xref: /rk3399_ARM-atf/plat/nxp/soc-ls1088a/soc.c (revision c99e3b7408140686bf50e3c6d63e4d1e26a51d9b)
1 /*
2  * Copyright 2022, 2025 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <caam.h>
11 #include <cci.h>
12 #include <common/debug.h>
13 #include <dcfg.h>
14 #ifdef I2C_INIT
15 #include <i2c.h>
16 #endif
17 #include <lib/mmio.h>
18 #include <lib/xlat_tables/xlat_tables_v2.h>
19 #include <ls_interconnect.h>
20 #include <nxp_smmu.h>
21 #include <nxp_timer.h>
22 #include <plat_console.h>
23 #include <plat_gic.h>
24 #include <plat_tzc400.h>
25 #include <pmu.h>
26 #if defined(NXP_SFP_ENABLED)
27 #include <sfp.h>
28 #endif
29 #if TRUSTED_BOARD_BOOT
30 #include <snvs.h>
31 #endif
32 
33 #include <errata.h>
34 #ifdef CONFIG_OCRAM_ECC_EN
35 #include <ocram.h>
36 #endif
37 #include <plat_common.h>
38 #include <platform_def.h>
39 #include <soc.h>
40 
41 static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
42 static struct soc_type soc_list[] =  {
43 	SOC_ENTRY(LS1044A, LS1044A, 1, 4),
44 	SOC_ENTRY(LS1044AE, LS1044AE, 1, 4),
45 	SOC_ENTRY(LS1048A, LS1048A, 1, 4),
46 	SOC_ENTRY(LS1048AE, LS1048AE, 1, 4),
47 	SOC_ENTRY(LS1084A, LS1084A, 2, 4),
48 	SOC_ENTRY(LS1084AE, LS1084AE, 2, 4),
49 	SOC_ENTRY(LS1088A, LS1088A, 2, 4),
50 	SOC_ENTRY(LS1088AE, LS1088AE, 2, 4),
51 };
52 
53 static dcfg_init_info_t dcfg_init_data = {
54 	.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
55 	.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
56 	.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
57 	.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
58 };
59 
60 /*
61  * This function dynamically constructs the topology according to
62  *  SoC Flavor and returns it.
63  */
plat_get_power_domain_tree_desc(void)64 const unsigned char *plat_get_power_domain_tree_desc(void)
65 {
66 	unsigned int i;
67 	uint8_t num_clusters, cores_per_cluster;
68 
69 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
70 
71 	/*
72 	 * The highest level is the system level. The next level is constituted
73 	 * by clusters and then cores in clusters.
74 	 */
75 	_power_domain_tree_desc[0] = 1;
76 	_power_domain_tree_desc[1] = num_clusters;
77 
78 	for (i = 0; i < _power_domain_tree_desc[1]; i++) {
79 		_power_domain_tree_desc[i + 2] = cores_per_cluster;
80 	}
81 
82 
83 	return _power_domain_tree_desc;
84 }
85 
86 CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
87 		assert_invalid_ls1088a_cluster_count);
88 
89 /*
90  * This function returns the core count within the cluster corresponding to
91  * `mpidr`.
92  */
plat_ls_get_cluster_core_count(u_register_t mpidr)93 unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
94 {
95 	return CORES_PER_CLUSTER;
96 }
97 
98 /*
99  * This function returns the total number of cores in the SoC
100  */
get_tot_num_cores(void)101 unsigned int get_tot_num_cores(void)
102 {
103 	uint8_t num_clusters, cores_per_cluster;
104 
105 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
106 
107 	return (num_clusters * cores_per_cluster);
108 }
109 
110 /*
111  * This function returns the PMU IDLE Cluster mask.
112  */
get_pmu_idle_cluster_mask(void)113 unsigned int get_pmu_idle_cluster_mask(void)
114 {
115 	uint8_t num_clusters, cores_per_cluster;
116 
117 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
118 
119 	return ((1 << num_clusters) - 2);
120 }
121 
122 /*
123  * This function returns the PMU Flush Cluster mask.
124  */
get_pmu_flush_cluster_mask(void)125 unsigned int get_pmu_flush_cluster_mask(void)
126 {
127 	uint8_t num_clusters, cores_per_cluster;
128 
129 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
130 
131 	return ((1 << num_clusters) - 2);
132 }
133 
134 /*
135  * This function returns the PMU IDLE Core mask.
136  */
get_pmu_idle_core_mask(void)137 unsigned int get_pmu_idle_core_mask(void)
138 {
139 	return ((1 << get_tot_num_cores()) - 2);
140 }
141 
142 #ifdef IMAGE_BL2
143 
soc_bl2_prepare_exit(void)144 void soc_bl2_prepare_exit(void)
145 {
146 #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
147 	set_sfp_wr_disable();
148 #endif
149 }
150 
soc_preload_setup(void)151 void soc_preload_setup(void)
152 {
153 
154 }
155 
156 /*
157  * This function returns the boot device based on RCW_SRC
158  */
get_boot_dev(void)159 enum boot_device get_boot_dev(void)
160 {
161 	enum boot_device src = BOOT_DEVICE_NONE;
162 	uint32_t porsr1;
163 	uint32_t rcw_src, val;
164 
165 	porsr1 = read_reg_porsr1();
166 
167 	rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
168 
169 	/* RCW SRC NOR */
170 	val = rcw_src & RCW_SRC_TYPE_MASK;
171 	if (val == NOR_16B_VAL) {
172 		src = BOOT_DEVICE_IFC_NOR;
173 		INFO("RCW BOOT SRC is IFC NOR\n");
174 	} else {
175 		val = rcw_src & RCW_SRC_SERIAL_MASK;
176 		switch (val) {
177 		case QSPI_VAL:
178 			src = BOOT_DEVICE_QSPI;
179 			INFO("RCW BOOT SRC is QSPI\n");
180 			break;
181 		case SDHC_VAL:
182 			src = BOOT_DEVICE_EMMC;
183 			INFO("RCW BOOT SRC is SD/EMMC\n");
184 			break;
185 		case EMMC_VAL:
186 			src = BOOT_DEVICE_EMMC;
187 			INFO("RCW BOOT SRC is SD/EMMC\n");
188 			break;
189 		default:
190 			src = BOOT_DEVICE_NONE;
191 		}
192 	}
193 
194 	return src;
195 }
196 
197 /*
198  * This function sets up access permissions on memory regions
199  */
soc_mem_access(void)200 void soc_mem_access(void)
201 {
202 	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
203 	int i = 0;
204 	struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
205 	int dram_idx, index = 1;
206 
207 	for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
208 	     dram_idx++) {
209 		if (info_dram_regions->region[i].size == 0) {
210 			ERROR("DDR init failure, or");
211 			ERROR("DRAM regions not populated correctly.\n");
212 			break;
213 		}
214 
215 		index = populate_tzc400_reg_list(tzc400_reg_list,
216 				dram_idx, index,
217 				info_dram_regions->region[dram_idx].addr,
218 				info_dram_regions->region[dram_idx].size,
219 				NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
220 	}
221 
222 	mem_access_setup(NXP_TZC_ADDR, index,
223 			 tzc400_reg_list);
224 }
225 
226 /*
227  * This function implements soc specific erratum
228  * This is called before DDR is initialized or MMU is enabled
229  */
soc_early_init(void)230 void soc_early_init(void)
231 {
232 	enum boot_device dev;
233 	dram_regions_info_t *dram_regions_info = get_dram_regions_info();
234 
235 #if TRUSTED_BOARD_BOOT
236 	snvs_init(NXP_SNVS_ADDR);
237 #endif
238 
239 #ifdef CONFIG_OCRAM_ECC_EN
240 	ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
241 #endif
242 	dcfg_init(&dcfg_init_data);
243 #if LOG_LEVEL > 0
244 	/* Initialize the console to provide early debug support */
245 	plat_console_init(NXP_CONSOLE_ADDR,
246 			  NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
247 #endif
248 	enable_timer_base_to_cluster(NXP_PMU_ADDR);
249 	enable_core_tb(NXP_PMU_ADDR);
250 
251 	/*
252 	 * Use the region(NXP_SD_BLOCK_BUF_ADDR + NXP_SD_BLOCK_BUF_SIZE)
253 	 * as dma of sd
254 	 */
255 	dev = get_boot_dev();
256 	if (dev == BOOT_DEVICE_EMMC) {
257 		mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
258 				NXP_SD_BLOCK_BUF_SIZE,
259 				MT_DEVICE | MT_RW | MT_NS);
260 	}
261 
262 	/*
263 	 * Unlock write access for SMMU SMMU_CBn_ACTLR in all Non-secure contexts.
264 	 */
265 	smmu_cache_unlock(NXP_SMMU_ADDR);
266 	INFO("SMMU Cache Unlocking is Configured.\n");
267 
268 #if TRUSTED_BOARD_BOOT
269 	uint32_t mode;
270 
271 	sfp_init(NXP_SFP_ADDR);
272 	/*
273 	 * For secure boot disable SMMU.
274 	 * Later when platform security policy comes in picture,
275 	 * this might get modified based on the policy
276 	 */
277 	if (check_boot_mode_secure(&mode) == true) {
278 		bypass_smmu(NXP_SMMU_ADDR);
279 	}
280 
281 	/*
282 	 * For Mbedtls currently crypto is not supported via CAAM
283 	 * enable it when that support is there. In tbbr.mk
284 	 * the CAAM_INTEG is set as 0.
285 	 */
286 #ifndef MBEDTLS_X509
287 	/* Initialize the crypto accelerator if enabled */
288 	if (is_sec_enabled() == false) {
289 		INFO("SEC is disabled.\n");
290 	} else {
291 		sec_init(NXP_CAAM_ADDR);
292 	}
293 #endif
294 #endif
295 
296 	soc_errata();
297 
298 	delay_timer_init(NXP_TIMER_ADDR);
299 	i2c_init(NXP_I2C_ADDR);
300 	dram_regions_info->total_dram_size = init_ddr();
301 }
302 #else /* !IMAGE_BL2 */
303 
soc_early_platform_setup2(void)304 void soc_early_platform_setup2(void)
305 {
306 	dcfg_init(&dcfg_init_data);
307 	/*
308 	 * Initialize system level generic timer for Socs
309 	 */
310 	delay_timer_init(NXP_TIMER_ADDR);
311 
312 #if LOG_LEVEL > 0
313 	/* Initialize the console to provide early debug support */
314 	plat_console_init(NXP_CONSOLE_ADDR,
315 			  NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
316 #endif
317 }
318 
soc_platform_setup(void)319 void soc_platform_setup(void)
320 {
321 	/* Initialize the GIC driver, cpu and distributor interfaces */
322 	static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
323 	static interrupt_prop_t ls_interrupt_props[] = {
324 		PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
325 		PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
326 	};
327 
328 	plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
329 				PLATFORM_CORE_COUNT,
330 				ls_interrupt_props,
331 				ARRAY_SIZE(ls_interrupt_props),
332 				target_mask_array,
333 				plat_core_pos);
334 
335 	plat_ls_gic_init();
336 	enable_init_timer();
337 }
338 
339 /*
340  * This function initializes the soc from the BL31 module
341  */
soc_init(void)342 void soc_init(void)
343 {
344 	uint8_t num_clusters, cores_per_cluster;
345 
346 	/* low-level init of the soc */
347 	soc_init_lowlevel();
348 	_init_global_data();
349 	soc_init_percpu();
350 	_initialize_psci();
351 
352 	/*
353 	 * Initialize Interconnect for this cluster during cold boot.
354 	 * No need for locks as no other CPU is active.
355 	 */
356 	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
357 
358 	/*
359 	 * Enable Interconnect coherency for the primary CPU's cluster.
360 	 */
361 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
362 	plat_ls_interconnect_enter_coherency(num_clusters);
363 
364 	/* set platform security policies */
365 	_set_platform_security();
366 
367 	/* Initialize the crypto accelerator if enabled */
368 	if (is_sec_enabled() == false) {
369 		INFO("SEC is disabled.\n");
370 	} else {
371 		sec_init(NXP_CAAM_ADDR);
372 	}
373 }
374 
soc_runtime_setup(void)375 void soc_runtime_setup(void)
376 {
377 
378 }
379 #endif /* IMAGE_BL2 */
380 
381 /*
382  * Function to return the SoC SYS CLK
383  */
get_sys_clk(void)384 unsigned int get_sys_clk(void)
385 {
386 	return NXP_SYSCLK_FREQ;
387 }
388 
389 /*
390  * Function returns the base counter frequency
391  * after reading the first entry at CNTFID0 (0x20 offset).
392  *
393  * Function is used by:
394  *   1. ARM common code for PSCI management.
395  *   2. ARM Generic Timer init.
396  */
plat_get_syscnt_freq2(void)397 unsigned int plat_get_syscnt_freq2(void)
398 {
399 	unsigned int counter_base_frequency;
400 	/*
401 	 * Below register specifies the base frequency of the system counter.
402 	 * As per NXP Board Manuals:
403 	 * The system counter always works with SYS_REF_CLK/4 frequency clock.
404 	 */
405 	counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
406 
407 	return counter_base_frequency;
408 }
409