xref: /rk3399_ARM-atf/plat/rockchip/rk3399/drivers/pmu/pmu.c (revision 7a3d4bdeefe361d8b88d0a62251df768a73684b3)
1 /*
2  * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch_helpers.h>
32 #include <assert.h>
33 #include <bakery_lock.h>
34 #include <debug.h>
35 #include <delay_timer.h>
36 #include <errno.h>
37 #include <gpio.h>
38 #include <mmio.h>
39 #include <platform.h>
40 #include <platform_def.h>
41 #include <plat_params.h>
42 #include <plat_private.h>
43 #include <rk3399_def.h>
44 #include <pmu_sram.h>
45 #include <soc.h>
46 #include <pmu.h>
47 #include <pmu_com.h>
48 #include <pwm.h>
49 #include <soc.h>
50 #include <bl31.h>
51 
52 DEFINE_BAKERY_LOCK(rockchip_pd_lock);
53 
54 static struct psram_data_t *psram_sleep_cfg =
55 	(struct psram_data_t *)PSRAM_DT_BASE;
56 
57 static uint32_t cpu_warm_boot_addr;
58 
59 /*
60  * There are two ways to powering on or off on core.
61  * 1) Control it power domain into on or off in PMU_PWRDN_CON reg,
62  *    it is core_pwr_pd mode
63  * 2) Enable the core power manage in PMU_CORE_PM_CON reg,
64  *     then, if the core enter into wfi, it power domain will be
65  *     powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode
66  * so we need core_pm_cfg_info to distinguish which method be used now.
67  */
68 
69 static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT]
70 #if USE_COHERENT_MEM
71 __attribute__ ((section("tzfw_coherent_mem")))
72 #endif
73 ;/* coheront */
74 
75 static void pmu_bus_idle_req(uint32_t bus, uint32_t state)
76 {
77 	uint32_t bus_id = BIT(bus);
78 	uint32_t bus_req;
79 	uint32_t wait_cnt = 0;
80 	uint32_t bus_state, bus_ack;
81 
82 	if (state)
83 		bus_req = BIT(bus);
84 	else
85 		bus_req = 0;
86 
87 	mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req);
88 
89 	do {
90 		bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id;
91 		bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id;
92 		wait_cnt++;
93 	} while ((bus_state != bus_req || bus_ack != bus_req) &&
94 		 (wait_cnt < MAX_WAIT_COUNT));
95 
96 	if (bus_state != bus_req || bus_ack != bus_req) {
97 		INFO("%s:st=%x(%x)\n", __func__,
98 		     mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST),
99 		     bus_state);
100 		INFO("%s:st=%x(%x)\n", __func__,
101 		     mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK),
102 		     bus_ack);
103 	}
104 
105 }
106 
107 struct pmu_slpdata_s pmu_slpdata;
108 
109 static void qos_save(void)
110 {
111 	if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
112 		RESTORE_QOS(pmu_slpdata.gpu_qos, GPU);
113 	if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
114 		RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
115 		RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
116 	}
117 	if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
118 		RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
119 		RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
120 	}
121 	if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
122 		RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
123 		RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
124 		RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
125 	}
126 	if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
127 		RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP);
128 	if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
129 		RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC);
130 	if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
131 		RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
132 		RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
133 	}
134 	if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
135 		RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
136 	if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
137 		RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC);
138 	if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
139 		RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO);
140 	if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
141 		RESTORE_QOS(pmu_slpdata.gic_qos, GIC);
142 	if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
143 		RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
144 		RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
145 	}
146 	if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
147 		RESTORE_QOS(pmu_slpdata.iep_qos, IEP);
148 	if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
149 		RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
150 		RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
151 	}
152 	if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
153 		RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
154 		RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
155 		RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
156 	}
157 	if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
158 		RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
159 		RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
160 		RESTORE_QOS(pmu_slpdata.dcf_qos, DCF);
161 		RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
162 		RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
163 		RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
164 		RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
165 		RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
166 	}
167 	if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
168 		RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
169 	if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
170 		RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
171 		RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
172 	}
173 }
174 
175 static void qos_restore(void)
176 {
177 	if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
178 		SAVE_QOS(pmu_slpdata.gpu_qos, GPU);
179 	if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
180 		SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
181 		SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
182 	}
183 	if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
184 		SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
185 		SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
186 	}
187 	if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
188 		SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
189 		SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
190 		SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
191 	}
192 	if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
193 		SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP);
194 	if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
195 		SAVE_QOS(pmu_slpdata.gmac_qos, GMAC);
196 	if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
197 		SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
198 		SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
199 	}
200 	if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
201 		SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
202 	if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
203 		SAVE_QOS(pmu_slpdata.emmc_qos, EMMC);
204 	if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
205 		SAVE_QOS(pmu_slpdata.sdio_qos, SDIO);
206 	if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
207 		SAVE_QOS(pmu_slpdata.gic_qos, GIC);
208 	if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
209 		SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
210 		SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
211 	}
212 	if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
213 		SAVE_QOS(pmu_slpdata.iep_qos, IEP);
214 	if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
215 		SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
216 		SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
217 	}
218 	if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
219 		SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
220 		SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
221 		SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
222 	}
223 	if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
224 		SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
225 		SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
226 		SAVE_QOS(pmu_slpdata.dcf_qos, DCF);
227 		SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
228 		SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
229 		SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
230 		SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
231 		SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
232 	}
233 	if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
234 		SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
235 	if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
236 		SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
237 		SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
238 	}
239 }
240 
241 static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state)
242 {
243 	uint32_t state;
244 
245 	if (pmu_power_domain_st(pd_id) == pd_state)
246 		goto out;
247 
248 	if (pd_state == pmu_pd_on)
249 		pmu_power_domain_ctr(pd_id, pd_state);
250 
251 	state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE;
252 
253 	switch (pd_id) {
254 	case PD_GPU:
255 		pmu_bus_idle_req(BUS_ID_GPU, state);
256 		break;
257 	case PD_VIO:
258 		pmu_bus_idle_req(BUS_ID_VIO, state);
259 		break;
260 	case PD_ISP0:
261 		pmu_bus_idle_req(BUS_ID_ISP0, state);
262 		break;
263 	case PD_ISP1:
264 		pmu_bus_idle_req(BUS_ID_ISP1, state);
265 		break;
266 	case PD_VO:
267 		pmu_bus_idle_req(BUS_ID_VOPB, state);
268 		pmu_bus_idle_req(BUS_ID_VOPL, state);
269 		break;
270 	case PD_HDCP:
271 		pmu_bus_idle_req(BUS_ID_HDCP, state);
272 		break;
273 	case PD_TCPD0:
274 		break;
275 	case PD_TCPD1:
276 		break;
277 	case PD_GMAC:
278 		pmu_bus_idle_req(BUS_ID_GMAC, state);
279 		break;
280 	case PD_CCI:
281 		pmu_bus_idle_req(BUS_ID_CCIM0, state);
282 		pmu_bus_idle_req(BUS_ID_CCIM1, state);
283 		break;
284 	case PD_SD:
285 		pmu_bus_idle_req(BUS_ID_SD, state);
286 		break;
287 	case PD_EMMC:
288 		pmu_bus_idle_req(BUS_ID_EMMC, state);
289 		break;
290 	case PD_EDP:
291 		pmu_bus_idle_req(BUS_ID_EDP, state);
292 		break;
293 	case PD_SDIOAUDIO:
294 		pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state);
295 		break;
296 	case PD_GIC:
297 		pmu_bus_idle_req(BUS_ID_GIC, state);
298 		break;
299 	case PD_RGA:
300 		pmu_bus_idle_req(BUS_ID_RGA, state);
301 		break;
302 	case PD_VCODEC:
303 		pmu_bus_idle_req(BUS_ID_VCODEC, state);
304 		break;
305 	case PD_VDU:
306 		pmu_bus_idle_req(BUS_ID_VDU, state);
307 		break;
308 	case PD_IEP:
309 		pmu_bus_idle_req(BUS_ID_IEP, state);
310 		break;
311 	case PD_USB3:
312 		pmu_bus_idle_req(BUS_ID_USB3, state);
313 		break;
314 	case PD_PERIHP:
315 		pmu_bus_idle_req(BUS_ID_PERIHP, state);
316 		break;
317 	default:
318 		break;
319 	}
320 
321 	if (pd_state == pmu_pd_off)
322 		pmu_power_domain_ctr(pd_id, pd_state);
323 
324 out:
325 	return 0;
326 }
327 
328 static uint32_t pmu_powerdomain_state;
329 
330 static void pmu_power_domains_suspend(void)
331 {
332 	clk_gate_con_save();
333 	clk_gate_con_disable();
334 	qos_save();
335 	pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
336 	pmu_set_power_domain(PD_GPU, pmu_pd_off);
337 	pmu_set_power_domain(PD_TCPD0, pmu_pd_off);
338 	pmu_set_power_domain(PD_TCPD1, pmu_pd_off);
339 	pmu_set_power_domain(PD_VO, pmu_pd_off);
340 	pmu_set_power_domain(PD_ISP0, pmu_pd_off);
341 	pmu_set_power_domain(PD_ISP1, pmu_pd_off);
342 	pmu_set_power_domain(PD_HDCP, pmu_pd_off);
343 	pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off);
344 	pmu_set_power_domain(PD_GMAC, pmu_pd_off);
345 	pmu_set_power_domain(PD_EDP, pmu_pd_off);
346 	pmu_set_power_domain(PD_IEP, pmu_pd_off);
347 	pmu_set_power_domain(PD_RGA, pmu_pd_off);
348 	pmu_set_power_domain(PD_VCODEC, pmu_pd_off);
349 	pmu_set_power_domain(PD_VDU, pmu_pd_off);
350 	clk_gate_con_restore();
351 }
352 
353 static void pmu_power_domains_resume(void)
354 {
355 	clk_gate_con_save();
356 	clk_gate_con_disable();
357 	if (!(pmu_powerdomain_state & BIT(PD_VDU)))
358 		pmu_set_power_domain(PD_VDU, pmu_pd_on);
359 	if (!(pmu_powerdomain_state & BIT(PD_VCODEC)))
360 		pmu_set_power_domain(PD_VCODEC, pmu_pd_on);
361 	if (!(pmu_powerdomain_state & BIT(PD_RGA)))
362 		pmu_set_power_domain(PD_RGA, pmu_pd_on);
363 	if (!(pmu_powerdomain_state & BIT(PD_IEP)))
364 		pmu_set_power_domain(PD_IEP, pmu_pd_on);
365 	if (!(pmu_powerdomain_state & BIT(PD_EDP)))
366 		pmu_set_power_domain(PD_EDP, pmu_pd_on);
367 	if (!(pmu_powerdomain_state & BIT(PD_GMAC)))
368 		pmu_set_power_domain(PD_GMAC, pmu_pd_on);
369 	if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO)))
370 		pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on);
371 	if (!(pmu_powerdomain_state & BIT(PD_HDCP)))
372 		pmu_set_power_domain(PD_HDCP, pmu_pd_on);
373 	if (!(pmu_powerdomain_state & BIT(PD_ISP1)))
374 		pmu_set_power_domain(PD_ISP1, pmu_pd_on);
375 	if (!(pmu_powerdomain_state & BIT(PD_ISP0)))
376 		pmu_set_power_domain(PD_ISP0, pmu_pd_on);
377 	if (!(pmu_powerdomain_state & BIT(PD_VO)))
378 		pmu_set_power_domain(PD_VO, pmu_pd_on);
379 	if (!(pmu_powerdomain_state & BIT(PD_TCPD1)))
380 		pmu_set_power_domain(PD_TCPD1, pmu_pd_on);
381 	if (!(pmu_powerdomain_state & BIT(PD_TCPD0)))
382 		pmu_set_power_domain(PD_TCPD0, pmu_pd_on);
383 	if (!(pmu_powerdomain_state & BIT(PD_GPU)))
384 		pmu_set_power_domain(PD_GPU, pmu_pd_on);
385 	qos_restore();
386 	clk_gate_con_restore();
387 }
388 
389 void rk3399_flash_l2_b(void)
390 {
391 	uint32_t wait_cnt = 0;
392 
393 	mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
394 	dsb();
395 
396 	while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
397 		 BIT(L2_FLUSHDONE_CLUSTER_B))) {
398 		wait_cnt++;
399 		if (wait_cnt >= MAX_WAIT_COUNT)
400 			WARN("%s:reg %x,wait\n", __func__,
401 			     mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
402 	}
403 
404 	mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
405 }
406 
407 static void pmu_scu_b_pwrdn(void)
408 {
409 	uint32_t wait_cnt = 0;
410 
411 	if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) &
412 	     (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) !=
413 	     (BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) {
414 		ERROR("%s: not all cpus is off\n", __func__);
415 		return;
416 	}
417 
418 	rk3399_flash_l2_b();
419 
420 	mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
421 
422 	while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
423 		 BIT(STANDBY_BY_WFIL2_CLUSTER_B))) {
424 		wait_cnt++;
425 		if (wait_cnt >= MAX_WAIT_COUNT)
426 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
427 			      mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
428 	}
429 }
430 
431 static void pmu_scu_b_pwrup(void)
432 {
433 	mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
434 }
435 
436 void plat_rockchip_pmusram_prepare(void)
437 {
438 	uint32_t *sram_dst, *sram_src;
439 	size_t sram_size = 2;
440 
441 	/*
442 	 * pmu sram code and data prepare
443 	 */
444 	sram_dst = (uint32_t *)PMUSRAM_BASE;
445 	sram_src = (uint32_t *)&pmu_cpuson_entrypoint_start;
446 	sram_size = (uint32_t *)&pmu_cpuson_entrypoint_end -
447 		    (uint32_t *)sram_src;
448 
449 	u32_align_cpy(sram_dst, sram_src, sram_size);
450 
451 	psram_sleep_cfg->sp = PSRAM_DT_BASE;
452 }
453 
454 static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id)
455 {
456 	assert(cpu_id < PLATFORM_CORE_COUNT);
457 	return core_pm_cfg_info[cpu_id];
458 }
459 
460 static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value)
461 {
462 	assert(cpu_id < PLATFORM_CORE_COUNT);
463 	core_pm_cfg_info[cpu_id] = value;
464 #if !USE_COHERENT_MEM
465 	flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id],
466 			   sizeof(uint32_t));
467 #endif
468 }
469 
470 static int cpus_power_domain_on(uint32_t cpu_id)
471 {
472 	uint32_t cfg_info;
473 	uint32_t cpu_pd = PD_CPUL0 + cpu_id;
474 	/*
475 	  * There are two ways to powering on or off on core.
476 	  * 1) Control it power domain into on or off in PMU_PWRDN_CON reg
477 	  * 2) Enable the core power manage in PMU_CORE_PM_CON reg,
478 	  *     then, if the core enter into wfi, it power domain will be
479 	  *     powered off automatically.
480 	  */
481 
482 	cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id);
483 
484 	if (cfg_info == core_pwr_pd) {
485 		/* disable core_pm cfg */
486 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
487 			      CORES_PM_DISABLE);
488 		/* if the cores have be on, power off it firstly */
489 		if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
490 			mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0);
491 			pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
492 		}
493 
494 		pmu_power_domain_ctr(cpu_pd, pmu_pd_on);
495 	} else {
496 		if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
497 			WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id);
498 			return -EINVAL;
499 		}
500 
501 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
502 			      BIT(core_pm_sft_wakeup_en));
503 		dsb();
504 	}
505 
506 	return 0;
507 }
508 
509 static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg)
510 {
511 	uint32_t cpu_pd;
512 	uint32_t core_pm_value;
513 
514 	cpu_pd = PD_CPUL0 + cpu_id;
515 	if (pmu_power_domain_st(cpu_pd) == pmu_pd_off)
516 		return 0;
517 
518 	if (pd_cfg == core_pwr_pd) {
519 		if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK))
520 			return -EINVAL;
521 
522 		/* disable core_pm cfg */
523 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
524 			      CORES_PM_DISABLE);
525 
526 		set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
527 		pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
528 	} else {
529 		set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
530 
531 		core_pm_value = BIT(core_pm_en);
532 		if (pd_cfg == core_pwr_wfi_int)
533 			core_pm_value |= BIT(core_pm_int_wakeup_en);
534 		mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
535 			      core_pm_value);
536 		dsb();
537 	}
538 
539 	return 0;
540 }
541 
542 static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state)
543 {
544 	uint32_t cpu_id = plat_my_core_pos();
545 	uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st;
546 
547 	assert(cpu_id < PLATFORM_CORE_COUNT);
548 
549 	if (lvl_state == PLAT_MAX_RET_STATE  ||
550 	    lvl_state == PLAT_MAX_OFF_STATE) {
551 		if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) {
552 			pll_id = ALPLL_ID;
553 			clst_st_msk = CLST_L_CPUS_MSK;
554 		} else {
555 			pll_id = ABPLL_ID;
556 			clst_st_msk = CLST_B_CPUS_MSK <<
557 				       PLATFORM_CLUSTER0_CORE_COUNT;
558 		}
559 
560 		clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id));
561 
562 		pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
563 
564 		pmu_st &= clst_st_msk;
565 
566 		if (pmu_st == clst_st_chk_msk) {
567 			mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
568 				      PLL_SLOW_MODE);
569 
570 			clst_warmboot_data[pll_id] = PMU_CLST_RET;
571 
572 			pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
573 			pmu_st &= clst_st_msk;
574 			if (pmu_st == clst_st_chk_msk)
575 				return;
576 			/*
577 			 * it is mean that others cpu is up again,
578 			 * we must resume the cfg at once.
579 			 */
580 			mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
581 				      PLL_NOMAL_MODE);
582 			clst_warmboot_data[pll_id] = 0;
583 		}
584 	}
585 }
586 
587 static int clst_pwr_domain_resume(plat_local_state_t lvl_state)
588 {
589 	uint32_t cpu_id = plat_my_core_pos();
590 	uint32_t pll_id, pll_st;
591 
592 	assert(cpu_id < PLATFORM_CORE_COUNT);
593 
594 	if (lvl_state == PLAT_MAX_RET_STATE ||
595 	    lvl_state == PLAT_MAX_OFF_STATE) {
596 		if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT)
597 			pll_id = ALPLL_ID;
598 		else
599 			pll_id = ABPLL_ID;
600 
601 		pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >>
602 				 PLL_MODE_SHIFT;
603 
604 		if (pll_st != NORMAL_MODE) {
605 			WARN("%s: clst (%d) is in error mode (%d)\n",
606 			     __func__, pll_id, pll_st);
607 			return -1;
608 		}
609 	}
610 
611 	return 0;
612 }
613 
614 static void nonboot_cpus_off(void)
615 {
616 	uint32_t boot_cpu, cpu;
617 
618 	boot_cpu = plat_my_core_pos();
619 
620 	/* turn off noboot cpus */
621 	for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) {
622 		if (cpu == boot_cpu)
623 			continue;
624 		cpus_power_domain_off(cpu, core_pwr_pd);
625 	}
626 }
627 
628 static int cores_pwr_domain_on(unsigned long mpidr, uint64_t entrypoint)
629 {
630 	uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr);
631 
632 	assert(cpu_id < PLATFORM_CORE_COUNT);
633 	assert(cpuson_flags[cpu_id] == 0);
634 	cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG;
635 	cpuson_entry_point[cpu_id] = entrypoint;
636 	dsb();
637 
638 	cpus_power_domain_on(cpu_id);
639 
640 	return 0;
641 }
642 
643 static int cores_pwr_domain_off(void)
644 {
645 	uint32_t cpu_id = plat_my_core_pos();
646 
647 	cpus_power_domain_off(cpu_id, core_pwr_wfi);
648 
649 	return 0;
650 }
651 
652 static int hlvl_pwr_domain_off(uint32_t lvl, plat_local_state_t lvl_state)
653 {
654 	switch (lvl) {
655 	case MPIDR_AFFLVL1:
656 		clst_pwr_domain_suspend(lvl_state);
657 		break;
658 	default:
659 		break;
660 	}
661 
662 	return 0;
663 }
664 
665 static int cores_pwr_domain_suspend(void)
666 {
667 	uint32_t cpu_id = plat_my_core_pos();
668 
669 	assert(cpu_id < PLATFORM_CORE_COUNT);
670 	assert(cpuson_flags[cpu_id] == 0);
671 	cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN;
672 	cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint();
673 	dsb();
674 
675 	cpus_power_domain_off(cpu_id, core_pwr_wfi_int);
676 
677 	return 0;
678 }
679 
680 static int hlvl_pwr_domain_suspend(uint32_t lvl, plat_local_state_t lvl_state)
681 {
682 	switch (lvl) {
683 	case MPIDR_AFFLVL1:
684 		clst_pwr_domain_suspend(lvl_state);
685 		break;
686 	default:
687 		break;
688 	}
689 
690 	return 0;
691 }
692 
693 static int cores_pwr_domain_on_finish(void)
694 {
695 	uint32_t cpu_id = plat_my_core_pos();
696 
697 	mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
698 		      CORES_PM_DISABLE);
699 	return 0;
700 }
701 
702 static int hlvl_pwr_domain_on_finish(uint32_t lvl,
703 				     plat_local_state_t lvl_state)
704 {
705 	switch (lvl) {
706 	case MPIDR_AFFLVL1:
707 		clst_pwr_domain_resume(lvl_state);
708 		break;
709 	default:
710 		break;
711 	}
712 
713 	return 0;
714 }
715 
716 static int cores_pwr_domain_resume(void)
717 {
718 	uint32_t cpu_id = plat_my_core_pos();
719 
720 	/* Disable core_pm */
721 	mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE);
722 
723 	return 0;
724 }
725 
726 static int hlvl_pwr_domain_resume(uint32_t lvl, plat_local_state_t lvl_state)
727 {
728 	switch (lvl) {
729 	case MPIDR_AFFLVL1:
730 		clst_pwr_domain_resume(lvl_state);
731 	default:
732 		break;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * init_pmu_counts - Init timing counts in the PMU register area
740  *
741  * At various points when we power up or down parts of the system we need
742  * a delay to wait for power / clocks to become stable.  The PMU has counters
743  * to help software do the delay properly.  Basically, it works like this:
744  * - Software sets up counter values
745  * - When software turns on something in the PMU, the counter kicks off
746  * - The hardware sets a bit automatically when the counter has finished and
747  *   software knows that the initialization is done.
748  *
749  * It's software's job to setup these counters.  The hardware power on default
750  * for these settings is conservative, setting everything to 0x5dc0
751  * (750 ms in 32 kHz counts or 1 ms in 24 MHz counts).
752  *
753  * Note that some of these counters are only really used at suspend/resume
754  * time (for instance, that's the only time we turn off/on the oscillator) and
755  * others are used during normal runtime (like turning on/off a CPU or GPU) but
756  * it doesn't hurt to init everything at boot.
757  *
758  * Also note that these counters can run off the 32 kHz clock or the 24 MHz
759  * clock.  While the 24 MHz clock can give us more precision, it's not always
760  * available (like when we turn the oscillator off at sleep time). The
761  * pmu_use_lf (lf: low freq) is available in power mode.  Current understanding
762  * is that counts work like this:
763  *    IF (pmu_use_lf == 0) || (power_mode_en == 0)
764  *      use the 24M OSC for counts
765  *    ELSE
766  *      use the 32K OSC for counts
767  *
768  * Notes:
769  * - There is a separate bit for the PMU called PMU_24M_EN_CFG.  At the moment
770  *   we always keep that 0.  This apparently choose between using the PLL as
771  *   the source for the PMU vs. the 24M clock.  If we ever set it to 1 we
772  *   should consider how it affects these counts (if at all).
773  * - The power_mode_en is documented to auto-clear automatically when we leave
774  *   "power mode".  That's why most clocks are on 24M.  Only timings used when
775  *   in "power mode" are 32k.
776  * - In some cases the kernel may override these counts.
777  *
778  * The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs
779  * in power mode, we need to ensure that they are available.
780  */
781 static void init_pmu_counts(void)
782 {
783 	/* COUNTS FOR INSIDE POWER MODE */
784 
785 	/*
786 	 * From limited testing, need PMU stable >= 2ms, but go overkill
787 	 * and choose 30 ms to match testing on past SoCs.  Also let
788 	 * OSC have 30 ms for stabilization.
789 	 */
790 	mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30));
791 	mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30));
792 
793 	/* Unclear what these should be; try 3 ms */
794 	mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3));
795 
796 	/* Unclear what this should be, but set the default explicitly */
797 	mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0);
798 
799 	/* COUNTS FOR OUTSIDE POWER MODE */
800 
801 	/* Put something sorta conservative here until we know better */
802 	mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3));
803 	mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1));
804 	mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1));
805 	mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1));
806 
807 	/*
808 	 * Set CPU/GPU to 1 us.
809 	 *
810 	 * NOTE: Even though ATF doesn't configure the GPU we'll still setup
811 	 * counts here.  After all ATF controls all these other bits and also
812 	 * chooses which clock these counters use.
813 	 */
814 	mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_US(1));
815 	mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1));
816 	mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1));
817 	mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1));
818 	mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1));
819 	mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1));
820 }
821 
822 static void sys_slp_config(void)
823 {
824 	uint32_t slp_mode_cfg = 0;
825 
826 	mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP);
827 	mmio_write_32(PMU_BASE + PMU_CCI500_CON,
828 		      BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) |
829 		      BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) |
830 		      BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG));
831 
832 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
833 		      BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) |
834 		      BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) |
835 		      BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW));
836 
837 	slp_mode_cfg = BIT(PMU_PWR_MODE_EN) |
838 		       BIT(PMU_POWER_OFF_REQ_CFG) |
839 		       BIT(PMU_CPU0_PD_EN) |
840 		       BIT(PMU_L2_FLUSH_EN) |
841 		       BIT(PMU_L2_IDLE_EN) |
842 		       BIT(PMU_SCU_PD_EN) |
843 		       BIT(PMU_CCI_PD_EN) |
844 		       BIT(PMU_CLK_CORE_SRC_GATE_EN) |
845 		       BIT(PMU_PERILP_PD_EN) |
846 		       BIT(PMU_CLK_PERILP_SRC_GATE_EN) |
847 		       BIT(PMU_ALIVE_USE_LF) |
848 		       BIT(PMU_SREF0_ENTER_EN) |
849 		       BIT(PMU_SREF1_ENTER_EN) |
850 		       BIT(PMU_DDRC0_GATING_EN) |
851 		       BIT(PMU_DDRC1_GATING_EN) |
852 		       BIT(PMU_DDRIO0_RET_EN) |
853 		       BIT(PMU_DDRIO1_RET_EN) |
854 		       BIT(PMU_DDRIO_RET_HW_DE_REQ) |
855 		       BIT(PMU_PLL_PD_EN) |
856 		       BIT(PMU_CLK_CENTER_SRC_GATE_EN) |
857 		       BIT(PMU_OSC_DIS) |
858 		       BIT(PMU_PMU_USE_LF);
859 
860 	mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN));
861 	mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg);
862 
863 
864 	mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW);
865 	mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K);
866 	mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */
867 }
868 
869 static void set_hw_idle(uint32_t hw_idle)
870 {
871 	mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
872 }
873 
874 static void clr_hw_idle(uint32_t hw_idle)
875 {
876 	mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
877 }
878 
879 static int sys_pwr_domain_suspend(void)
880 {
881 	uint32_t wait_cnt = 0;
882 	uint32_t status = 0;
883 
884 	pmu_power_domains_suspend();
885 	set_hw_idle(BIT(PMU_CLR_CENTER1) |
886 		    BIT(PMU_CLR_ALIVE) |
887 		    BIT(PMU_CLR_MSCH0) |
888 		    BIT(PMU_CLR_MSCH1) |
889 		    BIT(PMU_CLR_CCIM0) |
890 		    BIT(PMU_CLR_CCIM1) |
891 		    BIT(PMU_CLR_CENTER) |
892 		    BIT(PMU_CLR_PERILP) |
893 		    BIT(PMU_CLR_PMU) |
894 		    BIT(PMU_CLR_PERILPM0) |
895 		    BIT(PMU_CLR_GIC));
896 
897 	sys_slp_config();
898 	pmu_sgrf_rst_hld();
899 
900 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
901 		      (PMUSRAM_BASE >> CPU_BOOT_ADDR_ALIGN) |
902 		      CPU_BOOT_ADDR_WMASK);
903 
904 	pmu_scu_b_pwrdn();
905 
906 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
907 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
908 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) |
909 		      BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW));
910 	dsb();
911 	status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
912 		BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
913 		BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
914 	while ((mmio_read_32(PMU_BASE +
915 	       PMU_ADB400_ST) & status) != status) {
916 		wait_cnt++;
917 		if (wait_cnt >= MAX_WAIT_COUNT) {
918 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
919 			      mmio_read_32(PMU_BASE + PMU_ADB400_ST));
920 			panic();
921 		}
922 	}
923 	mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN));
924 
925 	/*
926 	 * Disabling PLLs/PWM/DVFS is approaching WFI which is
927 	 * the last steps in suspend.
928 	 */
929 	plls_suspend_prepare();
930 	disable_dvfs_plls();
931 	disable_pwms();
932 	disable_nodvfs_plls();
933 
934 	return 0;
935 }
936 
937 static int sys_pwr_domain_resume(void)
938 {
939 	uint32_t wait_cnt = 0;
940 	uint32_t status = 0;
941 
942 	enable_nodvfs_plls();
943 	enable_pwms();
944 	/* PWM regulators take time to come up; give 300us to be safe. */
945 	udelay(300);
946 	enable_dvfs_plls();
947 	plls_resume_finish();
948 
949 	/*
950 	 * The wakeup status is not cleared by itself, we need to clear it
951 	 * manually. Otherwise we will alway query some interrupt next time.
952 	 *
953 	 * NOTE: If the kernel needs to query this, we might want to stash it
954 	 * somewhere.
955 	 */
956 	mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff);
957 
958 	mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00);
959 
960 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
961 		      (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
962 		      CPU_BOOT_ADDR_WMASK);
963 
964 	mmio_write_32(PMU_BASE + PMU_CCI500_CON,
965 		      WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) |
966 		      WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) |
967 		      WMSK_BIT(PMU_QGATING_CCI500_CFG));
968 	dsb();
969 	mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON,
970 			BIT(PMU_SCU_B_PWRDWN_EN));
971 
972 	mmio_write_32(PMU_BASE + PMU_ADB400_CON,
973 		      WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
974 		      WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) |
975 		      WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) |
976 		      WMSK_BIT(PMU_CLR_CORE_L_HW) |
977 		      WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) |
978 		      WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW));
979 
980 	status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
981 		BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
982 		BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
983 
984 	while ((mmio_read_32(PMU_BASE +
985 	   PMU_ADB400_ST) & status)) {
986 		wait_cnt++;
987 		if (wait_cnt >= MAX_WAIT_COUNT) {
988 			ERROR("%s:wait cluster-b l2(%x)\n", __func__,
989 			      mmio_read_32(PMU_BASE + PMU_ADB400_ST));
990 			panic();
991 		}
992 	}
993 
994 	pmu_sgrf_rst_hld_release();
995 	pmu_scu_b_pwrup();
996 
997 	pmu_power_domains_resume();
998 	clr_hw_idle(BIT(PMU_CLR_CENTER1) |
999 				BIT(PMU_CLR_ALIVE) |
1000 				BIT(PMU_CLR_MSCH0) |
1001 				BIT(PMU_CLR_MSCH1) |
1002 				BIT(PMU_CLR_CCIM0) |
1003 				BIT(PMU_CLR_CCIM1) |
1004 				BIT(PMU_CLR_CENTER) |
1005 				BIT(PMU_CLR_PERILP) |
1006 				BIT(PMU_CLR_PMU) |
1007 				BIT(PMU_CLR_GIC));
1008 	return 0;
1009 }
1010 
1011 void __dead2 soc_soft_reset(void)
1012 {
1013 	struct gpio_info *rst_gpio;
1014 
1015 	rst_gpio = (struct gpio_info *)plat_get_rockchip_gpio_reset();
1016 
1017 	if (rst_gpio) {
1018 		gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT);
1019 		gpio_set_value(rst_gpio->index, rst_gpio->polarity);
1020 	} else {
1021 		soc_global_soft_reset();
1022 	}
1023 
1024 	while (1)
1025 		;
1026 }
1027 
1028 void __dead2 soc_system_off(void)
1029 {
1030 	struct gpio_info *poweroff_gpio;
1031 
1032 	poweroff_gpio = (struct gpio_info *)plat_get_rockchip_gpio_poweroff();
1033 
1034 	if (poweroff_gpio) {
1035 		/*
1036 		 * if use tsadc over temp pin(GPIO1A6) as shutdown gpio,
1037 		 * need to set this pin iomux back to gpio function
1038 		 */
1039 		if (poweroff_gpio->index == TSADC_INT_PIN) {
1040 			mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX,
1041 				      GPIO1A6_IOMUX);
1042 		}
1043 		gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT);
1044 		gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity);
1045 	} else {
1046 		WARN("Do nothing when system off\n");
1047 	}
1048 
1049 	while (1)
1050 		;
1051 }
1052 static void __dead2 sys_pwr_down_wfi(const psci_power_state_t *target_state)
1053 {
1054 	uint32_t wakeup_status;
1055 
1056 	/*
1057 	 * Check wakeup status and abort suspend early if we see a wakeup
1058 	 * event.
1059 	 *
1060 	 * NOTE: technically I we're supposed to just execute a wfi here and
1061 	 * we'll either execute a normal suspend/resume or the wfi will be
1062 	 * treated as a no-op if a wake event was present and caused an abort
1063 	 * of the suspend/resume.  For some reason that's not happening and if
1064 	 * we execute the wfi while a wake event is pending then the whole
1065 	 * system wedges.
1066 	 *
1067 	 * Until the above is solved this extra check prevents system wedges in
1068 	 * most cases but there is still a small race condition between checking
1069 	 * PMU_WAKEUP_STATUS and executing wfi.  If a wake event happens in
1070 	 * there then we will die.
1071 	 */
1072 	wakeup_status = mmio_read_32(PMU_BASE + PMU_WAKEUP_STATUS);
1073 	if (wakeup_status) {
1074 		WARN("early wake, will not enter power mode.\n");
1075 
1076 		mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, 0);
1077 
1078 		disable_mmu_icache_el3();
1079 		bl31_warm_entrypoint();
1080 
1081 		while (1)
1082 			;
1083 	} else {
1084 		/* Enter WFI */
1085 		psci_power_down_wfi();
1086 	}
1087 }
1088 
1089 static struct rockchip_pm_ops_cb pm_ops = {
1090 	.cores_pwr_dm_on = cores_pwr_domain_on,
1091 	.cores_pwr_dm_off = cores_pwr_domain_off,
1092 	.cores_pwr_dm_on_finish = cores_pwr_domain_on_finish,
1093 	.cores_pwr_dm_suspend = cores_pwr_domain_suspend,
1094 	.cores_pwr_dm_resume = cores_pwr_domain_resume,
1095 	.hlvl_pwr_dm_suspend = hlvl_pwr_domain_suspend,
1096 	.hlvl_pwr_dm_resume = hlvl_pwr_domain_resume,
1097 	.hlvl_pwr_dm_off = hlvl_pwr_domain_off,
1098 	.hlvl_pwr_dm_on_finish = hlvl_pwr_domain_on_finish,
1099 	.sys_pwr_dm_suspend = sys_pwr_domain_suspend,
1100 	.sys_pwr_dm_resume = sys_pwr_domain_resume,
1101 	.sys_gbl_soft_reset = soc_soft_reset,
1102 	.system_off = soc_system_off,
1103 	.sys_pwr_down_wfi = sys_pwr_down_wfi,
1104 };
1105 
1106 void plat_rockchip_pmu_init(void)
1107 {
1108 	uint32_t cpu;
1109 
1110 	rockchip_pd_lock_init();
1111 	plat_setup_rockchip_pm_ops(&pm_ops);
1112 
1113 	/* register requires 32bits mode, switch it to 32 bits */
1114 	cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot;
1115 
1116 	for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++)
1117 		cpuson_flags[cpu] = 0;
1118 
1119 	for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++)
1120 		clst_warmboot_data[cpu] = 0;
1121 
1122 	psram_sleep_cfg->ddr_func = 0x00;
1123 	psram_sleep_cfg->ddr_data = 0x00;
1124 	psram_sleep_cfg->ddr_flag = 0x00;
1125 	psram_sleep_cfg->boot_mpidr = read_mpidr_el1() & 0xffff;
1126 
1127 	/* config cpu's warm boot address */
1128 	mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
1129 		      (cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
1130 		      CPU_BOOT_ADDR_WMASK);
1131 	mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE);
1132 
1133 	/*
1134 	 * Enable Schmitt trigger for better 32 kHz input signal, which is
1135 	 * important for suspend/resume reliability among other things.
1136 	 */
1137 	mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE);
1138 
1139 	init_pmu_counts();
1140 
1141 	nonboot_cpus_off();
1142 
1143 	INFO("%s(%d): pd status %x\n", __func__, __LINE__,
1144 	     mmio_read_32(PMU_BASE + PMU_PWRDN_ST));
1145 }
1146