otp_value_from_idx(otp_idx + i, &otp_val) != 0) {
533 			zeromem(key, *key_len);
534 			VERBOSE("%s: unable to read from otp\n", __func__);
535 			return -EINVAL;
536 		}
537 
538 		tmp = bswap32(otp_val);
539 		memcpy(key + i * sizeof(uint32_t), &tmp, sizeof(tmp));
540 	}
541 
542 	/* Now we have the OTP values in key till read_len */
543 
544 	if (derive_key(key, key_len, read_len, flags, img_id,
545 		       img_id_len) != 0) {
546 		zeromem(key, *key_len);
547 		return -EINVAL;
548 	}
549 
550 	return 0;
551 }
552 
553 static enum stm32_saes_key_selection select_key(unsigned int key_flags)
554 {
555 	if ((key_flags & ENC_KEY_IS_IDENTIFIER) != 0U) {
556 		panic();
557 	}
558 
559 	/* Use the provided key buffer */
560 	return STM32_SAES_KEY_SOFT;
561 }
562 
563 static int stm32_decrypt_aes_gcm(void *data, size_t data_len,
564 				 const void *key, unsigned int key_len,
565 				 unsigned int key_flags,
566 				 const void *iv, unsigned int iv_len,
567 				 const void *tag, unsigned int tag_len)
568 {
569 	int ret;
570 	struct stm32_saes_context ctx;
571 	unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE];
572 	enum stm32_saes_key_selection key_mode;
573 	unsigned int diff = 0U;
574 	unsigned int i;
575 
576 	key_mode = select_key(key_flags);
577 
578 	ret = stm32_saes_init(&ctx, true, STM32_SAES_MODE_GCM, key_mode, key,
579 			      key_len, iv, iv_len);
580 	if (ret != 0) {
581 		return CRYPTO_ERR_INIT;
582 	}
583 
584 	ret = stm32_saes_update_assodata(&ctx, true, NULL, 0U);
585 	if (ret != 0) {
586 		return CRYPTO_ERR_DECRYPTION;
587 	}
588 
589 	ret = stm32_saes_update_load(&ctx, true, data, data, data_len);
590 	if (ret != 0) {
591 		return CRYPTO_ERR_DECRYPTION;
592 	}
593 
594 	ret = stm32_saes_final(&ctx, tag_buf, sizeof(tag_buf));
595 	if (ret != 0) {
596 		return CRYPTO_ERR_DECRYPTION;
597 	}
598 
599 	/* Check tag in "constant-time" */
600 	for (i = 0U; i < tag_len; i++) {
601 		diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i];
602 	}
603 
604 	if (diff != 0U) {
605 		return CRYPTO_ERR_DECRYPTION;
606 	}
607 
608 	return CRYPTO_SUCCESS;
609 }
610 
611 /*
612  * Authenticated decryption of an image
613  *
614  */
615 static int crypto_auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len,
616 			       const void *key, unsigned int key_len, unsigned int key_flags,
617 			       const void *iv, unsigned int iv_len, const void *tag,
618 			       unsigned int tag_len)
619 {
620 	int rc = -1;
621 	uint32_t real_iv[4];
622 
623 	switch (dec_algo) {
624 	case CRYPTO_GCM_DECRYPT:
625 		/*
626 		 * GCM expect a Nonce
627 		 * The AES IV is the nonce (a uint32_t[3])
628 		 * then a counter (a uint32_t big endian)
629 		 * The counter starts at 2.
630 		 */
631 		memcpy(real_iv, iv, iv_len);
632 		real_iv[3] = htobe32(0x2U);
633 
634 		rc = stm32_decrypt_aes_gcm(data_ptr, len, key, key_len, key_flags,
635 					   real_iv, sizeof(real_iv), tag, tag_len);
636 		break;
637 	default:
638 		rc = CRYPTO_ERR_DECRYPTION;
639 		break;
640 	}
641 
642 	if (rc != 0) {
643 		return rc;
644 	}
645 
646 	return CRYPTO_SUCCESS;
647 }
648 
649 REGISTER_CRYPTO_LIB("stm32_crypto_lib",
650 		    crypto_lib_init,
651 		    crypto_verify_signature,
652 		    crypto_verify_hash,
653 		    NULL,
654 		    crypto_auth_decrypt,
655 		    crypto_convert_pk);
656 
657 #else /* No decryption support */
658 REGISTER_CRYPTO_LIB("stm32_crypto_lib",
659 		    crypto_lib_init,
660 		    crypto_verify_signature,
661 		    crypto_verify_hash,
662 		    NULL,
663 		    NULL,
664 		    crypto_convert_pk);
665 #endif
666