xref: /rk3399_ARM-atf/plat/rockchip/rk3399/drivers/pmu/pmu.c (revision bfef610667b75e731d0d263b069369f7695c6c83)
1 /*
2  * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch_helpers.h>
32 #include <assert.h>
33 #include <bakery_lock.h>
34 #include <debug.h>
35 #include <delay_timer.h>
36 #include <errno.h>
37 #include <gpio.h>
38 #include <mmio.h>
39 #include <platform.h>
40 #include <platform_def.h>
41 #include <plat_params.h>
42 #include <plat_private.h>
43 #include <rk3399_def.h>
44 #include <pmu_sram.h>
45 #include <soc.h>
46 #include <pmu.h>
47 #include <pmu_com.h>
48 #include <pwm.h>
49 #include <soc.h>
50 #include <bl31.h>
51 #include <rk3399m0.h>
52 
53 DEFINE_BAKERY_LOCK(rockchip_pd_lock);
54 
55 static struct psram_data_t *psram_sleep_cfg =
56 	(struct psram_data_t *)PSRAM_DT_BASE;
57 
58 static uint32_t cpu_warm_boot_addr;
59 
60 /*
61  * There are two ways to powering on or off on core.
62  * 1) Control it power domain into on or off in PMU_PWRDN_CON reg,
63  *    it is core_pwr_pd mode
64  * 2) Enable the core power manage in PMU_CORE_PM_CON reg,
65  *     then, if the core enter into wfi, it power domain will be
66  *     powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode
67  * so we need core_pm_cfg_info to distinguish which method be used now.
68  */
69 
70 static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT]
71 #if USE_COHERENT_MEM
72 __attribute__ ((section("tzfw_coherent_mem")))
73 #endif
74 ;/* coheront */
75 
76 static void pmu_bus_idle_req(uint32_t bus, uint32_t state)
77 {
78 	uint32_t bus_id = BIT(bus);
79 	uint32_t bus_req;
80 	uint32_t wait_cnt = 0;
81 	uint32_t bus_state, bus_ack;
82 
83 	if (state)
84 		bus_req = BIT(bus);
85 	else
86 		bus_req = 0;
87 
88 	mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req);
89 
90 	do {
91 		bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id;
92 		bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id;
93 		wait_cnt++;
94 	} while ((bus_state != bus_req || bus_ack != bus_req) &&
95 		 (wait_cnt < MAX_WAIT_COUNT));
96 
97 	if (bus_state != bus_req || bus_ack != bus_req) {
98 		INFO("%s:st=%x(%x)\n", __func__,
99 		     mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST),
100 		     bus_state);
101 		INFO("%s:st=%x(%x)\n", __func__,
102 		     mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK),
103 		     bus_ack);
104 	}
105 
106 }
107 
108 struct pmu_slpdata_s pmu_slpdata;
109 
110 static void qos_save(void)
111 {
112 	if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
113 		RESTORE_QOS(pmu_slpdata.gpu_qos, GPU);
114 	if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
115 		RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
116 		RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
117 	}
118 	if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
119 		RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
120 		RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
121 	}
122 	if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
123 		RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
124 		RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
125 		RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
126 	}
127 	if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
128 		RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP);
129 	if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
130 		RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC);
131 	if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
132 		RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
133 		RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
134 	}
135 	if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
136 		RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
137 	if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
138 		RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC);
139 	if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
140 		RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO);
141 	if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
142 		RESTORE_QOS(pmu_slpdata.gic_qos, GIC);
143 	if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
144 		RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
145 		RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
146 	}
147 	if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
148 		RESTORE_QOS(pmu_slpdata.iep_qos, IEP);
149 	if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
150 		RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
151 		RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
152 	}
153 	if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
154 		RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
155 		RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
156 		RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
157 	}
158 	if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
159 		RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
160 		RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
161 		RESTORE_QOS(pmu_slpdata.dcf_qos, DCF);
162 		RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
163 		RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
164 		RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
165 		RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
166 		RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
167 	}
168 	if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
169 		RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
170 	if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
171 		RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
172 		RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
173 	}
174 }
175 
176 static void qos_restore(void)
177 {
178 	if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
179 		SAVE_QOS(pmu_slpdata.gpu_qos, GPU);
180 	if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
181 		SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
182 		SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
183 	}
184 	if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
185 		SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
186 		SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
187 	}
188 	if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
189 		SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
190 		SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
191 		SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
192 	}
193 	if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
194 		SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP);
195 	if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
196 		SAVE_QOS(pmu_slpdata.gmac_qos, GMAC);
197 	if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
198 		SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
199 		SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
200 	}
201 	if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
202 		SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
203 	if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
204 		SAVE_QOS(pmu_slpdata.emmc_qos, EMMC);
205 	if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
206 		SAVE_QOS(pmu_slpdata.sdio_qos, SDIO);
207 	if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
208 		SAVE_QOS(pmu_slpdata.gic_qos, GIC);
209 	if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
210 		SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
211 		SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
212 	}
213 	if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
214 		SAVE_QOS(pmu_slpdata.iep_qos, IEP);
215 	if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
216 		SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
217 		SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
218 	}
219 	if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
220 		SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
221 		SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
222 		SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
223 	}
224 	if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
225 		SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
226 		SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
227 		SAVE_QOS(pmu_slpdata.dcf_qos, DCF);
228 		SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
229 		SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
230 		SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
231 		SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
232 		SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
233 	}
234 	if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
235 		SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
236 	if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
237 		SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
238 		SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
239 	}
240 }
241 
242 static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state)
243 {
244 	uint32_t state;
245 
246 	if (pmu_power_domain_st(pd_id) == pd_state)
247 		goto out;
248 
249 	if (pd_state == pmu_pd_on)
250 		pmu_power_domain_ctr(pd_id, pd_state);
251 
252 	state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE;
253 
254 	switch (pd_id) {
255 	case PD_GPU:
256 		pmu_bus_idle_req(BUS_ID_GPU, state);
257 		break;
258 	case PD_VIO:
259 		pmu_bus_idle_req(BUS_ID_VIO, state);
260 		break;
261 	case PD_ISP0:
262 		pmu_bus_idle_req(BUS_ID_ISP0, state);
263 		break;
264 	case PD_ISP1:
265 		pmu_bus_idle_req(BUS_ID_ISP1, state);
266 		break;
267 	case PD_VO:
268 		pmu_bus_idle_req(BUS_ID_VOPB, state);
269 		pmu_bus_idle_req(BUS_ID_VOPL, state);
270 		break;
271 	case PD_HDCP:
272 		pmu_bus_idle_req(BUS_ID_HDCP, state);
273 		break;
274 	case PD_TCPD0:
275 		break;
276 	case PD_TCPD1:
277 		break;
278 	case PD_GMAC:
279 		pmu_bus_idle_req(BUS_ID_GMAC, state);
280 		break;
281 	case PD_CCI:
282 		pmu_bus_idle_req(BUS_ID_CCIM0, state);
283 		pmu_bus_idle_req(BUS_ID_CCIM1, state);
284 		break;
285 	case PD_SD:
286 		pmu_bus_idle_req(BUS_ID_SD, state);
287 		break;
288 	case PD_EMMC:
289 		pmu_bus_idle_req(BUS_ID_EMMC, state);
290 		break;
291 	case PD_EDP:
292 		pmu_bus_idle_req(BUS_ID_EDP, state);
293 		break;
294 	case PD_SDIOAUDIO:
295 		pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state);
296 		break;
297 	case PD_GIC:
298 		pmu_bus_idle_req(BUS_ID_GIC, state);
299 		break;
300 	case PD_RGA:
301 		pmu_bus_idle_req(BUS_ID_RGA, state);
302 		break;
303 	case PD_VCODEC:
304 		pmu_bus_idle_req(BUS_ID_VCODEC, state);
305 		break;
306 	case PD_VDU:
307 		pmu_bus_idle_req(BUS_ID_VDU, state);
308 		break;
309 	case PD_IEP:
310 		pmu_bus_idle_req(BUS_ID_IEP, state);
311 		break;
312 	case PD_USB3:
313 		pmu_bus_idle_req(BUS_ID_USB3, state);
314 		break;
315 	case PD_PERIHP:
316 		pmu_bus_idle_req(BUS_ID_PERIHP, state);
317 		break;
318 	default:
319 		break;
320 	}
321 
322 	if (pd_state == pmu_pd_off)
323 		pmu_power_domain_ctr(pd_id, pd_state);
324 
325 out:
326 	return 0;
327 }
328 
329 static uint32_t pmu_powerdomain_state;
330 
331 static void pmu_power_domains_suspend(void)
332 {
333 	clk_gate_con_save();
334 	clk_gate_con_disable();
335 	qos_save();
336 	pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
337 	pmu_set_power_domain(PD_GPU, pmu_pd_off);
338 	pmu_set_power_domain(PD_TCPD0, pmu_pd_off);
339 	pmu_set_power_domain(PD_TCPD1, pmu_pd_off);
340 	pmu_set_power_domain(PD_VO, pmu_pd_off);
341 	pmu_set_power_domain(PD_ISP0, pmu_pd_off);
342 	pmu_set_power_domain(PD_ISP1, pmu_pd_off);
343 	pmu_set_power_domain(PD_HDCP, pmu_pd_off);
344 	pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off);
345 	pmu_set_power_domain(PD_GMAC, pmu_pd_off);
346 	pmu_set_power_domain(PD_EDP, pmu_pd_off);
347 	pmu_set_power_domain(PD_IEP, pmu_pd_off);
348 	pmu_set_power_domain(PD_RGA, pmu_pd_off);
349 	pmu_set_power_domain(PD_VCODEC, pmu_pd_off);
350 	pmu_set_power_domain(PD_VDU, pmu_pd_off);
351 	clk_gate_con_restore();
352 }
353 
354 static void pmu_power_domains_resume(void)
355 {
356 	clk_gate_con_save();
357 	clk_gate_con_disable();
358 	if (!(pmu_powerdomain_state & BIT(PD_VDU)))
359 		pmu_set_power_domain(PD_VDU, pmu_pd_on);
360 	if (!(pmu_powerdomain_state & BIT(PD_VCODEC)))
361 		pmu_set_power_domain(PD_VCODEC, pmu_pd_on);
362 	if (!(pmu_powerdomain_state & BIT(PD_RGA)))
363 		pmu_set_power_domain(PD_RGA, pmu_pd_on);
364 	if (!(pmu_powerdomain_state & BIT(PD_IEP)))
365 		pmu_set_power_domain(PD_IEP, pmu_pd_on);
366 	if (!(pmu_powerdomain_state & BIT(PD_EDP)))
367 		pmu_set_power_domain(PD_EDP, pmu_pd_on);
368 	if (!(pmu_powerdomain_state & BIT(PD_GMAC)))
369 		pmu_set_power_domain(PD_GMAC, pmu_pd_on);
370 	if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO)))
371 		pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on);
372 	if (!(pmu_powerdomain_state & BIT(PD_HDCP)))
373 		pmu_set_power_domain(PD_HDCP, pmu_pd_on);
374 	if (!(pmu_powerdomain_state & BIT(PD_ISP1)))
375 		pmu_set_power_domain(PD_ISP1, pmu_pd_on);
376 	if (!(pmu_powerdomain_state & BIT(PD_ISP0)))
377 		pmu_set_power_domain(PD_ISP0, pmu_pd_on);
378 	if (!(pmu_powerdomain_state & BIT(PD_VO)))
379 		pmu_set_power_domain(PD_VO, pmu_pd_on);
380 	if (!(pmu_powerdomain_state & BIT(PD_TCPD1)))
381 		pmu_set_power_domain(PD_TCPD1, pmu_pd_on);
382 	if (!(pmu_powerdomain_state & BIT(PD_TCPD0)))
383 		pmu_set_power_domain(PD_TCPD0, pmu_pd_on);
384 	if (!(pmu_powerdomain_state & BIT(PD_GPU)))
385 		pmu_set_power_domain(PD_GPU, pmu_pd_on);
386 	qos_restore();
387 	clk_gate_con_restore();
388 }
389 
390 void rk3399_flash_l2_b(void)
391 {
392 	uint32_t wait_cnt = 0;
393 
394 	mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
395 	dsb();
396 
397 	while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
398 		 BIT(L2_FLUSHDONE_CLUSTER_B))) {
399 		wait_cnt++;
400 		if (wait_cnt >= MAX_WAIT_COUNT)
401 			WARN("%s:reg %x,wait\n", __func__,
402 			     mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
403 	}
404 
405 	mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
406 }
407 
408 static void pmu_scu_b_pwrdn(void)
409 {
410 	uint32_t wait_cnt = 0;
411 
412 	if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) &
413 	     (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) !=
414 	     (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) {
415 		ERROR("%s: not all cpus is off\n", __func__);
416 		return;
417 	}
418 
419 	rk3399_flash_l2_b();
420 
421 	mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
422 
423 	while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
424 		 BIT(STANDBY_BY_WFIL2_CLUSTER_B))) {
425 		wait_cnt++;
426 		if (wait_cnt >= MAX_WAIT_COUNT)
427 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
428 			      mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
429 	}
430 }
431 
432 static void pmu_scu_b_pwrup(void)
433 {
434 	mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
435 }
436 
437 void plat_rockchip_pmusram_prepare(void)
438 {
439 	uint32_t *sram_dst, *sram_src;
440 	size_t sram_size;
441 
442 	/*
443 	 * pmu sram code and data prepare
444 	 */
445 	sram_dst = (uint32_t *)PMUSRAM_BASE;
446 	sram_src = (uint32_t *)&pmu_cpuson_entrypoint_start;
447 	sram_size = (uint32_t *)&pmu_cpuson_entrypoint_end -
448 		    (uint32_t *)sram_src;
449 
450 	u32_align_cpy(sram_dst, sram_src, sram_size);
451 
452 	psram_sleep_cfg->sp = PSRAM_DT_BASE;
453 }
454 
455 static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id)
456 {
457 	assert(cpu_id < PLATFORM_CORE_COUNT);
458 	return core_pm_cfg_info[cpu_id];
459 }
460 
461 static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value)
462 {
463 	assert(cpu_id < PLATFORM_CORE_COUNT);
464 	core_pm_cfg_info[cpu_id] = value;
465 #if !USE_COHERENT_MEM
466 	flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id],
467 			   sizeof(uint32_t));
468 #endif
469 }
470 
471 static int cpus_power_domain_on(uint32_t cpu_id)
472 {
473 	uint32_t cfg_info;
474 	uint32_t cpu_pd = PD_CPUL0 + cpu_id;
475 	/*
476 	  * There are two ways to powering on or off on core.
477 	  * 1) Control it power domain into on or off in PMU_PWRDN_CON reg
478 	  * 2) Enable the core power manage in PMU_CORE_PM_CON reg,
479 	  *     then, if the core enter into wfi, it power domain will be
480 	  *     powered off automatically.
481 	  */
482 
483 	cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id);
484 
485 	if (cfg_info == core_pwr_pd) {
486 		/* disable core_pm cfg */
487 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
488 			      CORES_PM_DISABLE);
489 		/* if the cores have be on, power off it firstly */
490 		if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
491 			mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0);
492 			pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
493 		}
494 
495 		pmu_power_domain_ctr(cpu_pd, pmu_pd_on);
496 	} else {
497 		if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
498 			WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id);
499 			return -EINVAL;
500 		}
501 
502 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
503 			      BIT(core_pm_sft_wakeup_en));
504 		dsb();
505 	}
506 
507 	return 0;
508 }
509 
510 static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg)
511 {
512 	uint32_t cpu_pd;
513 	uint32_t core_pm_value;
514 
515 	cpu_pd = PD_CPUL0 + cpu_id;
516 	if (pmu_power_domain_st(cpu_pd) == pmu_pd_off)
517 		return 0;
518 
519 	if (pd_cfg == core_pwr_pd) {
520 		if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK))
521 			return -EINVAL;
522 
523 		/* disable core_pm cfg */
524 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
525 			      CORES_PM_DISABLE);
526 
527 		set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
528 		pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
529 	} else {
530 		set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
531 
532 		core_pm_value = BIT(core_pm_en);
533 		if (pd_cfg == core_pwr_wfi_int)
534 			core_pm_value |= BIT(core_pm_int_wakeup_en);
535 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
536 			      core_pm_value);
537 		dsb();
538 	}
539 
540 	return 0;
541 }
542 
543 static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state)
544 {
545 	uint32_t cpu_id = plat_my_core_pos();
546 	uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st;
547 
548 	assert(cpu_id < PLATFORM_CORE_COUNT);
549 
550 	if (lvl_state == PLAT_MAX_OFF_STATE) {
551 		if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) {
552 			pll_id = ALPLL_ID;
553 			clst_st_msk = CLST_L_CPUS_MSK;
554 		} else {
555 			pll_id = ABPLL_ID;
556 			clst_st_msk = CLST_B_CPUS_MSK <<
557 				       PLATFORM_CLUSTER0_CORE_COUNT;
558 		}
559 
560 		clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id));
561 
562 		pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
563 
564 		pmu_st &= clst_st_msk;
565 
566 		if (pmu_st == clst_st_chk_msk) {
567 			mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
568 				      PLL_SLOW_MODE);
569 
570 			clst_warmboot_data[pll_id] = PMU_CLST_RET;
571 
572 			pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
573 			pmu_st &= clst_st_msk;
574 			if (pmu_st == clst_st_chk_msk)
575 				return;
576 			/*
577 			 * it is mean that others cpu is up again,
578 			 * we must resume the cfg at once.
579 			 */
580 			mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
581 				      PLL_NOMAL_MODE);
582 			clst_warmboot_data[pll_id] = 0;
583 		}
584 	}
585 }
586 
587 static int clst_pwr_domain_resume(plat_local_state_t lvl_state)
588 {
589 	uint32_t cpu_id = plat_my_core_pos();
590 	uint32_t pll_id, pll_st;
591 
592 	assert(cpu_id < PLATFORM_CORE_COUNT);
593 
594 	if (lvl_state == PLAT_MAX_OFF_STATE) {
595 		if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT)
596 			pll_id = ALPLL_ID;
597 		else
598 			pll_id = ABPLL_ID;
599 
600 		pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >>
601 				 PLL_MODE_SHIFT;
602 
603 		if (pll_st != NORMAL_MODE) {
604 			WARN("%s: clst (%d) is in error mode (%d)\n",
605 			     __func__, pll_id, pll_st);
606 			return -1;
607 		}
608 	}
609 
610 	return 0;
611 }
612 
613 static void nonboot_cpus_off(void)
614 {
615 	uint32_t boot_cpu, cpu;
616 
617 	boot_cpu = plat_my_core_pos();
618 
619 	/* turn off noboot cpus */
620 	for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) {
621 		if (cpu == boot_cpu)
622 			continue;
623 		cpus_power_domain_off(cpu, core_pwr_pd);
624 	}
625 }
626 
627 static int cores_pwr_domain_on(unsigned long mpidr, uint64_t entrypoint)
628 {
629 	uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr);
630 
631 	assert(cpu_id < PLATFORM_CORE_COUNT);
632 	assert(cpuson_flags[cpu_id] == 0);
633 	cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG;
634 	cpuson_entry_point[cpu_id] = entrypoint;
635 	dsb();
636 
637 	cpus_power_domain_on(cpu_id);
638 
639 	return 0;
640 }
641 
642 static int cores_pwr_domain_off(void)
643 {
644 	uint32_t cpu_id = plat_my_core_pos();
645 
646 	cpus_power_domain_off(cpu_id, core_pwr_wfi);
647 
648 	return 0;
649 }
650 
651 static int hlvl_pwr_domain_off(uint32_t lvl, plat_local_state_t lvl_state)
652 {
653 	switch (lvl) {
654 	case MPIDR_AFFLVL1:
655 		clst_pwr_domain_suspend(lvl_state);
656 		break;
657 	default:
658 		break;
659 	}
660 
661 	return 0;
662 }
663 
664 static int cores_pwr_domain_suspend(void)
665 {
666 	uint32_t cpu_id = plat_my_core_pos();
667 
668 	assert(cpu_id < PLATFORM_CORE_COUNT);
669 	assert(cpuson_flags[cpu_id] == 0);
670 	cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN;
671 	cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint();
672 	dsb();
673 
674 	cpus_power_domain_off(cpu_id, core_pwr_wfi_int);
675 
676 	return 0;
677 }
678 
679 static int hlvl_pwr_domain_suspend(uint32_t lvl, plat_local_state_t lvl_state)
680 {
681 	switch (lvl) {
682 	case MPIDR_AFFLVL1:
683 		clst_pwr_domain_suspend(lvl_state);
684 		break;
685 	default:
686 		break;
687 	}
688 
689 	return 0;
690 }
691 
692 static int cores_pwr_domain_on_finish(void)
693 {
694 	uint32_t cpu_id = plat_my_core_pos();
695 
696 	mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
697 		      CORES_PM_DISABLE);
698 	return 0;
699 }
700 
701 static int hlvl_pwr_domain_on_finish(uint32_t lvl,
702 				     plat_local_state_t lvl_state)
703 {
704 	switch (lvl) {
705 	case MPIDR_AFFLVL1:
706 		clst_pwr_domain_resume(lvl_state);
707 		break;
708 	default:
709 		break;
710 	}
711 
712 	return 0;
713 }
714 
715 static int cores_pwr_domain_resume(void)
716 {
717 	uint32_t cpu_id = plat_my_core_pos();
718 
719 	/* Disable core_pm */
720 	mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE);
721 
722 	return 0;
723 }
724 
725 static int hlvl_pwr_domain_resume(uint32_t lvl, plat_local_state_t lvl_state)
726 {
727 	switch (lvl) {
728 	case MPIDR_AFFLVL1:
729 		clst_pwr_domain_resume(lvl_state);
730 	default:
731 		break;
732 	}
733 
734 	return 0;
735 }
736 
737 /**
738  * init_pmu_counts - Init timing counts in the PMU register area
739  *
740  * At various points when we power up or down parts of the system we need
741  * a delay to wait for power / clocks to become stable.  The PMU has counters
742  * to help software do the delay properly.  Basically, it works like this:
743  * - Software sets up counter values
744  * - When software turns on something in the PMU, the counter kicks off
745  * - The hardware sets a bit automatically when the counter has finished and
746  *   software knows that the initialization is done.
747  *
748  * It's software's job to setup these counters.  The hardware power on default
749  * for these settings is conservative, setting everything to 0x5dc0
750  * (750 ms in 32 kHz counts or 1 ms in 24 MHz counts).
751  *
752  * Note that some of these counters are only really used at suspend/resume
753  * time (for instance, that's the only time we turn off/on the oscillator) and
754  * others are used during normal runtime (like turning on/off a CPU or GPU) but
755  * it doesn't hurt to init everything at boot.
756  *
757  * Also note that these counters can run off the 32 kHz clock or the 24 MHz
758  * clock.  While the 24 MHz clock can give us more precision, it's not always
759  * available (like when we turn the oscillator off at sleep time). The
760  * pmu_use_lf (lf: low freq) is available in power mode.  Current understanding
761  * is that counts work like this:
762  *    IF (pmu_use_lf == 0) || (power_mode_en == 0)
763  *      use the 24M OSC for counts
764  *    ELSE
765  *      use the 32K OSC for counts
766  *
767  * Notes:
768  * - There is a separate bit for the PMU called PMU_24M_EN_CFG.  At the moment
769  *   we always keep that 0.  This apparently choose between using the PLL as
770  *   the source for the PMU vs. the 24M clock.  If we ever set it to 1 we
771  *   should consider how it affects these counts (if at all).
772  * - The power_mode_en is documented to auto-clear automatically when we leave
773  *   "power mode".  That's why most clocks are on 24M.  Only timings used when
774  *   in "power mode" are 32k.
775  * - In some cases the kernel may override these counts.
776  *
777  * The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs
778  * in power mode, we need to ensure that they are available.
779  */
780 static void init_pmu_counts(void)
781 {
782 	/* COUNTS FOR INSIDE POWER MODE */
783 
784 	/*
785 	 * From limited testing, need PMU stable >= 2ms, but go overkill
786 	 * and choose 30 ms to match testing on past SoCs.  Also let
787 	 * OSC have 30 ms for stabilization.
788 	 */
789 	mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30));
790 	mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30));
791 
792 	/* Unclear what these should be; try 3 ms */
793 	mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3));
794 
795 	/* Unclear what this should be, but set the default explicitly */
796 	mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0);
797 
798 	/* COUNTS FOR OUTSIDE POWER MODE */
799 
800 	/* Put something sorta conservative here until we know better */
801 	mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3));
802 	mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1));
803 	mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1));
804 	mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1));
805 
806 	/*
807 	 * Set CPU/GPU to 1 us.
808 	 *
809 	 * NOTE: Even though ATF doesn't configure the GPU we'll still setup
810 	 * counts here.  After all ATF controls all these other bits and also
811 	 * chooses which clock these counters use.
812 	 */
813 	mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_US(1));
814 	mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1));
815 	mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1));
816 	mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1));
817 	mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1));
818 	mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1));
819 }
820 
821 static void sys_slp_config(void)
822 {
823 	uint32_t slp_mode_cfg = 0;
824 
825 	mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP);
826 	mmio_write_32(PMU_BASE + PMU_CCI500_CON,
827 		      BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) |
828 		      BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) |
829 		      BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG));
830 
831 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
832 		      BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) |
833 		      BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) |
834 		      BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW));
835 
836 	slp_mode_cfg = BIT(PMU_PWR_MODE_EN) |
837 		       BIT(PMU_POWER_OFF_REQ_CFG) |
838 		       BIT(PMU_CPU0_PD_EN) |
839 		       BIT(PMU_L2_FLUSH_EN) |
840 		       BIT(PMU_L2_IDLE_EN) |
841 		       BIT(PMU_SCU_PD_EN) |
842 		       BIT(PMU_CCI_PD_EN) |
843 		       BIT(PMU_CLK_CORE_SRC_GATE_EN) |
844 		       BIT(PMU_ALIVE_USE_LF) |
845 		       BIT(PMU_SREF0_ENTER_EN) |
846 		       BIT(PMU_SREF1_ENTER_EN) |
847 		       BIT(PMU_DDRC0_GATING_EN) |
848 		       BIT(PMU_DDRC1_GATING_EN) |
849 		       BIT(PMU_DDRIO0_RET_EN) |
850 		       BIT(PMU_DDRIO1_RET_EN) |
851 		       BIT(PMU_DDRIO_RET_HW_DE_REQ) |
852 		       BIT(PMU_PLL_PD_EN) |
853 		       BIT(PMU_CLK_CENTER_SRC_GATE_EN) |
854 		       BIT(PMU_OSC_DIS) |
855 		       BIT(PMU_PMU_USE_LF);
856 
857 	mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN));
858 	mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg);
859 
860 
861 	mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW);
862 	mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K);
863 	mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */
864 }
865 
866 static void set_hw_idle(uint32_t hw_idle)
867 {
868 	mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
869 }
870 
871 static void clr_hw_idle(uint32_t hw_idle)
872 {
873 	mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
874 }
875 
876 static uint32_t iomux_status[12];
877 static uint32_t pull_mode_status[12];
878 static uint32_t gpio_direction[3];
879 static uint32_t gpio_2_4_clk_gate;
880 
881 static void suspend_apio(void)
882 {
883 	struct apio_info *suspend_apio;
884 	int i;
885 
886 	suspend_apio = plat_get_rockchip_suspend_apio();
887 
888 	if (!suspend_apio)
889 		return;
890 
891 	/* save gpio2 ~ gpio4 iomux and pull mode */
892 	for (i = 0; i < 12; i++) {
893 		iomux_status[i] = mmio_read_32(GRF_BASE +
894 				GRF_GPIO2A_IOMUX + i * 4);
895 		pull_mode_status[i] = mmio_read_32(GRF_BASE +
896 				GRF_GPIO2A_P + i * 4);
897 	}
898 
899 	/* store gpio2 ~ gpio4 clock gate state */
900 	gpio_2_4_clk_gate = (mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(31)) >>
901 				PCLK_GPIO2_GATE_SHIFT) & 0x07;
902 
903 	/* enable gpio2 ~ gpio4 clock gate */
904 	mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
905 		      BITS_WITH_WMASK(0, 0x07, PCLK_GPIO2_GATE_SHIFT));
906 
907 	/* save gpio2 ~ gpio4 direction */
908 	gpio_direction[0] = mmio_read_32(GPIO2_BASE + 0x04);
909 	gpio_direction[1] = mmio_read_32(GPIO3_BASE + 0x04);
910 	gpio_direction[2] = mmio_read_32(GPIO4_BASE + 0x04);
911 
912 	/* apio1 charge gpio3a0 ~ gpio3c7 */
913 	if (suspend_apio->apio1) {
914 
915 		/* set gpio3a0 ~ gpio3c7 iomux to gpio */
916 		mmio_write_32(GRF_BASE + GRF_GPIO3A_IOMUX,
917 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
918 		mmio_write_32(GRF_BASE + GRF_GPIO3B_IOMUX,
919 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
920 		mmio_write_32(GRF_BASE + GRF_GPIO3C_IOMUX,
921 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
922 
923 		/* set gpio3a0 ~ gpio3c7 pull mode to pull none */
924 		mmio_write_32(GRF_BASE + GRF_GPIO3A_P, REG_SOC_WMSK | 0);
925 		mmio_write_32(GRF_BASE + GRF_GPIO3B_P, REG_SOC_WMSK | 0);
926 		mmio_write_32(GRF_BASE + GRF_GPIO3C_P, REG_SOC_WMSK | 0);
927 
928 		/* set gpio3a0 ~ gpio3c7 to input */
929 		mmio_clrbits_32(GPIO3_BASE + 0x04, 0x00ffffff);
930 	}
931 
932 	/* apio2 charge gpio2a0 ~ gpio2b4 */
933 	if (suspend_apio->apio2) {
934 
935 		/* set gpio2a0 ~ gpio2b4 iomux to gpio */
936 		mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX,
937 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
938 		mmio_write_32(GRF_BASE + GRF_GPIO2B_IOMUX,
939 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
940 
941 		/* set gpio2a0 ~ gpio2b4 pull mode to pull none */
942 		mmio_write_32(GRF_BASE + GRF_GPIO2A_P, REG_SOC_WMSK | 0);
943 		mmio_write_32(GRF_BASE + GRF_GPIO2B_P, REG_SOC_WMSK | 0);
944 
945 		/* set gpio2a0 ~ gpio2b4 to input */
946 		mmio_clrbits_32(GPIO2_BASE + 0x04, 0x00001fff);
947 	}
948 
949 	/* apio3 charge gpio2c0 ~ gpio2d4*/
950 	if (suspend_apio->apio3) {
951 
952 		/* set gpio2a0 ~ gpio2b4 iomux to gpio */
953 		mmio_write_32(GRF_BASE + GRF_GPIO2C_IOMUX,
954 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
955 		mmio_write_32(GRF_BASE + GRF_GPIO2D_IOMUX,
956 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
957 
958 		/* set gpio2c0 ~ gpio2d4 pull mode to pull none */
959 		mmio_write_32(GRF_BASE + GRF_GPIO2C_P, REG_SOC_WMSK | 0);
960 		mmio_write_32(GRF_BASE + GRF_GPIO2D_P, REG_SOC_WMSK | 0);
961 
962 		/* set gpio2c0 ~ gpio2d4 to input */
963 		mmio_clrbits_32(GPIO2_BASE + 0x04, 0x1fff0000);
964 	}
965 
966 	/* apio4 charge gpio4c0 ~ gpio4c7, gpio4d0 ~ gpio4d6 */
967 	if (suspend_apio->apio4) {
968 
969 		/* set gpio4c0 ~ gpio4d6 iomux to gpio */
970 		mmio_write_32(GRF_BASE + GRF_GPIO4C_IOMUX,
971 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
972 		mmio_write_32(GRF_BASE + GRF_GPIO4D_IOMUX,
973 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
974 
975 		/* set gpio4c0 ~ gpio4d6 pull mode to pull none */
976 		mmio_write_32(GRF_BASE + GRF_GPIO4C_P, REG_SOC_WMSK | 0);
977 		mmio_write_32(GRF_BASE + GRF_GPIO4D_P, REG_SOC_WMSK | 0);
978 
979 		/* set gpio4c0 ~ gpio4d6 to input */
980 		mmio_clrbits_32(GPIO4_BASE + 0x04, 0x7fff0000);
981 	}
982 
983 	/* apio5 charge gpio3d0 ~ gpio3d7, gpio4a0 ~ gpio4a7*/
984 	if (suspend_apio->apio5) {
985 		/* set gpio3d0 ~ gpio4a7 iomux to gpio */
986 		mmio_write_32(GRF_BASE + GRF_GPIO3D_IOMUX,
987 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
988 		mmio_write_32(GRF_BASE + GRF_GPIO4A_IOMUX,
989 			      REG_SOC_WMSK | GRF_IOMUX_GPIO);
990 
991 		/* set gpio3d0 ~ gpio4a7 pull mode to pull none */
992 		mmio_write_32(GRF_BASE + GRF_GPIO3D_P, REG_SOC_WMSK | 0);
993 		mmio_write_32(GRF_BASE + GRF_GPIO4A_P, REG_SOC_WMSK | 0);
994 
995 		/* set gpio4c0 ~ gpio4d6 to input */
996 		mmio_clrbits_32(GPIO3_BASE + 0x04, 0xff000000);
997 		mmio_clrbits_32(GPIO4_BASE + 0x04, 0x000000ff);
998 	}
999 }
1000 
1001 static void resume_apio(void)
1002 {
1003 	struct apio_info *suspend_apio;
1004 	int i;
1005 
1006 	suspend_apio = plat_get_rockchip_suspend_apio();
1007 
1008 	if (!suspend_apio)
1009 		return;
1010 
1011 	for (i = 0; i < 12; i++) {
1012 		mmio_write_32(GRF_BASE + GRF_GPIO2A_P + i * 4,
1013 			      REG_SOC_WMSK | pull_mode_status[i]);
1014 		mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4,
1015 			      REG_SOC_WMSK | iomux_status[i]);
1016 	}
1017 
1018 	/* set gpio2 ~ gpio4 direction back to store value */
1019 	mmio_write_32(GPIO2_BASE + 0x04, gpio_direction[0]);
1020 	mmio_write_32(GPIO3_BASE + 0x04, gpio_direction[1]);
1021 	mmio_write_32(GPIO4_BASE + 0x04, gpio_direction[2]);
1022 
1023 	/* set gpio2 ~ gpio4 clock gate back to store value */
1024 	mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
1025 		      BITS_WITH_WMASK(gpio_2_4_clk_gate, 0x07,
1026 				      PCLK_GPIO2_GATE_SHIFT));
1027 }
1028 
1029 static void suspend_gpio(void)
1030 {
1031 	struct gpio_info *suspend_gpio;
1032 	uint32_t count;
1033 	int i;
1034 
1035 	suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
1036 
1037 	for (i = 0; i < count; i++) {
1038 		gpio_set_value(suspend_gpio[i].index, suspend_gpio[i].polarity);
1039 		gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
1040 		udelay(1);
1041 	}
1042 }
1043 
1044 static void resume_gpio(void)
1045 {
1046 	struct gpio_info *suspend_gpio;
1047 	uint32_t count;
1048 	int i;
1049 
1050 	suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
1051 
1052 	for (i = count - 1; i >= 0; i--) {
1053 		gpio_set_value(suspend_gpio[i].index,
1054 			       !suspend_gpio[i].polarity);
1055 		gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
1056 		udelay(1);
1057 	}
1058 }
1059 
1060 static void m0_clock_init(void)
1061 {
1062 	/* enable clocks for M0 */
1063 	mmio_write_32(PMUCRU_BASE + PMUCRU_CLKGATE_CON2,
1064 		      BITS_WITH_WMASK(0x0, 0x2f, 0));
1065 
1066 	/* switch the parent to xin24M and div == 1 */
1067 	mmio_write_32(PMUCRU_BASE + PMUCRU_CLKSEL_CON0,
1068 		      BIT_WITH_WMSK(15) | BITS_WITH_WMASK(0x0, 0x1f, 8));
1069 
1070 	/* start M0 */
1071 	mmio_write_32(PMUCRU_BASE + PMUCRU_SOFTRST_CON0,
1072 		      BITS_WITH_WMASK(0x0, 0x24, 0));
1073 
1074 	/* gating disable for M0 */
1075 	mmio_write_32(PMUCRU_BASE + PMUCRU_GATEDIS_CON0, BIT_WITH_WMSK(1));
1076 }
1077 
1078 static void m0_reset(void)
1079 {
1080 	/* stop M0 */
1081 	mmio_write_32(PMUCRU_BASE + PMUCRU_SOFTRST_CON0,
1082 		      BITS_WITH_WMASK(0x24, 0x24, 0));
1083 
1084 	/* recover gating bit for M0 */
1085 	mmio_write_32(PMUCRU_BASE + PMUCRU_GATEDIS_CON0, WMSK_BIT(1));
1086 
1087 	/* disable clocks for M0 */
1088 	mmio_write_32(PMUCRU_BASE + PMUCRU_CLKGATE_CON2,
1089 		      BITS_WITH_WMASK(0x2f, 0x2f, 0));
1090 }
1091 
1092 static int sys_pwr_domain_suspend(void)
1093 {
1094 	uint32_t wait_cnt = 0;
1095 	uint32_t status = 0;
1096 
1097 	pmu_power_domains_suspend();
1098 	set_hw_idle(BIT(PMU_CLR_CENTER1) |
1099 		    BIT(PMU_CLR_ALIVE) |
1100 		    BIT(PMU_CLR_MSCH0) |
1101 		    BIT(PMU_CLR_MSCH1) |
1102 		    BIT(PMU_CLR_CCIM0) |
1103 		    BIT(PMU_CLR_CCIM1) |
1104 		    BIT(PMU_CLR_CENTER) |
1105 		    BIT(PMU_CLR_GIC));
1106 
1107 	sys_slp_config();
1108 
1109 	m0_clock_init();
1110 
1111 	pmu_sgrf_rst_hld();
1112 
1113 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
1114 		      (PMUSRAM_BASE >> CPU_BOOT_ADDR_ALIGN) |
1115 		      CPU_BOOT_ADDR_WMASK);
1116 
1117 	pmu_scu_b_pwrdn();
1118 
1119 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
1120 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
1121 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) |
1122 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW));
1123 	dsb();
1124 	status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
1125 		BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
1126 		BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
1127 	while ((mmio_read_32(PMU_BASE +
1128 	       PMU_ADB400_ST) & status) != status) {
1129 		wait_cnt++;
1130 		if (wait_cnt >= MAX_WAIT_COUNT) {
1131 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
1132 			      mmio_read_32(PMU_BASE + PMU_ADB400_ST));
1133 			panic();
1134 		}
1135 	}
1136 	mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN));
1137 	/*
1138 	 * Disabling PLLs/PWM/DVFS is approaching WFI which is
1139 	 * the last steps in suspend.
1140 	 */
1141 	plls_suspend_prepare();
1142 	disable_dvfs_plls();
1143 	disable_pwms();
1144 	disable_nodvfs_plls();
1145 
1146 	suspend_apio();
1147 	suspend_gpio();
1148 
1149 	return 0;
1150 }
1151 
1152 static int sys_pwr_domain_resume(void)
1153 {
1154 	uint32_t wait_cnt = 0;
1155 	uint32_t status = 0;
1156 
1157 	resume_apio();
1158 	resume_gpio();
1159 	enable_nodvfs_plls();
1160 	enable_pwms();
1161 	/* PWM regulators take time to come up; give 300us to be safe. */
1162 	udelay(300);
1163 	enable_dvfs_plls();
1164 	plls_resume_finish();
1165 
1166 	/*
1167 	 * The wakeup status is not cleared by itself, we need to clear it
1168 	 * manually. Otherwise we will alway query some interrupt next time.
1169 	 *
1170 	 * NOTE: If the kernel needs to query this, we might want to stash it
1171 	 * somewhere.
1172 	 */
1173 	mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff);
1174 	mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00);
1175 
1176 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
1177 		      (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
1178 		      CPU_BOOT_ADDR_WMASK);
1179 
1180 	mmio_write_32(PMU_BASE + PMU_CCI500_CON,
1181 		      WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) |
1182 		      WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) |
1183 		      WMSK_BIT(PMU_QGATING_CCI500_CFG));
1184 	dsb();
1185 	mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON,
1186 			BIT(PMU_SCU_B_PWRDWN_EN));
1187 
1188 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
1189 		      WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
1190 		      WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) |
1191 		      WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) |
1192 		      WMSK_BIT(PMU_CLR_CORE_L_HW) |
1193 		      WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) |
1194 		      WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW));
1195 
1196 	status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
1197 		BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
1198 		BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
1199 
1200 	while ((mmio_read_32(PMU_BASE +
1201 	   PMU_ADB400_ST) & status)) {
1202 		wait_cnt++;
1203 		if (wait_cnt >= MAX_WAIT_COUNT) {
1204 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
1205 			      mmio_read_32(PMU_BASE + PMU_ADB400_ST));
1206 			panic();
1207 		}
1208 	}
1209 
1210 	pmu_sgrf_rst_hld_release();
1211 	pmu_scu_b_pwrup();
1212 
1213 	pmu_power_domains_resume();
1214 	clr_hw_idle(BIT(PMU_CLR_CENTER1) |
1215 				BIT(PMU_CLR_ALIVE) |
1216 				BIT(PMU_CLR_MSCH0) |
1217 				BIT(PMU_CLR_MSCH1) |
1218 				BIT(PMU_CLR_CCIM0) |
1219 				BIT(PMU_CLR_CCIM1) |
1220 				BIT(PMU_CLR_CENTER) |
1221 				BIT(PMU_CLR_GIC));
1222 
1223 	plat_rockchip_gic_cpuif_enable();
1224 
1225 	m0_reset();
1226 
1227 	return 0;
1228 }
1229 
1230 void __dead2 soc_soft_reset(void)
1231 {
1232 	struct gpio_info *rst_gpio;
1233 
1234 	rst_gpio = plat_get_rockchip_gpio_reset();
1235 
1236 	if (rst_gpio) {
1237 		gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT);
1238 		gpio_set_value(rst_gpio->index, rst_gpio->polarity);
1239 	} else {
1240 		soc_global_soft_reset();
1241 	}
1242 
1243 	while (1)
1244 		;
1245 }
1246 
1247 void __dead2 soc_system_off(void)
1248 {
1249 	struct gpio_info *poweroff_gpio;
1250 
1251 	poweroff_gpio = plat_get_rockchip_gpio_poweroff();
1252 
1253 	if (poweroff_gpio) {
1254 		/*
1255 		 * if use tsadc over temp pin(GPIO1A6) as shutdown gpio,
1256 		 * need to set this pin iomux back to gpio function
1257 		 */
1258 		if (poweroff_gpio->index == TSADC_INT_PIN) {
1259 			mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX,
1260 				      GPIO1A6_IOMUX);
1261 		}
1262 		gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT);
1263 		gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity);
1264 	} else {
1265 		WARN("Do nothing when system off\n");
1266 	}
1267 
1268 	while (1)
1269 		;
1270 }
1271 
1272 static struct rockchip_pm_ops_cb pm_ops = {
1273 	.cores_pwr_dm_on = cores_pwr_domain_on,
1274 	.cores_pwr_dm_off = cores_pwr_domain_off,
1275 	.cores_pwr_dm_on_finish = cores_pwr_domain_on_finish,
1276 	.cores_pwr_dm_suspend = cores_pwr_domain_suspend,
1277 	.cores_pwr_dm_resume = cores_pwr_domain_resume,
1278 	.hlvl_pwr_dm_suspend = hlvl_pwr_domain_suspend,
1279 	.hlvl_pwr_dm_resume = hlvl_pwr_domain_resume,
1280 	.hlvl_pwr_dm_off = hlvl_pwr_domain_off,
1281 	.hlvl_pwr_dm_on_finish = hlvl_pwr_domain_on_finish,
1282 	.sys_pwr_dm_suspend = sys_pwr_domain_suspend,
1283 	.sys_pwr_dm_resume = sys_pwr_domain_resume,
1284 	.sys_gbl_soft_reset = soc_soft_reset,
1285 	.system_off = soc_system_off,
1286 };
1287 
1288 void plat_rockchip_pmu_init(void)
1289 {
1290 	uint32_t cpu;
1291 
1292 	rockchip_pd_lock_init();
1293 	plat_setup_rockchip_pm_ops(&pm_ops);
1294 
1295 	/* register requires 32bits mode, switch it to 32 bits */
1296 	cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot;
1297 
1298 	for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++)
1299 		cpuson_flags[cpu] = 0;
1300 
1301 	for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++)
1302 		clst_warmboot_data[cpu] = 0;
1303 
1304 	psram_sleep_cfg->ddr_func = 0x00;
1305 	psram_sleep_cfg->ddr_data = 0x00;
1306 	psram_sleep_cfg->ddr_flag = 0x00;
1307 	psram_sleep_cfg->boot_mpidr = read_mpidr_el1() & 0xffff;
1308 
1309 	/* config cpu's warm boot address */
1310 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
1311 		      (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
1312 		      CPU_BOOT_ADDR_WMASK);
1313 	mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE);
1314 
1315 	/*
1316 	 * Enable Schmitt trigger for better 32 kHz input signal, which is
1317 	 * important for suspend/resume reliability among other things.
1318 	 */
1319 	mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE);
1320 
1321 	init_pmu_counts();
1322 
1323 	nonboot_cpus_off();
1324 
1325 	INFO("%s(%d): pd status %x\n", __func__, __LINE__,
1326 	     mmio_read_32(PMU_BASE + PMU_PWRDN_ST));
1327 }
1328